
A T L A S D a t a b a s e P r o j e c t

D I S T R I B U T E D D A T A B A S E S E R V I C E S
C L I E N T

Authors: Yulia Shapiro, Alexandre Vaniachine (editor), Torre Wenaus

Date: July 8, 2004

Project: ATLAS Database

Activity: 11. Distributed Database Services

Document link: http://atlas.web.cern.ch/Atlas/GROUPS/DATABASE/project/services/client.pdf

Abstract: This document defines the database client library software layer for distributed database
services access in ATLAS Database Project. The Project plan prioritizes rationalization and cleanup
of how server specification is done in applications which access database servers. The client library
implements a consistent strategy for database server access. The Distributed Database Services client
library serves as a unique layer for enforcing policies, following rules, establish best practices and
encode logic to deliver efficient, secure and reliable database connectivity to applications in a
heterogeneous distributed database services environment. This document collects requirements,
outlines architecture and the workplan. The implementation responsibilities are also discussed.

 1 / 11

DISTRIBUTED DATABASE SERVICES CLIENT

Document Log

Issue Date Comment Author

0-3 30/06/04 Initial version A. Vaniachine

1-0 03/07/04 Architectural diagram added A. Vaniachine

1-1 03/07/04 Incorporated feedback A. Vaniachine

1-2 03/07/04 Added WBS items A. Vaniachine

1-3 06/07/04 Expanded requirements A. Vaniachine

1-4 08/07/04 Added executive summary A. Vaniachine

Document Change Record

Issue Item Reason for Change

 2 / 11

DISTRIBUTED DATABASE SERVICES CLIENT

CONTENT

1. EXECUTIVE SUMMARY... 4

2. REQUIREMENTS FOR DATABASE COMMUNICATIONS MANAGEMENT..................................... 5
2.1. PRIORITY REQUIREMENTS .. 5

2.1.1. Connection Indirection Layer... 5
2.1.2. Access Model Uniform across Domains... 5
2.1.3. Database Connection Management.. 5

2.2. DISTRIBUTED DATABASE SERVICES CLIENT... 5
2.3. SCALABILITY REQUIREMENTS .. 6

2.3.1. Connection Pooling.. 6
2.3.2. Connection Fallout... 6
2.3.3. Connections On-demand .. 6
2.3.4. Connection Timeouts.. 6
2.3.5. Connection Retries ... 6
2.3.6. Connection Failover... 6
2.3.7. Load Balancing .. 6

2.4. SECURITY REQUIREMENTS ... 6
2.4.1. Client Passwords.. 6
2.4.2. Client Certificates... 7

2.5. SUPPORT REQUIREMENTS ... 7
2.5.1. Client Logging.. 7
2.5.2. Performance Monitoring.. 7
2.5.3. Error Reporting.. 7

2.6. LIBRARY REQUIREMENTS ... 7
2.6.1. External Dependencies... 7
2.6.2. Backward Compatibility... 7
2.6.3. Software Assurance .. 7
2.6.4. Documentation ... 7

3. EVENT-DRIVEN SERVICE-ORIENTED ARCHITECTURE ... 8
3.1. DESIGN RATIONALE.. 8
3.2. ARCHITECTURAL PLATFORM .. 8
3.3. LAYER DECOMPOSITION... 8

4. WORKPLAN AND MILESTONES.. 9
4.1. RESPONSIBILITIES... 9
4.2. PRIORITIES.. 9
4.3. MILESTONES... 9

4.3.1. Indirection .. 9
4.3.2. Pooling ... 9

4.4. INTEGRATION ... 10
4.5. WBS AND COMPLETION MILESTONE.. 10

5. REFERENCED DOCUMENTS .. 11

 3 / 11

DISTRIBUTED DATABASE SERVICES CLIENT

1. EXECUTIVE SUMMARY
In ATLAS Computing Model various applications require access to the data resident in the relational
databases. Examples of these are databases for detector production, detector installation, survey data,
detector geometry, online run bookkeeping, run conditions, online and offline calibrations and
alignments, offline processing configuration and bookkeeping. In a current phase of ATLAS Software
Development process applications communicate with various relational databases in a traditional
approach (Figure 1).

