Introduction to
 Chiral Perturbation Theory

H. Leutwyler
University of Bern

$27^{\text {th }}$ Students' Workshop on Electromagnetic Interactions

Bosen, Aug. 29 - Sept. 3, 2010

I. Standard Model at Iow energies

1. Interactions

Local symmetries

2. QED + QCD

Precision theory for $E \ll 100 \mathrm{GeV}$
Qualitative difference QED \Longleftrightarrow QCD

3. Chiral symmetry

Some of the quarks happen to be light
Approximate chiral symmetry
Spontaneous symmetry breakdown

4. Goldstone theorem

If N_{f} of the quark masses are put equal to zero QCD contains $N_{f}^{2}-1$ Nambu-Goldstone bosons

5. Gell-Mann-Oakes-Renner relation

Quark masses break chiral symmetry
NGBs pick up mass
M_{π}^{2} is proportional to $m_{u}+m_{d}$

II. Chiral perturbation theory

6. Group geometry

Symmetry group of the Hamiltonian G
Symmetry group of the ground state H
Nambu-Goldstone bosons live on G / H
7. Generating functional of QCD

Collects the Green functions of the theory

8. Ward identities

Symmetries of the generating functional

9. Low energy expansion

Taylor series in powers of external momenta NGBs generate infrared singularities

10. Effective Lagrangian

Singularities due to the Nambu-Goldstone bosons can be worked out with an effective field theory. Side remark: for nonrelativistic systems, there is a complication. In that case, $\mathcal{L}_{\text {eff }}$ is in general invariant only up to a total derivative.

11. Explicit construction of $\mathcal{L}_{\text {eff }}$

III. Illustrations

12. Some tree level calculations

Leading terms of the chiral perturbation series for the quark condensate and for M_{π}, F_{π}

13. M_{π} beyond tree level

Contributions to M_{π} at NL and NNL orders

14. F_{π} to one loop

Chiral logarithm in F_{π}, low energy theorem for scalar radius

15. Pion form factors

Charge radius of the pion, scalar radius Dispersion relations

16. Lattice results for $M_{\boldsymbol{\pi}}, \boldsymbol{F}_{\boldsymbol{\pi}}$

Determination of the effective coupling constants ℓ_{3}, ℓ_{4} on the lattice

17. $\pi \pi$ scattering

χ PT, lattice, precision experiments
18. Conclusions for $\operatorname{SU}(2) \times S U(2)$
19. Expansion in powers of m_{s}

Convergence, validity of Zweig rule
20. Conclusions for $\operatorname{SU}(3) \times S U(3)$
IV. Some recent results
21. Masses of the light quarks
22. $V_{u s}$ and $V_{u d}$
23. Puzzling results on $K_{L} \rightarrow \pi \mu \nu$
24. Concluding remarks

Exercises

I. Standard Model at Iow energies

1. Interactions

strong weak e.m. gravity
$S U(3) \times S U(2) \times U(1) \times D$

Gravity

understood only at classical level
gravitational waves \checkmark
quantum theory of gravity ?
classical theory adequate for

$$
r \gg \sqrt{\frac{G \hbar}{c^{3}}}=1.6 \cdot 10^{-35} \mathrm{~m}
$$

Weak interaction

frozen at low energies

$$
E \ll M_{\mathrm{w}} c^{2} \simeq 80 \mathrm{GeV}
$$

\Rightarrow structure of matter: only strong and electromagnetic interaction
\Rightarrow neutrini decouple

Electromagnetic interaction

Maxwell ~ 1860
survived relativity and quantum theory, unharmed

- Electrons in electromagnetic field ($\hbar=c=1$)

$$
\frac{1}{i} \frac{\partial \psi}{\partial t}-\frac{1}{2 m_{e}^{2}}(\vec{\nabla}+i e \vec{A})^{2} \psi-e \varphi \psi=0
$$

contains the potentials \vec{A}, φ

- only $\vec{E}=-\vec{\nabla} \varphi-\frac{\partial \vec{A}}{\partial t}$ and $\vec{B}=\vec{\nabla} \times \vec{A}$ are of physical significance
- Schrödinger equation is invariant under gauge transformations

$$
\vec{A}^{\prime}=\vec{A}+\vec{\nabla} f, \quad \varphi^{\prime}=\varphi-\frac{\partial f}{\partial t}, \quad \psi^{\prime}=e^{-i e f} \psi
$$

describe the same physical situation as \vec{A}, φ, ψ

- Equivalence principle of the e.m. interaction: ψ physically equivalent to $e^{-i e f} \psi$
- $e^{-i e f}$ is unitary 1×1 matrix, $e^{-i e f} \in \mathrm{U}(1)$ $f=f(\vec{x}, t)$ space-time dependent function
- gauge invariance \Longleftrightarrow local $U(1)$ symmetry electromagnetic field is gauge field of $U(1)$ Weyl 1929
- U(1) symmetry + renormalizability fully determine the e.m. interaction

