CODESH: An Intelligent Development Shell for Seamlessly Logging, Exchanging and Reproducing Results and the Methods Used in Obtaining Them

Dimitri Bourilkov, Vaibhav Khandelwal

University of Florida, Gainesville, FL 32611, USA

bourilkov@phys.ufl.edu, vaibhavk@ufl.edu
Abstract

Research today is all about collaboration. For a successful collaboration to exist between various researchers spread over geographically different locations, there has to be a very efficient method of ‘logging’, ‘sharing’ and ‘re-creating’ data and the methods used in obtaining this data. The naïve way of having a central repository where all the collaborators are expected to manually document and log their results, doesn’t scale well, when the size of the collaborations increases drastically and when the amount of shared data is colossal. CODESH – COllaborative DEvelopment SHell is a novel attempt to address this problem. The user works on CODESH’s intelligent shell, which automatically logs his/her session: commands, scripts executed, output produced, environment changes made and other information needed to re-create the session later. This session is uniquely tagged and stored in a distributed backend repository and can be extracted and reproduced by a collaborator. The Object Oriented design and distributed framework of CODESH allow for the use of CVS, MySQL and Clarens based repositories which can be either local for personal use or shared between various groups of collaborators.

Keywords: Collaboration, Distributed development, Collaborative environment, Extensible shells.

1. Introduction

Consider the scenario where thousands of researchers spread over different continents are working together on a project where the data to be analyzed will reach petabytes and exabytes (1018 bytes). Such a scenario is no longer a figment of imagination and this will be the exact situation when the Large Hadron Collider[1], the most powerful particle accelerator built so far, goes into production in 2007. In such a scenario, there is a need for efficient means of storing the data and methods used to create this data, and sharing these stored sessions between the collaborators. CODESH is a novel idea to address this problem.

2. Basic Idea
CODESH[2,3] is based on the concept of ‘sandbox programming’. Sandbox programming means that each user works on a per session basis in a separate ‘sandbox’. The complete work of the user for a session is confined to this sandbox. The fundamental concept in CODESH is to store all the information necessary to be able to reproduce a user’s session at any other place by some other user.

This is achieved by maintaining a virtual logbook, which records the initial state (pre-conditions of a session), all the commands typed by the user, all the outputs generated and also all the programs executed to produce the results. Also the changes made to the environment i.e. environment variables and aliases are recorded.

When a user’s session ends, or even before if the user so desires, CODESH tags the complete log along with the data and source program files with a uniquely generated tag and logs it to a repository. Thus the repositories can contain hundreds and thousands of such stored sessions.

Reproduction of a session is possible by extracting the log, data and source files and executing the commands listed in the log files and running the scripts that have been downloaded. Also the environment changes can be carried across sessions.

The repositories of such sessions can be on the local machine for personal usage and also on shared servers for the use of collaborating groups. Generally the user will store all his sessions locally and ‘publish’ a few important sessions to some shared repository. He may also extract and re-produce the stored session of some other collaborator.

There is also a feature, aptly called ‘Snapshot’, which allows logging entire directory structures under the current working directory. This can later be retrieved and thus it provides a virtual working directory. Using this concept, a virtual session can be copied to any place on the same machine or even across machines and re-started or modified. Of course this is possible if the user works relative to the root of the snapshot directory and not using absolute paths.

3. Architecture
We have identified three distinct Tiers in the architecture:

A. The User Tier

B. The Main CODESH Tier

C. The Backend

[image: image1.wmf]

Each Tier is completely independent of the other Tiers and it makes use of only the interfaces provided by the other Tiers. Thus we can change one Tier without affecting the operation of the others.

Lets examine each Tier in more detail:

A. The User Tier:

This mainly implements the User Interface. We provide an interface similar to the Unix/Linux command line shell. We would also like to provide a similar interface for Windows.

The user can start his session either in the batch mode or in interactive mode. In the interactive mode, the user types shell commands just as he would on a Unix/Linux shell. He also types CODESH commands for the session logging and similar tasks.

All the input from the user is parsed and fed to the second Tier, which is the main CODESH Tier. Also the results produced are displayed on the screen for the user to view.

B. The Main CODESH Tier:

This is the heart of our system. It is solely responsible for getting the user input, logging the user sessions, maintaining state information, delegating the shell commands to the under-lying shell and all the communication with the backend Repositories.

Based on the logical separation of the tasks, we have identified 4 different modules that comprise this Tier. They are:

i. CODESH: It is the main controller module that interacts with all the remaining 3 modules for the successful execution of tasks in this Tier. It delegates shell commands directly to the shell or through the Extract module, which is described later. It also reads and updates the state information stored in the State Information module. It also interacts with the CODESH backend module for the storing and retrieving of the sessions.

ii. CODESH Backend: This module interacts with the backend repositories to provide the storage and retrieval of the session information and also to get some status information e.g. a listing of all the sessions that have been stored.