Athena Applications

User Online
Algorithms Algorithms Algorithms

Applications Applications

Figure 1. Data workflow in a traditional approach

The ATLAS Database Project is responsible for ensuring the integration and operation of the full
distributed database and data management infrastructure of ATLAS [1]. The Distributed Database
Services area of the Project is responsible for design, implementation, integration, validation,
operation and monitoring of database services. To achieve the integration goal the Distributed
Database Services client library serves as a unique layer for enforcing policies, following rules,
establish best practices and encode logic to deliver efficient, secure and reliable database connectivity
to applications in a heterogeneous distributed database services environment (Figure 2).

Client Library

Configuration

Client Library

Configuration

Figure 2. Integration of workflow though the client library services layer

Conditions DB API

ServicesServices

 D a t a b a s e C o n n e c t i o n s

Database Server

 4 / 11

DISTRIBUTED DATABASE SERVICES CLIENT

2. REQUIREMENTS FOR DATABASE COMMUNICATIONS MANAGEMENT

2.1. PRIORITY REQUIREMENTS
In a production environment of ATLAS Data Challenges and Combined Testbeam efforts applications
have accessed relational databases for various reasons. We have learned of various new database
connectivity requirements that have to be satisfied in different software domains. A representative
sample of these requirements is listed below.

2.1.1. Connection Indirection Layer
The distributed database servers’ configuration in ATLAS is not static. To shield applications
(deployed world-wide) from changes in the distributed database servers’ configuration an extra layer
of indirection (e.g., logical-to-physical database server mapping) is required.

ATLAS Database Project Plan document [1] prioritizes the rationalization and cleanup of how server
specification is done in jobs which access database servers. It should be easy for a user to configure a
job without detailed knowledge of server location. This is also important for supporting server failover
to backups.

2.1.2. Access Model Uniform across Domains
As a result of the inherent differences in the online and the offline Computing Models and their
corresponding database access modes we have encountered difficulties during database access in
offline applications using the libraries developed specifically for the online environment. In short, the
online Computing Model assumes a secure local environment behind the closed firewalls, the offline
Computing Model has to provide access to distributed databases deployed across the wide area
network worldwide. In addition, in the online environment a limited (less then a dozen) number of
clients access the database concurrently for writing, the offline Computing Model has to provide
access to thousands of concurrent client applications accessing the database for reading. A model
uniform across both domains is required for robust database access.

2.1.3. Database Connection Management
To scale powerful Athena/Gaudi on-demand data access architecture [2] (designed primarily for a file-
based data access) for the use case of ATLAS Data Challenges with thousands of application instances
concurrently accessing database-resident data an effective database connection management solution
is required.

2.2. DISTRIBUTED DATABASE SERVICES CLIENT
To satisfy the above and other requirements a new software component has to be developed. To
converge on a consistent strategy for database server access this component – the Distributed Database
Services Client library – will encapsulate on the client side the database connectivity management.
This will be a single place for enforcing policies, implementing rules, establish best practices and
encode logic to deliver efficient, secure and reliable database connectivity to applications.

ATLAS Computing Model requires that access to the data should be transparent and efficient [3]. In
addition to file-based event data, ATLAS data processing applications require access to large amounts
of valuable non-event data (detector conditions, calibrations, etc.) stored in relational databases.

To provide efficient, robust and secure applications access to database-resident data interaction the
Distributed Database Services client library functionalities should satisfy additional requirements
listed below.

 5 / 11

DISTRIBUTED DATABASE SERVICES CLIENT

2.3. SCALABILITY REQUIREMENTS

2.3.1. Connection Pooling
To streamline overhead form making a new database connection for each application request to for a
database-resident data a connection pooling is required. The client library should keep a set of
concurrent database connections in a ‘persistent’ connections pool. For each Athena service request
for a database connection the pre-established database connection is activated and dispatched to the
service. The library should support heterogeneous databases.

