

ATLAS The World's Largest Magnet System

Roger Ruber

Contents: ATLAS & LHC Magnet System Cryogenics & Vacuum Current & Controls Conclusions

ATLA

presented at Uppsala University, 8th December 2006

LHC: The Large Hadron Collider

- Circular accelerator and collider in the 27 km LEP tunnel
 - 10x higher energy
 - 100x higher luminosity then previous proton-proton colliders
- General purpose machine to study the universe
 - Unexplored aspects of the Standard Model
 - search for mass-generating mechanism: Higgs boson
 - search for origin of matter/antimatter asymmetry: CP-violation
 - Supersymmetry: a new framework for matter & interactions
 - many new particles within the mass scale of LHC

LHC Experimental Areas

LHC Underground Installation

9135 magnets: -1232 main dipole (twins) - 392 lattice quadrupole (twins) 1000 main dipoles installed 1 sector fully completed (interconnections)

LHC Current Distribution Box

cryogenic distribution line completed current distribution: -1182 HTS leads: 600 - 13,000 A -2104 copper leads: 60 - 120 A

ATLAS Underground Installation

cavern

cavern

The Inner Tracking Detectors

~6m long, 1.1 m radius

- Pixels
- Silicon Strip Tracker (SCT)
- Transition Radiation Tracker
 (TRT)

The Liquid Argon Accordion Calorimeter

E-M calorimeter (>22X₀)

- LAr as active material inherently linear
- hermetic coverage (no cracks)
- longitudinal segmentation
- high granularity (Cu etching)
- inherently radiation hard
- fast readout possible

steel absorbers & plastic scintillator

- tiles perpendicular to beam
- staggered in depth
- 7.2λ thick

The Forward Hadronic Calorimeters

Forward Calorimeter (FCAL)

Copper Tube 5.25 mm ID

- 1st wheel: Cu matrix (2.6λ, 28X₀)
- 2^{nd} , 3^{rd} wheel: W matrix (2x3.6 λ)

Hadronic End-Cap Calorimeter (HEC)

- share cryostat w/ 1 wheel LAr EMcal
- 2 wheels (10 λ):
 - Cu absorber (25/50mm)
 - 4x LAr filled 1.85mm gap

The Muon Spectrometer

Track & trigger μ trajectory

- 6 points
- precision 50μ (each point)
- maximum 4 T toroidal field
- background of γ & n
- follow-up position of every measuring element with a 30μ precision

Roger Ruber - Uppsala, 8 December 2006

2 technologies:

- MDT Monitored Drift Tubes
- **RPC** Resistive Plate Chambers (trigger)

The Superconducting Magnets

Barrel Toroid + 2 End-Cap Toroids + Central Solenoid

- 4 magnets provide magnetic field for the inner detector (solenoid) and muon detectors (toroids)
- 20 m diameter x 25 m long
- 8200 m³ volume
- 170 t superconductor
- 700 t cold mass
- 1320 t total weight
- 90 km conductor
- 20.5 kA at 4.1 T
- 1.55 GJ stored energy
- conduction cooled at 4.8 K
- 9 years construction 98-07

The largest superconducting magnet in the world !

Technology Drivers

momentum resolution

-depends on sagitta term

- transparency
 - reduction of material
 - -choose low X₀ materials

detector configuration

 determines magnet configuration

• cost

- construction
- -operation

Solutions

- -high field
- -large volume

- -superconducting
- -aluminium alloys
- -dipole spectrometer
- solenoid or toroid (forward/backward symmetry)
- conductor, cryostat, iron yoke
- -water or cryo cooling

Resolution

-inside solenoid: $dp/p \sim \{B \cdot R^2_{solenoid}\}^{-1}$

-outside solenoid: $dp/p \sim \{B \cdot R_{solenoid}\}^{-1}$

Field & Symmetry

- -axial and uniform
- but field lines *parallel* to particle path at small angles

Installation

- -self supporting structure
- iron yoke required to contain stray field (improves bending power at small angles)

- 16 m diameter x 21 m long
- 12,500 tonnes total weight
- 6 m diameter x 12 m long solenoid
- 4 T at 19.5 kA

Roger Rube

- 2.7 GJ stored energy
- 220 t cold mass, 4 layers, 5 segments

Resolution

- inside toroid: $dp/p \sim \sin\theta \{B_{\varphi} \cdot R_{in} \cdot \ln(R_{in}/R_{out})\}^{-1}$

Field & Symmetry

- tangential field ($\infty 1/r$)
- field lines perpendicular to particle path
- closed field: centred on and circulating around beam (no influence on beam)
- no stray field: no iron yoke required

Installation

support required to keep self balance

CLAS/CEBAF 1995

EAGLE

FECH-92

- 2-4 m thick warm iron toroid
- total weight 26,400 tonnes!
- SC central solenoid (r=1.2m)
- combined cryostat with liquid argon calorimeter

ASCOT

- 12 coil SC air core toroid with muon spectrometer
- 2x twin iron core end cap toroid
- separate cryostat solenoid/LAr

optimization of field uniformity &

access vs. cost: 6 / 8 / 10 / 12 coils

- same ampere-turns
- less cryostats
- high peak to operating field ratio

- large field volume: ~7000m³
- open structure for detector: cryostat occupies ~2% of total volume
- good resolution at small forward angles

90 km aluminium stabilized superconductor in 3 versions • Toroids (BT/ECT): 65 kA at 5 T