It provides a backend independent interface, which is used by the CODESH module.

iii. State information: This module stores and maintains all the configuration information during any active user sessions. We broadly classify this state information in two categories:

1. System information: This includes the aliases and environment variables that need to be kept track of during the session. We track the changes made to these during the session and provide routines for propagating them and also for logging them along with the session.

2. User Configuration information: This includes the various user-selected configurations. Some of the options provided for customized behavior of CODESH are:

Loglevel: Specifies how much to log

Codeshloglevel: Specifies whether to log CODESH commands in additon to the shell commands which are always logged.

Debuglevel: Specifies how much of debugging information to print on the screen

Batchmode: Option to enable/disable the batch mode operation

Username: Allows changing the user name used for tagging the sessions

ExtensionList: Maintains a list of all extensions treated as scripts

iv. Extract module: This module is responsible for the extraction of the sessions i.e. re-executing them and getting the desired outputs. It delegates the shell commands and scripts to the under-lying shell for execution. Currently we support the bash and tcsh shells. But support for other shells can be easily added.

C. The Backend: The Backend stores the sessions, in such a way that they can be re-created later by some other user who extracts this session. For each session, we store the log files, the source files and the data files. Each session is identified by a unique identifier which consists of:

a. A user supplied name for the session

b. The current date and time

c. The user’s name

We provide support for three different types of backends:

i. CVS: We use CVS[4] as the main backend for storing the sessions. Using the CVS checkin, checkout and other commands we implement our commands like Log session and Extract session. (For a complete listing of CODESH commands refer to Section 4. Typical Usage Scenario). We also provide an option of using Remote CVS as a backend i.e. using a pserver.

ii. Clarens: We provide support for using Clarens[5] as a backend. The Clarens Grid-Enabled Web Services Framework is an open source, secure, high-performance "portal" for ubiquitous access to data and computational resources provided by computing grids. This is a Service Oriented backend that provides services for Authentication/ File and Data Transfer etc.

iii. MySQL: We provide for a MySQL[6] backend, which stores only the metadata information regarding each session in the Database. These annotations help in fast searches through stored sessions for some particular session types. After such a session is found, a local or remote CVS repository can be contacted to fetch the complete session.

Every user may have a local CVS repository where he stores all his personal sessions. Typically the user will want to commit some of his sessions to a shared remote repository and also extract some sessions stored by other users at the shared repositories. Thus we provide support for copying and moving sessions between repositories and also deleting sessions stored at some particular repository. We also plan to provide a way of cloning entire repositories.

Controller of the Repositories: This module takes care of the maintenance, recovery and similar tasks related to the different repositories. Our design structure is distributed in nature and thus we can have numerous controllers instead of just one centralized controller.

4. Typical Usage Scenario
Currently CODESH is implemented in the Python[7] programming language. Typically a user starts CODESH by running the Codesh.py file. He can specify the different loglevels and other such customizations in a Codesh.conf file or specify them after he runs CODESH. In the interactive mode, he then views a command line interface on which he can start his session. Optionally he can use the batch mode and specify a file, which contains all the commands that are to be executed in a batch. To assist in logging his work and re-creating the results of previously stored sessions, he can use the various CODESH commands provided. Some of these are:

i. Browse: To list all the stored sessions and also optionally restrict the search depending on date/time or user. Also used to browse metadata associated with the sessions.

ii. Inspect: To view the contents of a particular session and optionally download all the source files.

iii. Extract: To execute a stored session and re-create the results.

iv. Log: To log a session between user defined checkpoints along with (optionally) all or some of the programs executed during the session. The level of logging depends on user defined log levels for that particular session.

v. Tagcopy: To copy a stored session from the source repository to the destination repository.

vi. Tagdelete: To delete a stored session.

vii. Takesnapshot: To work in a separate sandbox and store the entire sandbox in a repository. This complete sandbox i.e. all the files and directories under the working directory, can then be retrieved later by the same user or some other user and worked upon.

viii. Getsnapshot: To retrieve any previously stored sandbox. This is very useful in cases where a previously stored sandbox can be re-created at various places, by various people and all of them can start working from the place where the original user had left.

ix. Browsesnapshots: This command lists all (or a selected subset of) the sandboxes committed by all the users

x. Setenv, Getenv: To access and modify environment variables independent of the underlying shell

xi. GetAlias: To get all the active aliases

5. Test Results
The problem with a tool like CODESH, which is designed to be used for collaborative development by many users, is that it should deal with the different styles/ work preferences and customizations of each individual user. These differences can be in the underlying shells used, level of logging/debugging desired, kind of work, user permissions and so on. We have developed CODESH as a flexible tool, easy to customize and extend with new user defined commands. We have tried to exhaustively test CODESH with all such different customizations using the local and remote CVS repositories. The tests for the Clarens and MySQL repositories are in progress.