2.3.2. Connection Fallout
To assure that Athena services follow the established best practices and place connections back into
the pool the service can not submit a new connection request until the previous connection is returned
to the pool.

2.3.3. Connections On-demand
The library should take full advantage of the Athena/Gaudi on-demand data access architecture. To
avoid making unnecessary connections to databases sources a “lazy initialization” is required. The
connection should not be created in the application initialization phase. To conserve resources the
connection should be created transparently the first time data is needed.

2.3.4. Connection Timeouts
According to the ATLAS Computing Model a distributed chaotic resource usage should be supported.
In a resulting use case of multiple application jobs starting simultaneously on one cluster a
configurable timeout value is required for new connections. To balance performance and resource
usage the idle connection should be destroyed after a configurable timeout period. Both timeout values
should be configurable.

2.3.5. Connection Retries
Retries are proven to be helpful in case when the database server is just busy with other clients, which
is becoming a requirement for a use case of multiple application jobs starting simultaneously on one
cluster. A configurable maximum number of connection attempts is required.

2.3.6. Connection Failover
Another improvement in the database connectivity robustness will be provided by transparent
application failover logic (when the number of the specified retries failed, try to connect to the replica
server) and automatic updates of the initial configuration of database replicas.

2.3.7. Load Balancing
The library will reuse POOL catalogue infrastructure (suggested by Dirk Duellmann) to provide
logical-to-physical database server mapping, such that physical connections are forwarded to replica
or failover databases without impacting the client. A configurable replica database server catalogue
will be used for connection load balancing. Support for different load balancing strategies is required.

2.4. SECURITY REQUIREMENTS

2.4.1. Client Passwords
The library will hide database connection credentials, which is required for application code exposure
on the web. Initially the credentials repository component of the library will secure the client clear-text
passwords required for database authorization.

 6 / 11

DISTRIBUTED DATABASE SERVICES CLIENT

2.4.2. Client Certificates
According to the ATLAS Database Project plan for support of the grid based access to event and non-
event data the client library will be grid-enabled. It will be capable of forwarding the grid certificate
proxy used by application to grid-enabled database servers or grid-enabling layers surrounding
database.

2.5. SUPPORT REQUIREMENTS

2.5.1. Client Logging
The Athena application issues uncoordinated requests for various database services: IOVDB,
ConditionsDB, etc. To analyse, monitor and debug the application sequence of database queries a
configurable level of client-side logging is required.

In addition, the library should provide client logging capability on the server-side. For every client
database connection the library will insert log records into database logging tables. Such logging has
been shown to be instrumental for debugging the reported client problems.

2.5.2. Performance Monitoring
A related to logging issue is performance monitoring both on the application and on the database
server side. Capture of query execution timing and server load information is required.

2.5.3. Error Reporting
Another required feature is a centralized place for client connection errors reporting. In case of a
complete failure the client library will dump the debugging information required for error reporting
and follow-up problem resolution.

2.6. LIBRARY REQUIREMENTS

2.6.1. External Dependencies
The client library should be lightweight: no heavier or more complex then necessary, with minimal
external dependencies. For the library to be an important tool in online these are necessary
requirements (but attractive also in other contexts).

2.6.2. Backward Compatibility
To ease the process of ATLAS software migration to the new library the compatibility interface is
required. The shallow compatibility library will intercept all Athena application calls for database
services and service them through the new library. In that way the required changes in the available
Athena services code will be minimized delivering autonomy in the applications’ development and
maintenance.

2.6.3. Software Assurance
For assurance of each of the requirements implemented a corresponding execution tool is required to
test the service function. To assure concurrent interoperability of service functions a comprehensive
homogeneous tool suite is required.

2.6.4. Documentation
An up-to-date user guide and a comprehensive documentation for core developers should accompany
the software development process.

