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CLIC Drive beam and CTF3 beam 

• Design of profile monitors at different location along the linac : 140keV, 20MeV, 50MeV, ..
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Simple calculations of the instability 
• The electron beam dynamic can be estimated by the following envelope equation
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• Instability is present within
the beam pulse duration (1µs)

• Much worse at low energy
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Simulations with the LSP code

• Ions are emitted at t = 0ns

Protons

Protons current : 1A
Water ions current : 5A

Water ionsElectrons

Based on the experimental observations done in the US and in France,
two different kind of ions simulated : Protons 9%, OH+ 91%
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Simulations with the LSP code

Evolution of the electron 
beam size at 140keV

∆σ
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• Simulation with LSP show an electron focusing 
4 times slower than the theoretical model.

Probably due to ion beam oscillation which are 
not taken into account in the simple theory

• At 140keV the beam size is strongly modified

• At 20 MeV the effect becomes negligible (2% 
over 1µs)
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Thermal calculations (1)

Need materials with
• High fusion temperature
• High heat capacity cp
• High thermal conductivity 
(for graphite ∆T=12% after 1ms)

Good candidate : Be (poison), Graphite, SiC (low reflectivity)
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• σ : RMS beam size

• N(ne, tp, fo) : time evolution of the beam
ne : Number of particles, tp : pulse duration, fo : repetition rate

• Material properties :
cp : Heat capacity ,  ρ : density ,  k : thermal conductivityCooling termHeating term
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ENERGY DEPOSITION:

• Using thin foil to neglect the radiative stopping power in order to minimize the energy deposition

• The ‘collision’ stopping power only changes from one material to the other less than a factor 2 
( Be, C, Al, Si,Ti,Mo, W ) 
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Possible candidates as screens

• Thermal problem : thin foil of graphite

• Electron photon conversion process: Scintillation or Optical Transition radiation
• OTR screens :

• Number of photons proportional to ln(2γ)
• Light emission cone is 1/γ
• graphite as a low reflectivity compared to classic OTR screen (27%)

• Scintillation using a Phosphor deposit of an aluminum foil

Problem of light intensity at low energy (140keV)

Scintillation is 
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Thermal calculations (2)
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Thermal calculations (3)

Temperature of the screen at 360MeV
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I = 3.5A , E = 360MeV , tp =1.56µs • Thin OTR foil in Graphite is ok 
for the CTF3 beam

• We have to find a new alternative 
for the CLIC DRIVE BEAM
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Conclusions

•For CTF3  this ion instability will affect the use of beam profile monitor
for the low energy beam

•Polarizing the screen itself is  not possible since the beam space charge 
field is really strong (MeV/m)

• Is there any possibility to suppress this effect by :

• direct beam conditioning

• surface and material treatment

• specific vacuum technology

• ……..
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After the discussion

•Target on a floating mass, auto-polarization ?

•Dedicated heating system of the screen. Not foreseen yet

•Looking for a other experimental facilities to understand the phenomenon :
electron microscope,….

•Use of Bore carbide suggested

• Perspectives for first test on CTF3  in may:
•Outgasing test of the foreseen material
•High temperature treatment of the screen (up to 1500 degree).
•Possible use of getter material 
•Conditioning and heating the target with the beam itself
•Possible use of laser surface cleaning (penetration ~ nm)