Strong interaction

nuclei $=\mathrm{p}+\mathrm{n} \sim 1930$

- Nuclear forces

Yukawa ~ 1935
$V_{\text {e.m. }}=-\frac{e^{2}}{4 \pi r}$
$\frac{e^{2}}{4 \pi} \simeq \frac{1}{137}$
long range
$r_{0}=\infty$
$r_{0}=\frac{\hbar}{M_{\pi} c}=1.4 \cdot 10^{-15} \mathrm{~m}$
$M_{\gamma}=0$

- Problem with Yukawa formula:
p and n are extended objects diameter comparable to range of force formula only holds for $r \gg$ diameter
- Protons, neutrons composed of quarks
$\mathrm{p}=\mathrm{uud}$
$\mathrm{n}=u d d$
- Quarks carry internal quantum number
$u=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right) \quad d=\left(\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right)$
occur in 3 "colours"
- Strong interaction is invariant under local rotations in colour space
$u^{\prime}=U \cdot u \quad d^{\prime}=U \cdot d$
$U=\left(\begin{array}{lll}U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33}\end{array}\right) \in \operatorname{SU}(3)$
- Can only be so if the strong interaction is also mediated by a gauge field gauge field of $\mathrm{SU}(3) \Longrightarrow$ strong interaction Quantum chromodynamics

Comparison of e.m. and strong interaction

	QED	QCD
symmetry gauge field	$\mathrm{U}(1)$	$\mathrm{SU}(3)$
particles		
source coupling constant	photons charge	gluons field glulour

- All charged particles generate e.m. field
- All coloured particles generate gluon field
- Leptons do not interact strongly because they do not carry colour
- Equivalence principle of the strong interaction:

$$
U \cdot\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) \text { physically equivalent to }\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)
$$

2. QED+QCD

Effective theory for $E \ll M_{\mathrm{w}} c^{2} \simeq 80 \mathrm{GeV}$
Symmetry $\mathrm{U}(1) \times \mathrm{SU}(3)$
Lagrangian
QED + QCD

- Dynamical variables:
gauge fields for photons and gluons
Fermi fields for leptons and quarks
- Interaction fully determined by group geometry Lagrangian contains 2 coupling constants

$$
e, g
$$

- Quark and lepton mass matrices can be brought to diagonal form, eigenvalues real, positive

$$
m_{e}, m_{\mu}, m_{\tau}, m_{u}, m_{d}, m_{s}, m_{c}, m_{b}, m_{t}
$$

- Transformation generates vacuum angle
\square
- Precision theory for cold matter, atomic structure, solids, ...

Bohr radius: $\quad a=\frac{4 \pi}{e^{2} m_{e}}$

- θ breaks $C P$

Neutron dipole moment is very small
\Rightarrow strong upper limit, $\theta \simeq 0$

Qualitative difference between e.m. and strong interactions

- Photons do not have charge
- Gluons do have colour

$$
x_{1} \cdot x_{2}=x_{2} \cdot x_{1} \text { for } x_{1}, x_{2} \in U(1) \quad \text { abelian }
$$

$x_{1} \cdot x_{2} \neq x_{2} \cdot x_{1}$ for $x_{1}, x_{2} \in \operatorname{SU}(3)$
\Rightarrow Consequence for vacuum polarization

QED

Density of charge
bare positron
r
cloud of electrons and positrons

$$
e<e_{\text {bare }}
$$

vacuum
shields charge

QCD
Density of colour
cloud of quarks and antiquarks

$$
g>g_{\text {bare }}
$$

vacuum
amplifies colour

Comparison with gravity

- source of gravitational field: energy gravitational field does carry energy
- source of e.m. field: charge e.m. field does not carry charge
- source of gluon field: colour gluon field does carry colour

gravity

planet feels less than total energy of the sun

sun

strong interaction

Perihelion shift of Mercury:

$$
43^{\prime \prime}=50^{\prime \prime}-7_{\Uparrow}^{\prime \prime} \text { per century }
$$

- Force between u and \bar{u} :

$$
\begin{aligned}
& V_{s}=-\frac{4}{3} \frac{g^{2}}{4 \pi r}, \quad g \rightarrow 0 \quad \text { for } \quad r \rightarrow 0 \\
& \frac{g^{2}}{4 \pi}=\frac{6 \pi}{\left(11 N_{c}-2 N_{f}\right)\left|\ln \left(r \wedge_{\mathrm{QCD}}\right)\right|} \\
& \left|\ln \left(r \wedge_{\mathrm{QCD}}\right)\right| \simeq 7 \quad \text { for } r=\frac{\hbar}{M_{\mathrm{Z}} c} \simeq 2 \cdot 10^{-18} \mathrm{~m}
\end{aligned}
$$

- Vacuum amplifies gluonic field of a bare quark
- Field energy surrounding isolated quark $=\infty$ Only colour neutral states have finite energy
\Rightarrow Confinement of colour
- Theoretical evidence for confinement meagre Experimental evidence much more convincing