 7 / 11

DISTRIBUTED DATABASE SERVICES CLIENT

3. EVENT-DRIVEN SERVICE-ORIENTED ARCHITECTURE

3.1. DESIGN RATIONALE
To service the application requests for database-resident data in the Athena/Gaudi on-demand data
access architecture an event-driven system is required. The preferred way to satisfy ATLAS Athena
application framework requirements will be to develop a service, e.g., the DatabaseMgrSvc that will
communicate with an underlying Distributed Database Services client library. That library in turn will
supply the execution of requested services. The rationale for such design is to make possible reuse of
the library by other ATLAS software domains, e.g., in online. The design based on reusability and
interaction also makes the library easy to use in the common LHC project on Distributed Database
Deployment.

3.2. ARCHITECTURAL PLATFORM
To avoid over-design and integrate various
requirements in one library we chose a service-
oriented platform to capture a complete workflow
of the event-driven communications in unique
layer. The client library repository registers
interoperable service functions. Each autonomic
service function satisfies a particular well-defined
self-contained requirement of Section 1 that does
not depend on the context or state of other
functions. A loosely coupled service functions
communicate with each other via data passing.
Synchronous interaction of two or more service
functions can execute the requested database
connection action. The architecture hides the
complexity of heterogeneous database
technologies by separating the library into
external and internal layers (Figure 3).

3.3. LAYER DECOMPOSITION
The external event-driven layer encapsulates
generic logic of database connections rules that
gives services to clients. The external layer
provides management of database drivers,
database connections and Connections/Servers
lists. To satisfy the requirement of heterogeneous
database connectivity the internal library layer is
composed of a number of technology specific
database drivers providing support for MySQL
and Oracle initially and ODBC driver later. The
internal layer executes actual connection opening
according to the required driver dispatch.

Application layer: Athena services

External library layer:
connection provider functions registry

failover pooling

retries
indirection

Internal client library layer: database drivers

 Oracle MySQL ODBC

Figure 3: Multi-layer service-oriented client
architecture

Through emphasis on a practical approach, and by avoiding too much abstraction and flexibility at
early stage we concentrate on solving actual problems of ATLAS operations workflow.

 8 / 11

DISTRIBUTED DATABASE SERVICES CLIENT

4. WORKPLAN AND MILESTONES

4.1. RESPONSIBILITIES
Yulia Shapiro agreed to be the main developer for Distributed Database Services client library.

4.2. PRIORITIES
Our plan is to deliver a basic tool early and incrementally add functionality.

The fist priority will be reuse of the POOL indirection mechanism to handle the logical-to-physical
database server mapping.

We believe that it would be reasonable to offer ‘simulated’ support for logical database connections,
offering clients the use of logical connection names but internally just mapping them to physical
names locally within the connection manager. This would allow early, centralized management of
database connections, albeit without the full flexibility of the eventual database, but eliminating hard-
wired connection strings in Athena jobOptions, client configuration files, ConditiondsDB folder
attributes and such.

4.3. MILESTONES

4.3.1. Indirection
On a later timescale the library will be actually using a POOL catalogue-derived logical name
database for the logical-to-physical database mapping. Servers list (indirection mechanism) will
provide logical-to-physical mapping between the database server and its replicas.

4.3.2. Pooling
The next milestone will include the functionality of the service class DBPoolConManager that will
create and manage different connection Pools. This service holds connection pool of connections
previously open by application. Connections list will provide mapping to connections known to
application. In case connection to specific database is needed, the request will be supplied to
connections list including database driver and user credentials, verify that this type of connection exist
and return message to connections registry, from which handle will be returned to a new or already
existing connection.

We will provide two connection modes: in one mode this Pool will have open connections to database
ready, in a second mode each method getConnection() try to open connection using specific
database, user, password. The second method is preferred for holding specific pool of open
connections, since most of user/password/database credentials are created for groups. In that use
case the getConnection() method will dispatch handle to already open connection. This Pool will
be created using parameters DB_URI, user, password, max_conn.

Class DBPoolConnections will provide methods to connect to DB using open Pool connection
provided by DBPoolConManager, in case there are no connections available because it outnumbers
max_conn, it will retry for specified time_out period (specified for each getConnection()) and
then try to connect to replica servers, using e.g., the DatabaseServersCatalog.xml file to resolve
indirection. After successful completion, a handle to open connection will be returned to pool
connections vector.

