Relational Database for
Version-Controlled ATLAS Detector Description
1. Preface

Detector description applications for all subsystems of the ATLAS detector are presently developed using a set of geometrical primitives known as GeoModel. The GeoModel toolkit provides a scheme for accessing both the raw geometry of the detector and an arbitrary subsystem-specific geometrical layer (readout geometry). Thus the GeoModel-based detector description serves as a central store of detector-specific geometrical information which is accessed throughout ATHENA applications in ATLAS, including both simulation and reconstruction.
The GeoModel descriptions of ATLAS subsystems factorize into two main components:

· Primary numbers for geometry description residing in the relational database (Geometry DB);

· Factories that interpret these numbers and build the transient description consisting of the raw geometry in terms of GeoModel primitives, plus a synchronized readout geometry layer.
Following the strong demand from ATLAS s/w and physics community, we have designed a geometry versioning system for the ATLAS detector description in GeoModel. And for this versioning system we have designed and implemented the special relational database schema, which allows hierarchical versioning of the primary numbers. The master copy of this database resides in the CERN Oracle production database server (PDB01). In order to simplify the data access from remote sites and also to allow running ATHENA applications on standalone PCs with restricted network connections the contents of the geometry database are replicated to MySQL and also to the Oracle servers outside CERN.
The subsequent sections of the documents describe the main design principles of the database schema and also show the possible ways of data access (read and write).

2. Database schema
All primary numbers in the Geometry DB are logically grouped into ATLAS subsystem specific “structures”, which map to rows within data tables. The structures are logically grouped into “directories”. Each directory can contain few child structures and subdirectories at the same time, by this way constructing some kind of hierarchy. In the terms of Hierarchical Versioning System (HVS) the directories are called branch nodes and the structures – leaf nodes.
Both the branch and leaf nodes can be tagged:
· The branch node tag is comprised of the tags of its child nodes (branch and leaf);

· The leaf node tag is comprised of a set of corresponding data table records (structure instances);

· Each data table record can be tagged more than once. Also each tag of HVS node can be included into more than one tag of its parent node.

· It is possible to lock the tags. The contents of some locked tag cannot be changed anymore. That means in particular, that the data table records included into some locked tag cannot be updated or deleted.

The Figure 1 shows an example of the Geometry DB logical structure.

[image: image1.jpg]Set root node:

—NONE— | Show

open all | close all

§ ATLAS Tags
{7 ATLAS-00
] ATLAS-01
<7 ATLAS-Rome-Initial-00
| B (] BeamPipe-00
&7 Cryostats-00
B[] InnerDetector-01
& {7 LAr-Rome-Initial-00
] MagneticField-Rome-00
-7 Muon-Rome-Initial-00
2 AMDB-Rome-Initial-00
AcuT-01
ALIN-01
ALMN-01
APTP-01
ASMP-01
ATLN-01
ATYP-01
AWLN-01
DBAM-01
GGCD-00
GGLN-02
GGSD-00
WCHV-00
WCMI-00
WCRO-00
WCSC-01

LALAUALALAL,

LACAUALAL AL AL

ATLAS DD Database

10000 12.158 0 ases B R L
110001 B 12158 o Tl 1
10002 2 [12.158 o ages & B [t
110003 B 6 12.158 0 s A B
10004 2 2 43 oo 0 B
110005 B 5500 BlIB5) B5 48 0 0 e 1
10006 2 1435 o 3 35 35 48 o 0 e B 1
110007 B 1435 o 1435 35 a8)) BB 1
10008 2 1435 o 1635 35 48 o 0 B
10009 2 1435 o 11935 35 1148 o 0 B 1
10010 2 [119.32 -11.083 [14 685 68.5 8.697 o 0 T
10011 2 -119.32-11.083 14 68.5 685 8.697 |0 0]
10012 - fss 14855 P3[io 10 10 0 0 i E [
10013 2 95 14855 24110 10 110 o 0 A E
10014 2 o5 14855 27]10 10 10 0 0 5 R
110015 2 b5 4855 28010 10 10 0 o H E
10016 2 985 167 Bilio 10 18.121 0 0 -
10017 B 985 167 32[10 10 18.121 o 0 B 1
10018 B 85 167 Bs[io 10 [18.121 o 0 5 R
10019 2 %8s 17 33610 10 18.121 0 0 a5l

Fig1. Logical structure of the ATLAS Geometry DB. The left frame shows the
hierarchy of HVS node tags. The right frame shows the contents of selected leaf HVS node tag.
The relational database schema of the Geometry DB can be decomposed into two main components:

1. Hierarchical Versioning System (HVS) component, which implements the logical organization of primary numbers into HVS nodes. The HVS component includes descriptions of all HVS nodes, their tags and also mother-child relationships between tags.
2. Data component, which actually holds primary numbers for ATLAS Detector Description.
The HVS component consists of three tables:
1. HVS_NODE. This table lists all HVS nodes in the database. The information about mother-child relationship between nodes is also kept within this table;
2. HVS_TAG2NODE. This table lists all existing tags for all HVS nodes;
3. HVS_LTAG2LTAG. This table lists mother-child relationships between HVS node tags.
Each HVS leaf node (structure) has two tables on the Data component side:

1. Data table. The columns of this table correspond to the structure fields by means of names and value types, plus one additional column to uniquely identify table records.
2. Relation table. This table makes a connection between structure Data table and HVS component by referencing HVS_TAG2NODE table.
3. Data access
To effectively manipulate the data in the Geometry DB we have introduced three different accounts:

1. Administrator. Owner of all database objects

2. Writer. Has an insert and select privilege for all the tables.

3. Reader. Only select privilege is granted.

The ATLAS subsystem responsible users insert the data into the Data component tables directly, executing SQL scripts via the sqlplus command line utility. For this purpose the Writer account is used.
SQL scripts can be executed on LXPLUS using SQLPLUS command line utility. The quickest way to start SQLPLUS and connect directly to PDB01 database with username atlasdd_reader is to source shell script ~tsulaia/public/start_sqlplus.sh. When you are asked for password you should type reader. As one can guess from the name, the user atlasdd_reader has read only access to ATLAS DD primary number tables which reside to ATLASDD schema.

Various manipulations with HVS nodes and tags can be done through the password protected interactive web interface http://atlas-php.web.cern.ch/atlas-php/DDDB. These operations include
· Creating new HVS node (branch and leaf);

· Creating new HVS tags (branch and leaf);

· Deleting unlocked records from the data tables;

· Collecting tags (branch and leaf);

· Tag locking (branch)

4. Usage of the Geometry DB within ATHENA applications

To read the data from the Geometry DB within ATHENA applications we have developed a dedicated ATHENA service RDBAccessSvc, which resides in Database/AthenaPOOL container package. The RDBAccessSvc has been developed using POOL Relational Access Layer, which provides the mechanism of uniform access to the data residing in the different RDBMS (Oracle, MySQL).

The RDBAccessSvc service allows simple manipulations with database connection (connect/disconnect) and also provides a uniform access to the versioned data in the Data component tables via the recordset objects. The recordset represents a snapshot of some data table, which includes only the records corresponding to the requested tag.
4.1. Configuring the run time environment (Job Options)
In order to load RDBAccessSvc shared libraries at run time one needs to include the following line into the job options script:

include ("RDBAccessSvc/RDBAccessSvcPdb_jobOptions.py")

This script uses the CERN Oracle production database server by default. In order to connect to another Oracle server or connect to some MySQL replica of the ATLAS Geometry DB, one has to edit properties of the RDBAccessSvc. All such properties are listed inside RDBAccessSvcPdb_jobOptions.py together with explanatory comments.
Here is an example of connecting to the MySQL database mydb residing on the host myhost.com, as user dbreader and password reader
RDBAccessSvc = Service("RDBAccessSvc")

RDBAccessSvc.Technology = "mysql"

RDBAccessSvc.HostName = "myhost.com"

RDBAccessSvc.SchemaName = "mydb"

RDBAccessSvc.User = "dbreader"

RDBAccessSvc.Password = "reader"
4.2 Code development

The RDBAccessSvc package contains a set of abstract interfaces that can be used in client applications to access data in the relational databases with HVS-enabled schema.
· IRDBAccessSvc. This ATHENA service implements very simple mechanism for database connection management (connect/disconnect) and provides access the HVS-tagged data in the database through IRDBRecordset interfaces.

· IRDBRecordset. The objects implementing this interface can be considered as snapshots of data tables on client application side. The records of database tables are accessible through IRDBRecord interface. Recordset objects provide access to their records by index or by iterator. Recordset objects are created and managed by RDBAccessSvc service.
· IRDBRecord. The object realizing this interface represents one single record within RDBRecordset. The values of its fields can be retrieved by field name or field name and index in the case of arrays. Records are created and managed by RBDRecordset objects.

The following example demonstrates the usage of RDBAccessSvc interfaces to retrieve TIFG leaf node data corresponding to the top level geometry tag ATLAS-00.
You can find the complete code in AtlasTest/DatabaseTest/RDBAccessTest.

1. Retrieve a pointer to the RDBAccessSvc and open connection to the database

IRDBAccessSvc* m_iAccessSvc;

pServiceLocator->service("RDBAccessSvc",m_iAccessSvc);

m_iAccessSvc->connect();
2. Retrieve TIFG data corresponding to ATLAS-00 tag and close connection to the database
IRDBRecordset* pTifg = m_iAccessSvc->getRecordset
("TIFG","ATLAS-00","ATLAS");

m_iAccessSvc->disconnect();

3. Access the retrieved data

for(unsigned int ind=0; indsize(); ind++)
{

const IRDBRecord* rec = (*pTifg)[ind];

std::cerr << rec->getInt("SECTION") << " " << rec->getInt("NELEM")
 << " "<< rec->getDouble("DZ") << "\n";

}
5
1

