
2007 IEEE NUCLEAR SCIENCE SYMPOSIUM (NSS) AND MEDICAL IMAGING CONFERENCE (MIC), HONOLULU, HAWAII, USA, 2007 1

Enhancing Collaboration in Large Scientific
Projects through Virtual Logbooks

Dimitri Bourilkov, Member, APS and Sharad Sonapeer

Abstract—A key feature of collaboration in large scale scientific
projects is to have a log of what and how is being done -
for private use and reuse and for sharing selected parts with
collaborators and peers, often distributed geographically on an
increasingly global scale. Even better if this log is automatic,
created on the fly while a scientist or software developer is
working in a habitual way, without the need for extra efforts.
The CAVES - Collaborative Analysis Versioning Environment
System - and CODESH - COllaborative DEvelopment SHell -
projects address this problem in a novel way. They build on
the concepts of virtual state and virtual transition to enhance
the collaborative experience by providing automatic persistent
virtual logbooks. CAVES is designed for sessions of data analysis
using the popular ROOT framework, while CODESH generalizes
the same approach for any type of work on the command line in
typical UNIX shells like bash or tcsh. Repositories of sessions
can be configured dynamically to record and make available the
knowledge accumulated in the course of a scientific or software
endeavor. Access can be controlled to define logbooks of private
sessions or sessions shared within or between collaborating
groups. As a typical use case we concentrate on building working
systems for analysis of Petascale volumes of data expected soon
with the start of the LHC experiments. Our approach is general
enough to find applications in many scientific fields.

Heraclitus asked: How can you bathe in the same river twice?

Quine answers: It’s easy, though it is hard to bathe in the same water twice.

I. INTRODUCTION

THE scientific and software development processes de-
mand the precise tracking of how a project is evolving

over time, in order to be able to explore many different alleys
simultaneously, moving forward to well defined states when
successful - or rolling back otherwise. In this context a virtual
session is the process of moving from a well defined initial
to a well defined final state. The concept of “virtuality” with
respect to existence means that we can define states that may
be produced in the future, as well as record the “history”
of states that exist now or have existed at some point in
the past. By keeping an automatic log of initial states and
transformations (knowledge about how to transform to desired
final states) we have a general tool to track the evolution of
a project. Such a tool will be equally useful for software
development or any scientific work done on computers. A
good logging system will enable a collaborating group to
create and/or recreate virtual states on demand. The ability
to reproduce a state can have many implications: it may be

D. Bourilkov and S. Sonapeer are with the University of Florida,
Gainesville, FL, 32611, USA e-mail: (see http://cern.ch/bourilkov).

Manuscript received November 21, 2007. The study is supported in part
by the United States National Science Foundation under grant NSF 0427110
(UltraLight).

more practical (e.g. much less space consuming) to keep the
initial states and the knowledge than all final states. The
decomposition in sessions can describe complex processes and
procedures as a sequence of many small steps at the desired
level of “atomicity”.

The idea of virtual logbooks of sessions complements the
idea of using virtual data for high energy physics analysis [1].
In our approach not only data comes complete with a recipe
how to (re)produce it, but we put more emphasis on the
interactive aspect of work done by users in their habitual ways,
creating the log for the session automatically, on the fly, while
the work is progressing. There is no need per se to provide any
code in advance, but the user can execute/modify preexisting
programs if desired. When a piece of work is worth recording,
the user logs it in a persistent session repository with a unique
identifier for later use/reuse.

Tools like this are vital to facilitate efficient collaboration
in today’s large, geographically distributed teams with their
needs to be able to advance a project anytime and any-
where without space or time restrictions. Consider e.g. the
scenario where thousands of researchers spread over different
continents are working together on projects like the Large
Hadron Collider [2], the most powerful particle accelerator
built so far, expected to start data taking in 2008. In such
a scenario, there is a need for efficient means of storing the
data and methods used to create this data, and sharing these
stored sessions between the collaborators. The CAVES and
CODESH projects [3], [4], [5], [6], [7] build tools to address
this problem.

II. PROJECT OUTLINE

The basic idea behind the two projects 1 is the same and they
share the same architecture. CAVES is designed specifically
for users performing data analysis with the widely popular
analysis package ROOT [8]. CODESH is a generalization of
the same approach for any type of work done on the command
line, like scripting in typical shells, e.g. bash or tcsh.

