
Virtual States and Transitions, Virtual Sessions and CollaboratiVirtual States and Transitions, Virtual Sessions and Collaborationon
Dimitri BourilkovDimitri Bourilkov

University of Florida, Gainesville, FL 32611, USA

AbstractAbstract
A key feature of collaboration is having a log of what and how is being
done - for private use/reuse and for sharing selected parts with
collaborators in today's complex, large scale scientific/software
environments.

Even better if this log is automatic, created on the fly while a scientist or
software developer is working in a habitual way, without the need for extra
efforts. The CAVES (Collaborative Analysis Versioning Environment
System) and CODESH (COllaborative DEvelopment SHell) projects
address this problem in a novel way, building on the concepts of virtual
state and virtual transition to provide an automatic persistent logbook for
sessions of data analysis or software development in a collaborating group.

Repositories of sessions can be configured dynamically to record and make
available in a controlled way the knowledge accumulated in the course of a
scientific or software endeavor.

CAVES / CODESH ProjectsCAVES / CODESH Projects
• Concentrate on the interactions between scientists collaborating over extended periods of time

Automatic and complete logging and reuse of work or analysis sessions (between checkpoints)
• Extend the power of users working or performing analyses or developing software in their habitual way,
giving them virtual data capabilities
• Build functioning collaboration suites (stay close to users!)
• Seamlessly log, exchange and reproduce results and the corresponding methods, algorithms and programs
• First prototypes use popular tools: C++, Python, ROOT, MySQL and CVS; e.g. all ROOT/shell
commands and CAVES/CODESH commands available; lead developers: CODESH: D.Bourilkov &
V.Khandelwal; CAVES: DB v1, D.Bourilkov & M.Kulkarni v0

CAVES / CODESH Architectures CAVES / CODESH Architectures ––
Scalable and DistributedScalable and Distributed

Case1: Simple
User 1 : Does
some analysis and
produces a result
with tag
analX_user1.
User 2: Browses
all current tags in
the repository and
fetches the
session stored
with tag
analX_user1.

Case2: More Complex etc
User 1 : Does some analysis and produces a
result with tag analX_user1.
User 2: Browses all current tags in the repository
and fetches the session stored with tag
analX_user1.
User 2: Does a modification in the program
obtained from the session of user1 and stores the
same along with a new result with tag
analX_user2_mod_code.
User 1: Browses the repository, finds that his
program was modified and decides to extract
that session using the tag
analX_user2_mod_code.
This scenario can be extended to include an
arbitrary number of steps and users in a working
group or groups in a collaboration.

Possible scenariosPossible scenarios

The MetaphorThe Metaphor
• A cave is a secure place to store stuff
• Usually you need a key to enter
• Stuff can be retrieved when needed (and if the
temperature is kept constant, usually in good
shape)
• Small caves can be private, larger are usually
owned cooperatively
• When a cave is full, a new one is build
• To get something, one starts at the local cave
and, if needed, widens the search …

Example Example –– CVS Server BackendCVS Server Backend

• Sandbox programming – work on
per session basis

• CVS provides version control by
tagging releases

• CVS tags act as unique IDs for
virtual sessions (the namespace can
be structured by a collaborating
group e.g. one big cave or many
barrels in a cave, selected on a
session basis)

• Both local and remote modes of
working

• CVS pservers (secure, efficient
remote stores):

• Only CVS user accounts with
password authentication, no UNIX
accounts on the server (gridmapfile
uses same idea)

• read/write access control lists
(per user & directory)

• Session commands
• open <session>
• close <session>

• During analysis
• help <command>
• browse <tag>
• inspect <tag> <b|c>
• startlog
• log <tag> <annot>
• annotate <tag>
• extract <tag>

• Administrative tasks
• copy <tag> <from> <to>
• move <tag> <from> <to>
• delete <tag> <from>
• archive <tag> <to>
• retrieve <tag> <from>

CODESH commands:
run, shell
getenv
getalias etc

Extensible Command SetExtensible Command Set

Working ReleasesWorking Releases

• Virtual log-book for
“shell” sessions

• Parts can be local
(private) or shared

• Tracks environment
variables, aliases etc
during a session

• Reproduce complete
working sessions

• Complex Particle Physics
examples operational

OutlookOutlook
• Work in progress – first CAVES and CODESH releases out
• We are looking forward to user feedback
• Future directions:

• Different back-ends: web/grid service oriented (e.g. Clarens), sql servers
• Extend remote data access: e.g. UltraLight services, Clarens, xrootd …
• GSI security
• Automatically convert session log to workflow
• Tune on smaller samples, schedule on grid for larger tasks

A picture is better than 1000 words: Try out the releases !
CAVES white paper arXiv: physics/0401007; http://arxiv.org/abs/physics/0401007
CODESH / CAVES paper arXiv: physics/0410226; http://arxiv.org/abs/physics/0410226
More info at http://cern.ch/bourilkov/caves.html

GlossaryGlossary
Virtual state: can be reproduced on demand

|State> = |Logged part, Environment> this (somewhat
arbitrary) split is called a collaboration contract

Virtual transition: all actions to go from initial |I> to final
|F> state - |F> = T |I> recorded (logged) automatically

Virtual session: delimited by virtual states (checkpoints)

ICCS 2005, LNCS 3516, pp. 342-345, 2005.

Heraclitus asked: How can you bathe in
the same river twice?
Quine answers: It’s easy, though it is
hard to bathe in the same water twice.