- -40 x 1.25 mm NbTi/Cu strand, 2900 A/mm2 at 5 T (~1700 A/strand)
- co-extrusion with high purity aluminium: high RRR > 1500
- intermetalic Cu-AI bonding for current and heat transfer
- -size: BT = 57 x 12 mm², 56 km ECT = 46 x 12 mm², 25 km
- Solenoid (CS): 20 kA at 5 T
 - 12 x 1.22 mm NbTi/Cu strand, 2750 A/mm2 at 5 T
 - co-extrusion with Ni-doped aluminium RRR ~ 500; improved yield strength
 - -size: 40 x 4.2 mm², 9 km

- 8 coils, 25 x 5 m²
- 20 kA, 4 T peak field
- 16 support rings
- mounted on 18 feet
 & 6 bedplates
- services via top feed box and cryo-ring
- 2 rails for calorimeter

Barrel Toroid Cold Mass Integration

Scale

8 coils in separate cryostats – open structure

Force transfer ~ 1100t/coil

Cold mass ~ 450t

Barrel Toroid Cryostat Integration

Challenge

Scale of components and integration accuracy

- Tolerances << 1 mm in 26m
- < 40 parts per million

release BT: 830 tonnes → sag 18 mm
350 tonnes muon chambers → sag 27 mm

Commissioning up to Full Current (21 kA)

Cool down 6 weeks (Jul-Aug) Powering step-by-step to 21 kA (9 Nov'06)

Barrel Toroid Ramp, Slow-Dump, Fast Dump, Cryo-recovery times

At each step: slow dump, fast dump & re-cool down

Full Current 21 kA Ramp-up / down = 2 h + 2 h E = 1.1 GJ Fast dump T_{max} = 55 K Cryo-recovery = 84 h

End Cap Toro

- 20 kA, 4 T peak
- torus assembly
- 8 keystone boxes
- hanging on bore tube

End-Cap Toroid Cold Mass Assembly

End-Cap Toroid Cryostating

End-Cap Toroid Ready for Closure

2.4 m bore x 5.3 m long 39 MJ at 2 T, 7.73 kA 0.66 radiation lengths 9 km conductor (NbTi/Cu + Al-stab.) pure-Al quench prop. 5 tonnes cold mass

How to meet the Requirements?

To provide high field with minimizing wall material

- Develop high strength superconductor Ni-doped Aluminium-stabilizer: – mechanical reinforcement with keeping
 - mechanical reinforcement with keeping quench stability
- Integrate CS in common cryostat with LAr calorimeter
- pure Al-strip quench propagator
- Sophisticated current & cryogenics feeding

 3D chimney design
 - -Full integration at CERN

200

150

rield Strength [MPa]

How to meet the Requirements?

To provide high field with minimizing wall material

- Develop high strength superconductor Ni-doped Aluminium-stabilizer:
 - mechanical reinforcement with keeping quench stability
- Integrate CS in common cryostat
 with LAr calorimeter
- pure Al-strip quench propagator
- Sophisticated current & cryogenics feeding

 3D chimney design
 Full integration at CERN

How to meet the Requirements?

To provide high field with minimi

- Develop high strength supercon Ni-doped Aluminium-stabilizer:
 – mechanical reinforcement with kee quench stability
- Integrate CS in common cryostat with LAr calorimeter
- pure Al-strip quench propagator
- Sophisticated current & cryogenics feeding

 3D chimney design
 Eull integration at CERN
 - Full integration at CERN

Central Solenoid Installation

October 2004: going down 100 m ...

in the shaft

4 November 2005: in position

Excitation to full field: 8 kA (1 August)

after closing TileCal End-Caps

- Ramp in steps: 7730 A = 2 T
- repositioning accuracy ±0.1 mm
- final position
 0.0 ± 1.4 mm
 (relative IP)

Coil length shrinkage, linear to I²

- Excitation reproducibility
 - field: < 0.1x10⁻⁴ T
 - current: < 5 ppm</p>
- No hysteresis effect iron
 - iron contribution ~3.5 %
- Accurate measurements:
 - possible to identify details in winding structure
- After first corrections:

 +7x10⁻⁴ ~ -13x10⁻⁴ T

 Improvements (8 Nov.'06)

 ±4x10⁻⁴ T (RMS)

Conductor joint = missing 1 turn

to be studied

Helium Cryogenics

- shield refrigerator: 20 kW at 40~80K
- helium liquefier:
 6 kW at 4.5 K
- toroid helium circulation pump 1.2 kg/s at 0.4 b
- local valve boxes to regulate helium flow in each magnet

In case of power failure:

- thermo-syphon solenoid
- PCS for toroid pumps

Experience of a General Power Cut

Cryogenics Operation, 29 July 2006 (Central Solenoid)

05:50 UTC: (6:50 Geneva)

- CERN wide power cut
- Auto-switch to thermo-syphon mode,
- Cooling kept for ~ 2 hours, (Sufficiently long for safe slow discharge)

07:40: LHe empty

- Coil start to warm up

10:00: restart refrigerator11:30: coil re-cooled down19:00: LHe level recovered

~ 13 hours

- 24 kA/24 V (T) + 8 kA/8V (S) power converters
- current run down unit solenoid / toroids
- 150 m Al. bus-bars

- magnet safety system quench detection and protection
- magnet control system

Connections ECT Services

CS & BT commissioned

- Operation without problems
- Field reproducible in 10⁻⁵
- Safe operation confirmed

CS & BT completed

- Functioned as a front runner
 - First to deal with various challenges in construction and operation,
 - The first superconducting magnet operated in LHC underground areas!

ECT on fast track to completion

Many thanks to

all collaborators in ATLAS, CERN, KEK, CEA, RAL, cooperation of BNL, and a lot of companies, small and big.