The primary use case is a ’virtual session’. Each user works
on a per session basis in an open environment. The work of
the user for a session is recorded in the ’virtual logbook’,
while the environment is considered as available or provided
by the collaborating group. The splitting between logbook
and environment parts is to some extent arbitrary. We will
call it a collaborating contract, in the sense that it defines
the responsibilities of the parties involved in a project. The

1For more details about the evolution of our design we refer the reader
to [3], [4].



2007 IEEE NUCLEAR SCIENCE SYMPOSIUM (NSS) AND MEDICAL IMAGING CONFERENCE (MIC), HONOLULU, HAWAII, USA, 2007 2

fundamental concept is to store information in enough detail
to provide a share/replay mechanism, optionally modifying the
inputs, for user’s sessions at any other place or time by other
users.

This is achieved by maintaining a virtual logbook, which
records the initial state (pre-conditions of a session), all the
commands typed by the user, all the outputs generated and all
the programs executed to produce the results. Also the changes
made to the environment i.e. environment variables and aliases
are recorded.

When a user’s session ends, or when the user would like to
checkpoint the work done so far, he/she tags the complete
log, which automatically collects the source program files,
and optionally the data used, with a uniquely generated tag
and logs it to a repository. Thus the repositories can contain
hundreds and thousands of such stored sessions. Reproduction
of a session is possible by extracting the log, data and
source files, executing the commands listed in the log files
and running the scripts that have been downloaded. Also the
environment changes can be carried across sessions.

The repositories of such sessions can be on the local
machine for personal usage and also on shared servers for the
use of collaborating groups. Generally the user will store all
his sessions locally and ’publish’ selected important sessions
to shared repositories. He/she may also extract and re-produce
sessions stored by other collaborators.

There is also a feature, aptly called ’Snapshot’, which allows
logging entire directory structures under the current working
directory. These can later be retrieved and thus provide a
virtual working directory. Using this concept, a virtual session
can be copied to any place on the same machine or even across
machines and re-started or modified. Of course this is possible
if the user works relative to the root of the snapshot directory
and avoids using absolute paths.

III. ARCHITECTURE

We have identified three distinct Tiers in the architecture:

� A. The User Tier
� B. The Main CODESH or CAVES Tier
� C. The Backend

Each Tier is completely independent of the other Tiers and
it makes use of only the interfaces provided by the other Tiers.
Thus we can change one Tier without affecting the operation
of the others. The CODESH architecture is shown in Fig. 1. As
most details when describing the architecture are common for
the two projects, we will concentrate on the CODESH descrip-
tion, mentioning CAVES only where necessary to highlight the
distinct nature of each project. Lets examine each Tier in turn:

A. The User Tier: This mainly implements the User
Interface. We provide an interface similar to the Unix/Linux
command line shell or to the ROOT command line. The
user can start his session either in the batch mode or in
interactive mode. In the interactive mode, the user types shell
(or ROOT) commands just as he/she would on a Unix/Linux
shell. He/she also types CODESH (CAVES) commands for the
session logging and similar tasks. All the input from the user is
parsed and fed to the second Tier, which is the main CODESH

(or CAVES) Tier. Also the results produced are displayed on
the screen for the user to view.

B. The Main CODESH (CAVES) Tier: This is the heart
of our system. It is solely responsible for getting the user
input, logging the user sessions, maintaining state information,
delegating the shell (ROOT) commands to the under-lying
shell (analysis package) and all the communication with the
backend Repositories.

Based on the logical separation of the tasks, we have
identified 4 different modules that comprise this Tier. They
are:

i. CODESH (or CAVES client class): It is the main controller
module that interacts with the remaining 3 modules for the
successful execution of tasks in this Tier. It delegates shell
commands directly to the shell or through the Extract mod-
ule, which is described later. It reads and updates the state
information stored in the State Information module. It also
interacts with the CODESH backend module for the storing
and retrieving of the sessions.

ii. CODESH (CAVES) Backend: This module interacts with
the backend repositories to provide the storage and retrieval of
the session information and also to get some status information
e.g. a listing of all the sessions that have been stored. It
provides a backend independent interface, which is used by
the CODESH module.

iii. State information: This module stores and maintains all
the configuration information during any active user sessions.
We broadly classify this state information in two categories:

1. System information: This includes the aliases and en-
vironment variables that need to be kept track of during the
session. We track the changes made to these during the session
and provide routines for propagating them and also for logging
them along with the session.