We have also done Stress testing for scenarios where the size and quantity of the logged data was really overwhelming. We have tested CODESH till the size of the repository was 10,000 sessions. Our code is resilient enough that even with 10,000 sessions in the repository the performance was only marginally poorer than with very few sessions in the repository. All the sessions stored were of the same type and size.

Specifically with 10 sessions stored in the repository, the inspection of a session took around 1 second, and even with 10,000 sessions stored, the inspection of a session took only 2 seconds on a 1 GHz Pentium III machine.

The setup for these tests was:

Repository: Local CVS

Operating System: Red Hat Linux

Underlying shell: bash

Mode of operation: batch

We believe that the ‘real’ testing of CODESH will be possible only when we have ‘real’ people using it for collaborative development. We will be hosting the project on sourceforge.com in the next couple of months and really look forward to its extensive testing by users.

6. Related Work
The history mechanism in typical shells like tcsh[8] or bash[9] logs a pre-defined number of commands in a file. But it provides no persistency mechanism for storing sessions or for exchanging them between collaborators. The scripts executed during a session, the pre- and post- conditions are not logged. The script[10] utility goes one step further, logging the standard output from the commands as well, all the rest is left to the user. Out automatic logbook/virtual sessions approach does much more by managing private and shared repositories of complete session logs, including the commands and the programs, and the ability to reproduce the results or reuse them for future developments. The relation and the differences to the virtual data approach are discussed in our previous papers[2,3].

7. Current and Future Work
Our ongoing and future work consists of but is not limited to:

a. Implementing all the functionality available with the CVS backend and which is missing for Clarens backend.

b. Implementing the administrative tasks for the maintenance and control of the repositories.

c. Implementing a version of CODESH for the Windows platform.

d. Hosting the project on Sourceforge.com.

e. Implementing a Web interface for the users to browse through the repositories.

f. Implementing a utility by which the user can clone entire repositories.

Public releases of the code are available for interested users.

8. AcknowledgemenTS
This study is supported in part by the United States National Science Foundation under grants NSF ITR-0086044 (GriPhyN) and NSF 0427110 (UltraLight).

9. References

[1] The Large Hadron Collider close to Geneva, Switzerland, will collide proton-proton beams at energies of 14 TeV starting in 2007;

http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/.

[2] D.Bourilkov, "THE CAVES Project - Collaborative Analysis Versioning Environment System; THE CODESH Project - Collaborative Development Shell",
arXiv:physics/0410226; http://xxx.lanl.gov/abs/physics/0410226 .

[3] D.Bourilkov, "The CAVES Project: Exploring Virtual Data Concepts for Data Analysis"
arXiv:physics/0401007, and references therein;
http://xxx.lanl.gov/abs/physics/0401007 .

[4] CVS: The Concurrent Versions System CVS,
http://www.cvshome.org/.

[5] Clarens: C.Steenberg et al., "The Clarens Web Services Architecture", Computing in High-Energy and Nuclear Physics (CHEP 03), La Jolla, California, 24-28 Mar 2003; Published in eConf C0303241:MONT008, 2003; e-Print Archive: cs.dc/0306002;
http://clarens.sourceforge.net/.

[6] MySQL: The MySQL database,
http://www.mysql.com/.

[7] Python: The PYTHON programming language, http://www.python.org/.

[8] Tcsh: enhanced version of the Berkeley UNIX C shell; http://www.tcsh.org.

[9] Bash: the GNU Bourne-Again SHell from the Free Software Foundation; http://www.gnu.org/software/bash/bash.html.

[10] The script utility appeared in Berkeley Unix 3.0BSD.

_1174477373.doc
[image: image1.png]USER

¢

Codesh and shell
commands
|
STATE Extraction
INFORMA TON (Eation) | EXTRACT
System «—p CODESH ¢ pi
Information
User T
Configuration Delegation
ianformion Logging and
Refrieving of
sessons
CODESHBACKEND

P 1

[| ‘

Sessions
Sessions Sessions Annotations using Web-
Services
. ! ! \
LOCAL REMOTE
Cvs Cvs MySQL CLARENS

X 7

Maintenance Recovery
Duplication

CONTROLLER OF
REPOSITORIES

