next up previous contents
Next: Applying HepRotations and HepLorentzRotations Up: HepLorentzVector Class Previous: Various Forms of Masses   Contents

Direct HepLorentzVector Boosts and Rotations

Direct boosts and rotations are methods of HepLorentzVector which modify the 4-vector being acted upon-- e.g., w.boost $(\hat{u}, \beta)$--or global functions which form a new vector-- e.g., boostOf $(w, \hat{u}, \beta)$.

Rotations act in the obvious manner, affecting only the $\vec{v}$ component of the 4-vector--see §[*].

In analogy with our ``active'' rotation viewpoint, boosts are treated as ``active'' transformations rather than transformations of the coordinate system. That is, if you take a 4-vector at rest, with positive mass ($t$), and boost it by a positive amount in the X direction, the resulting 4-vector will have positive $x$.

Boosts along the X, Y, or Z axis are simpler than the general case. Let $w = (\vec{v}, t) = (x, y, z, t)$:


$\displaystyle w.\mbox{boostX} (\beta) \Longrightarrow
( \gamma x + \beta \gamma t, y, z, \gamma t + \beta \gamma x )$     (100)
$\displaystyle w.\mbox{boostY} (\beta) \Longrightarrow
( x, \gamma y + \beta \gamma t, z, \gamma t + \beta \gamma y )$     (101)
$\displaystyle w.\mbox{boostZ} (\beta) \Longrightarrow
( x, y, \gamma z + \beta \gamma t, \gamma t + \beta \gamma z )$     (102)
$\displaystyle \gamma \equiv \frac{1}{\sqrt{1-\beta^2}}$      

More general rotations boosts may be expressed in terms of $\beta$ along an axis given as a Hep3Vector $\hat{u}$ (which will be normalized), or in terms of a Hep3Vector boost $\vec{\beta}$, which must obey $\vert\vec{\beta}\vert<1$. (Boosts beyond the speed of light ZMthrow a ZMxpvTachyonic error, and leave the 4-vector unchanged if this is ignored.)

For the axis $(\hat{u}, \beta)$ form,


$\displaystyle \left\{
\begin{array}{lcl}
t & \longleftarrow & \gamma t + \beta ...
...\beta \vec{v} \cdot \hat{u} +
\beta \gamma t \right] \hat{u}
\end{array}\right.$     (103)
$\displaystyle \gamma \equiv \frac{1}{\sqrt{1-\beta^2}}$      

For the boost vector $(\vec{\beta})$ form,


$\displaystyle \left\{
\begin{array}{lcl}
t & \longleftarrow & \gamma t + \gamma...
...^2} \vec{v} \cdot \vec{\beta} +
\gamma t \right] \vec{\beta}
\end{array}\right.$     (104)
$\displaystyle \gamma \equiv \frac{1}{\sqrt{1-\vert\vec{\beta}\vert^2}}$      



Subsections
next up previous contents
Next: Applying HepRotations and HepLorentzRotations Up: HepLorentzVector Class Previous: Various Forms of Masses   Contents
Fermilab ZOOM Physics Class Library Task Force