2. User Configuration information: This includes the var-
ious user-selected configurations. Some options provided for
customized behavior of CODESH are:
Loglevel: Specifies how much to log
Codeshloglevel: Specifies whether to log CODESH commands
in addition to the shell commands which are always logged
Debuglevel: Specifies how much debugging information to
print on the screen
Batchmode: Option to enable/disable the batch mode opera-
tion
Username: Allows changing the user name used for tagging
the sessions
ExtensionList: Maintains a list of all extensions treated as
scripts.

iv. Extract module: This module is responsible for the
extraction of the sessions i.e. re-executing them and getting
the desired outputs. It delegates the shell (ROOT) commands
and scripts to the under-lying shell (analysis package) for
execution. Currently we support the bash and tcsh shells.
But support for other shells can be easily added.

C. The Backend: The Backend stores the sessions, in such a
way that they can be re-created later by some other user who
extracts a session. For each session, we store the log files,
the source files and optionally the data files. Each session is
identified by a unique identifier which consists of 3 parts: the



2007 IEEE NUCLEAR SCIENCE SYMPOSIUM (NSS) AND MEDICAL IMAGING CONFERENCE (MIC), HONOLULU, HAWAII, USA, 2007 3

Fig. 1. The scalable and distributed CODESH architecture.

user’s name, the current date and time and a user supplied
name for the session. We provide support for three different
types of backends:

i. ASCII: We provide the use of flat files (text or binary)
as the main backend for storing the sessions. The repository
can be local (on disk volumes mounted by the user machine)
or remote. In the latter case we provide remote access using
ssh and scp. The user can utilize private and public keys
or the ssh agent technique to avoid being asked to type in a
password several times per session.

ii. CVS: We use CVS [9] as a version control type backend
for storing the sessions. Using the CVS checkin, checkout
and other commands we implement our commands like Log
session and Extract session (for a comprehensive listing of
CODESH commands refer to the next Section). We also provide
an option of using Remote CVS as a backend i.e. using a
pserver.

iii. SVN: We use Subversion [10] as an alternative
version control type backend for storing the sessions. This
backend is under active development and the first release will
be out before the end of 2007.

iv. MySQL: We provide for a MySQL backend, which stores
only the metadata information regarding each session in the
Database. These annotations help in fast searches through
stored sessions for some particular session types. After such
a session is found, a local or remote CVS repository can be
contacted to fetch the complete session.

Every user may have local e.g. ASCII or CVS repositories
where he/she stores all personal sessions. Typically the user
will want to commit some of the sessions to shared remote
repositories and also extract some sessions stored by other
users at the shared repositories. Thus we provide support
for copying and moving sessions between repositories and
also deleting sessions stored at some particular repository. We
also plan to provide a way of cloning entire repositories or



2007 IEEE NUCLEAR SCIENCE SYMPOSIUM (NSS) AND MEDICAL IMAGING CONFERENCE (MIC), HONOLULU, HAWAII, USA, 2007 4

converting them between different types.
Controller of the Repositories: This module takes care of the

maintenance, recovery and similar tasks related to the different
repositories. Our design structure is distributed in nature and
thus we can have numerous controllers instead of just one
centralized controller.

IV. TYPICAL USAGE SCENARIO

Currently CODESH is implemented in the Python, and
CAVES in the C++ programming language. For CAVES the
user compiles an executable using the CAVES code and the
ROOT libraries. Once started, this executable has all the
functionality and behavior of the normal ROOT executable,
including in addition the CAVES commands. Typically a user
starts CODESH by running the Codesh.py file. He can specify
the different loglevels and other such customizations in a
Codesh.conf file or specify them after he runs CODESH. In the
interactive mode, he then views a command line interface on
which he can start his session. Optionally he can use the batch
mode and specify a file, which contains all the commands that
are to be executed in a batch. To assist in logging his work
and re-creating the results of previously stored sessions, he
can use the various CODESH commands provided. Some of
these are:

i. Browse: To list all the stored sessions and also optionally
restrict the search depending on date/time or user. Also used
to browse metadata associated with the sessions.

ii. Inspect: To view the contents of a particular session and
optionally download all the source files.

iii. Extract: To execute a stored session and re-create the
results.

iv. Log: To log a session between user defined checkpoints
along with (optionally) all or some of the programs executed
during the session. The level of logging depends on user
defined log levels for that particular session.

v. Tagcopy: To copy a stored session from the source
repository to the destination repository.

