

Ultra Light

Abstract

A key feature of collaboration is having a *log* of what and how is being done - for private use/reuse and for sharing selected parts with collaborators in today's complex, large scale scientific/software environments.

Even better if this log is *automatic*, created on the fly while a scientist or software developer is working in a habitual way, without the need for extra efforts. The CAVES (Collaborative Analysis Versioning Environment System) and CODESH (COllaborative DEvelopment SHell) projects address this problem in a novel way, building on the concepts of *virtual state* and *virtual transition* to provide an automatic persistent logbook for sessions of data analysis or software development in a collaborating group.

Repositories of sessions can be configured dynamically to record and make Virtual state: can be reproduced on demand available in a controlled way the knowledge accumulated in the course of a scientific or software endeavor.

Case1: Simple

User 1 : Does some analysis and produces a result with tag analX_user1. User 2: Browses all current tags in the repository and fetches the session stored with tag analX_user1.

Possible scenarios

Case2: More Complex etc

User 1 : Does some analysis and produces a result with tag **analX_user1**.

User 2: Browses all current tags in the repository and fetches the session stored with tag analX_user1.

User 2: Does a modification in the program obtained from the session of user1 and stores the same along with a new result with tag analX_user2_mod_code.

User 1: Browses the repository, finds that his program was modified and decides to extract that session using the tag

analX_user2_mod_code.

This scenario can be extended to include an arbitrary number of steps and users in a working group or groups in a collaboration.

The Metaphor

- A cave is a secure place to store stuff
- Usually you need a key to enter

• Stuff can be retrieved when needed (and if the temperature is kept constant, usually in good shape)

 Small caves can be private, larger are usually owned cooperatively

• When a cave is full, a new one is build

• To get something, one starts at the local cave and, if needed, widens the search ...

Virtual States and Transitions, Virtual Sessions and Collaboration Dimitri Bourilkov

University of Florida, Gainesville, FL 32611, USA

• Concentrate on the interactions between scientists collaborating over extended periods of time Automatic and complete logging and reuse of work or analysis sessions (between checkpoints) • Extend the power of users working or performing analyses or developing software in their habitual way,

- giving them virtual data capabilities • Build functioning collaboration suites (stay close to users!)
- Seamlessly log, exchange and reproduce results and the corresponding methods, algorithms and programs
- First prototypes use popular tools: C++, Python, ROOT, MySQL and CVS; e.g. all ROOT/shell
- V.Khandelwal; CAVES: DB v1, D.Bourilkov & M.Kulkarni v0

Glossary

|State> = |Logged part, Environment> this (somewhat) arbitrary) split is called a collaboration contract

Virtual transition: all actions to go from initial |I> to final |F> state - |F> = T |I> recorded (logged) automatically

Virtual session: delimited by virtual states (checkpoints)

CAVES / CODESH Architectures -Scalable and Distributed

- Only CVS user accounts with password authentication, no UNIX accounts on the server (gridmapfile uses same idea)
- read/write access control lists (per user & directory)

Extensible Command Set

- Session commands
- open < session >
- close <session>
- During analysis
- help <command>
- browse <tag>
- inspect <tag> <b|c>
- startlog
- log <tag> <annot>
- annotate <tag>
- extract <tag>

- Administrative tasks
 - copy <tag> <from> <to>
 - move <tag> <from> <to>
 - delete <tag> <from>
 - archive <tag> <to>
 - retrieve <tag> <from>

CODESH commands:

- run, shell getenv
- getalias etc

CAVES / CODESH Projects

commands and CAVES/CODESH commands available; lead developers: CODESH: D.BOUrilkov &

Example - CVS Server Backend

• Sandbox programming – work on per session basis

- CVS provides version control by tagging releases
- CVS tags act as unique IDs for virtual sessions (the namespace can be structured by a collaborating group e.g. one big cave or many barrels in a cave, selected on a session basis)
- Both local and remote modes of working
- CVS pservers (secure, efficient remote stores):

- We are looking forward to **user feedback**
- Future directions:

- GSI security
- Automatically convert session log to workflow
- Tune on smaller samples, schedule on grid for larger tasks

A picture is better than 1000 words: Try out the releases ! More info at http://cern.ch/bourilkov/caves.html

ICCS 2005, LNCS 3516, pp. 342-345, 2005.

virtual data language [1].

• Work in progress – **first** CAVES and CODESH releases out

• Different back-ends: web/grid service oriented (e.g. Clarens), sql servers • Extend remote data access: e.g. UltraLight services, Clarens, xrootd .

```
CAVES white paper arXiv: physics/0401007; http://arxiv.org/abs/physics/0401007
CODESH / CAVES paper arXiv: physics/0410226; http://arxiv.org/abs/physics/0410226
```


- http://xxx.lanl.gov/abs/physics/0401007
 Brun, R. and Rademakers, F.: ROOT An Object Oriented Data Analysis Framework. Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81–86 5. Grid-enabled Analysis Environment project: http://ultralight.caltech.edu/gaeweb