 9 / 11

DISTRIBUTED DATABASE SERVICES CLIENT

4.4. INTEGRATION
At a later stage the library will adopt the preferred technology for the client-database interaction that
will be selected in the course of the ATLAS Distributed Database Services project. This technology
will address the question of how clients should access databases. We will have to figure out what the
right approach is. Current ATLAS two-tier architecture – a direct use of database client software is
one option but it brings complications particularly with Oracle (complexity, license). People are
experimenting with SOAP but encountering performance degradation. Several experiments and
projects reported various benefits from insertion of additional software layers between the client
application and the database server. Jack Cranshaw proposed recently general four-tier architecture to
optimize the client interaction with the database. Evidence of a four-tier approach benefits was
presented in a recent talk by Lee Leuking. In this particular implementation Tomcat/Apache servers
physically close to the database handle the direct database interactions, and clients access data via http
requests to this server, receiving the data packaged by the server essentially as a blob with only a thin
HTML/XML wrapper, apparently greatly reducing the web services performance hit. A further nice
feature is that the client interaction goes not directly to the Tomcat server but to an HTTP caching
proxy (e.g. squid) which can sit close to the client (e.g. on a gateway node), and of which there can be
many. This gives scalability, and automatic caching (for reuse) of the data that is actually used locally
(and only the data that is used locally).

4.5. WBS AND COMPLETION MILESTONE
The overall completion milestone is in time for the Data Challenge 3 ATLAS software release. We
will plan a series of the progressive release dates before that. For actual dates we are in the process of
coordinating these with the Distributed Database Deployment project workplan in preparation. A table
below presents the work breakdown items from the ATLAS Database Project WBS.

Distributed Database Services Client WBS
WBS Name
1.3.11.5 Distributed database services client
1.3.11.5.1 Architecture design
1.3.11.5.2 Connection indirection
1.3.11.5.3 Connection retries and timeout
1.3.11.5.4 Connection pooling
1.3.11.5.5 Failover and load balancing
1.3.11.5.6 Advanced connection management features

 10 / 11

DISTRIBUTED DATABASE SERVICES CLIENT

 11 / 11

5. REFERENCED DOCUMENTS

[1] ATLAS Database Project Plan. Editors: Richard Hawkings, Torre Wenaus

http://atlas.web.cern.ch/Atlas/GROUPS/DATABASE/project/mg
mt/AtlasDBProjectPlan.pdf

[2] ATLAS Common Framework http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/archite
cture/General/Documentation/AthenaDeveloperGuide-8.0.0-
draft.pdf

[3] ATLAS Computing Model R. Jones, D Malon, D Quarrie, T Wenus, D Barberis, G Poulard,
S Jarp, R Hawking, R Dobinson
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/compu
ting-model/comp-model-dec03.doc

	EXECUTIVE SUMMARY
	REQUIREMENTS FOR DATABASE COMMUNICATIONS MANAGEMENT
	PRIORITY REQUIREMENTS
	Connection Indirection Layer
	Access Model Uniform across Domains
	Database Connection Management

	DISTRIBUTED DATABASE SERVICES CLIENT
	SCALABILITY REQUIREMENTS
	Connection Pooling
	Connection Fallout
	Connections On-demand
	Connection Timeouts
	Connection Retries
	Connection Failover
	Load Balancing

	SECURITY REQUIREMENTS
	Client Passwords
	Client Certificates

	SUPPORT REQUIREMENTS
	Client Logging
	Performance Monitoring
	Error Reporting

	LIBRARY REQUIREMENTS
	External Dependencies
	Backward Compatibility
	Software Assurance
	Documentation

	EVENT-DRIVEN SERVICE-ORIENTED ARCHITECTURE
	DESIGN RATIONALE
	ARCHITECTURAL PLATFORM
	LAYER DECOMPOSITION

	WORKPLAN AND MILESTONES
	RESPONSIBILITIES
	PRIORITIES
	MILESTONES
	Indirection
	Pooling

	INTEGRATION
	WBS AND COMPLETION MILESTONE

	REFERENCED DOCUMENTS