vi. Tagdelete: To delete a stored session.
vii. Takesnapshot: To work in a separate sandbox and store

the entire sandbox in a repository. This complete sandbox i.e.
all the files and directories under the working directory, can
then be retrieved later by the same user or some other user
and worked upon.

viii. Getsnapshot: To retrieve any previously stored sandbox.
This is very useful in cases where a previously stored sandbox
can be re-created at various places, by various people and all
of them can start working from the place where the original
user had left.

ix. Browsesnapshots: This command lists all (or a selected
subset of) the sandboxes committed by all the users.

x. Setenv, Getenv: To access and modify environment vari-
ables independent of the underlying shell.

xi. GetAlias: To get all the active aliases.

V. TEST RESULTS

Tools like CODESH or CAVES, designed to be used for
collaborative development by many users, have to deal with

different styles or work preferences and customizations by
many individual users. These differences can be e.g. in the
underlying shells used, level of logging/debugging desired,
kind of work, user permissions and so on. We have developed
CODESH and CAVES as flexible tools, easy to customize and
extend with new user defined commands. We have tried to
exhaustively test them with many different customizations
using as backend local or remote ASCII and CVS repositories.

We have also done Stress testing for scenarios where the size
and quantity of the logged data was really overwhelming. We
have tested CODESH till the size of the repository was 10,000
sessions. Our code is resilient enough that even with 10,000
sessions in the repository the performance was only marginally
slower than with very few sessions in the repository. All the
sessions stored were of similar type and size. Specifically with
10 sessions stored in the repository, the inspection of a session
took around 1 second, and even with 10,000 sessions stored,
the inspection of a session took only 2 seconds on a 1 GHz
Pentium III machine for a local repository.

We have built a fully distributed data analysis system based
on ROOT and CAVES. The virtual sessions are stored in local
or remote (pserver based) CVS repositories. The input and
output datasets are stored using xrootd [11] servers. In this
way users can browse, inspect and reproduce the sessions of
their colleagues starting from a completely clean slate on a
new desk- or laptop. All the necessary knowledge, code and
data are delivered from the remote servers. An example of
an event display from a Monte Carlo simulation for the CMS
experiment [12] at LHC produced in this way is shown in
Fig. 2.

VI. RELATED WORK

Archives typically keep final states. Often it is unclear how
they were created. In computers the initial and final states are
transient. Knowledge is not recorded systematically. Paper logs
are hard to produce, hard to search, hard to share. They need
transfer to a computer before making the knowledge widely
available.

The history mechanism in typical shells like tcsh or bash
logs a pre-defined number of commands in a file. But it
provides no persistency mechanism for storing sessions or for
exchanging them between collaborators. The scripts executed
during a session, the pre- and post- conditions are not logged.
The script [13] utility goes one step further, logging the
standard output from the commands as well, all the rest is left
to the user. Our automatic logbook/virtual sessions approach
does much more by managing private and shared repositories
of complete session logs, including the commands and the
programs, and the ability to reproduce the results or reuse
them for future developments.

At the other end contrary to most existing provenance sys-
tems which use disclosed provenance like annotations, trans-
formations or workflows, an observed provenance approach
at the kernel and system call level can be developed. Here
substantial challenges like provenance granularity, versioning,
provenance pruning, overheads etc. need to be overcomed. Our
approach taken with the CODESH project offers flexibility and



2007 IEEE NUCLEAR SCIENCE SYMPOSIUM (NSS) AND MEDICAL IMAGING CONFERENCE (MIC), HONOLULU, HAWAII, USA, 2007 5

-4
-2

0
2

4

-4

-2

0

2

4

-4

-2

0

2

4

CMS Event Display

Fig. 2. Event display from a Monte Carlo simulation for the CMS experiment. Charged particle tracks are shown in green, muon tracks in red, reconstructed
jets with different algorithms as triangles and squares.

good balance between observed and disclosed provenance: the
users of our system can select the splitting between logbook
and environment parts, which we call collaborating contract,
depending on their needs. We provide observed provenance at
the shell level, which, due to its proximity to the users, offers
a rich semantic knowledge by seamlessly observing the work
done in a virtual session. The adoption of a versioning system
like CVS or Subversion as a persistent backend helps
in solving the versioning problem and provides an elegant
approach to pruning by only storing the differences between a
potentially large number of similar sessions. In summary, the
CODESH project combines in a natural way some of the key
desired features of the two extremes outlined above.

VII. CURRENT AND FUTURE WORK

We have used CODESH to record the production and analy-
sis of data for large scale simulations in high energy physics,
and for various software development and configuration tasks
at several locations distributed across the United States.
CAVES was used to record analysis sessions of the produced
data, including analyses demonstrated at the Supercomputing
conferences in 2005 and 2006.

Our ongoing and future work consists e.g. of implementing:

� all the robust functionality available with the ASCII and
CVS backends in the Subversion case

� the full set of administrative tasks for the management,
maintenance, conversion, cloning and control of private
and shared repositories

� Web interfaces for users to browse through the reposito-



2007 IEEE NUCLEAR SCIENCE SYMPOSIUM (NSS) AND MEDICAL IMAGING CONFERENCE (MIC), HONOLULU, HAWAII, USA, 2007 6

ries
� automatically converting session logs to workflows, and

the ability to develop locally and seamlessly schedule
more CPU/data intensive tasks on grid infrastructure.

Information about public releases of our functional systems
for automatic logging of typical working sessions is available
from [14], and the projects are hosted as open source [15].

In summary, our projects take a pragmatic approach in
assessing the needs of a community of scientists or software
developers by building series of working packages with in-
creasing sophistication. By extending with automatic logbook
capabilities the functionality of a typical UNIX shell (like
tcsh or bash) - the CODESH project, or a popular analysis
package as ROOT - the CAVES project, these packages provide
an easy and habitual entry point for researchers to explore new
concepts in real life applications and to give valuable feedback
for refining the system design and further hardening of the
already robust performance. Users of our systems are most
welcome.

REFERENCES

[1] A. Arbree et al., “Virtual data in CMS analysis,” In the Proceedings of
2003 Conference for Computing in High-Energy and Nuclear Physics
(CHEP 03), La Jolla, California, 24-28 Mar 2003, pp TUAT010
[arXiv:physics/0306008].

[2] The Large Hadron Collider close to Geneva, Switzerland, will collide
proton-proton beams at energies of 14 TeV starting in 2008;
http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/.

[3] D. Bourilkov, “The CAVES project: Exploring virtual data
concepts for data analysis,” http://arxiv.org/abs/physics/0401007,
arXiv:physics/0401007.

[4] D. Bourilkov, “THE CAVES Project - Collaborative Analysis Versioning
Environment System; THE CODESH Project - Collaborative Develop-
ment Shell,” http://arxiv.org/abs/physics/0410226, Int. J. Mod. Phys. A
20 (2005) 3889 [arXiv:physics/0410226].

[5] D. Bourilkov, “Virtual States and Transitions, Virtual Sessions and Col-
laboration,” ICCS 2005 conference, Atlanta, USA, 2005; V.S.Sunderam
et al. (Eds.): ICCS 2005, LNCS 3516, pp. 342-345, 2005, Springer
Verlag Berlin Heidelberg.

[6] D. Bourilkov and V. Khandelwal, “CODESH: An Intelligent Devel-
opment Shell for Seamlessly Logging, Exchanging and Reproducing
Results and the Methods used in Obtaining Them,” WMSCI 2005
conference, Orlando, USA, 2005; published in the Proceedings, ed.
N.Callaos, W.Lesso and K.Horimoto, ISBN 980-6560-60-4, vol. VIII,
p.175, IIIS 2005.

[7] D. Bourilkov et al., “Virtual Logbooks and Collaboration in Science and
Software Development,” IPAW0́6, International Provenance and Anno-
tation Workshop, Chicago, Illinois, USA, May 3-5, 2006;’ L.Moreau
and I.Foster (Eds.): Provenance and Annotation of Data, LNCS 4145,
pp. 19-27, 2006, Springer Verlag Berlin Heidelberg.

[8] Brun, R. and Rademakers, F.: ROOT - An Object Oriented Data Analysis
Framework. Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81–86

[9] CVS: The Concurrent Versions System CVS, http://www.cvshome.org/.
[10] The Subversion version control system, http://subversion.tigris.org/.
[11] xrootd home page, http://xrootd.slac.stanford.edu/ .
[12] The CMS experiment at CERN, http://cms.cern.ch/iCMS/ .
[13] The script utility appeared in Berkeley Unix 3.0 BSD.
[14] CODESH/CAVES home page, http://cern.ch/bourilkov/caves.html.
[15] http://freshmeat.net/projects/codesh/

http://sourceforge.net/projects/codesh/ .