QED: interaction weak at low energies
QCD: interaction strong at low energies

$$
\frac{e^{2}}{4 \pi} \simeq \frac{1}{137} \quad \frac{g^{2}}{4 \pi} \simeq 1
$$

photons, leptons nearly decouple
gluons, quarks confined

- Nuclear forces $=$ van der Waals forces of QCD

3. Chiral symmetry

- Photons are extremely useful to probe QCD Much of what we know about the structure of the hadrons stems scattering experiments involving electrons or photons
$e+N \rightarrow e+N \quad$ form factors of the nucleon $e+N \rightarrow e+$ hadrons deep inelastic scattering electroproduction, photoproduction
\Rightarrow several lectures and seminars at this school
- For bound states of quarks, e.m. interaction is a small perturbation

Perturbation series in powers of $\frac{e^{2}}{4 \pi} \sqrt{ }$
Discuss only the leading term: set $e=0$

- Lagrangian then reduces to QCD

$$
g, m_{u}, m_{d}, m_{s}, m_{c}, m_{b}, m_{t}
$$

- m_{u}, m_{d}, m_{s} happen to be light

Consequence:
Approximate flavour symmetries
Play a crucial role for the low energy properties

Theoretical paradise

$$
\begin{aligned}
& m_{u}=m_{d}=m_{s}=0 \\
& m_{c}=m_{b}=m_{t}=\infty
\end{aligned}
$$

QCD with 3 massless quarks

- Lagrangian contains a single parameter: g g is net colour of a quark depends on radius of the region considered
- Colour contained within radius r

$$
\frac{g^{2}}{4 \pi}=\frac{2 \pi}{9\left|\ln \left(r \wedge_{\mathrm{QCD}}\right)\right|}
$$

- Intrinsic scale Λ_{QCD} is meaningful, but not dimensionless
\Rightarrow No dimensionless free parameter
All dimensionless physical quantities are pure numbers, determined by the theory
Cross sections can be expressed in terms of $\Lambda_{\text {QCD }}$ or in the mass of the proton
- Interactions of u, d, s are identical

If the masses are set equal to zero, there is no difference at all

$$
q=\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

- Lagrangian symmetric under $u \leftrightarrow d \leftrightarrow s$

$$
q^{\prime}=V \cdot q \quad V \in \mathrm{SU}(3)
$$

V acts on quark flavour, mixes u, d, s

- More symmetry: For massless fermions, right and left do not communicate
\Rightarrow Lagrangian of massless QCD is invariant under independent rotations of the right- and lefthanded quark fields

$$
\begin{array}{cc}
q_{\mathrm{R}}=\frac{1}{2}\left(1+\gamma_{5}\right) q, & q_{\mathrm{L}}=\frac{1}{2}\left(1-\gamma_{5}\right) q \\
q_{\mathrm{R}}^{\prime}=V_{\mathrm{R}} \cdot q_{\mathrm{R}} & q_{\mathrm{L}}^{\prime}=V_{\mathrm{L}} \cdot q_{\mathrm{L}} \\
\operatorname{SU}(3)_{\mathrm{R}} \times \operatorname{SU}(3)_{\mathrm{L}}
\end{array}
$$

- Massless QCD invariant under $\operatorname{SU}(3)_{R} \times S U(3)_{L}$

SU(3) has 8 parameters
\Rightarrow Symmetry under Lie group with 16 parameters
$\Rightarrow 16$ conserved "charges"
$Q_{1}^{\vee}, \ldots, Q_{8}^{\vee} \quad$ (vector currents, $R+L$)
$Q_{1}^{\mathrm{A}}, \ldots, Q_{8}^{\mathrm{A}} \quad$ (axial currents, $R-L$)
commute with the Hamiltonian:

$$
\left[Q_{i}^{\mathrm{V}}, H_{0}\right]=0 \quad\left[Q_{i}^{\mathrm{A}}, H_{0}\right]=0
$$

"Chiral symmetry" of massless QCD

- Vafa and Witten 1984: state of lowest energy is invariant under the vector charges
$Q_{i}^{\vee}|0\rangle=0$
- Axial charges ? $\quad Q_{i}^{\mathrm{A}}|0\rangle=$?

Two alternatives for axial charges

$$
Q_{i}^{\mathrm{A}}|0\rangle=0
$$

Wigner-Weyl realization of G ground state is symmetric

$$
\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle=0
$$

ordinary symmetry
spectrum contains parity partners degenerate multiplets of G

$$
Q_{i}^{\mathrm{A}}|0\rangle \neq 0
$$

Nambu-Goldstone realization of G ground state is asymmetric

$$
\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle \neq 0
$$

"order parameter"
spontaneously broken symmetry
spectrum contains Nambu-Goldstone bosons degenerate multiplets of $S U(3)_{\vee} \subset G$

$$
G=S U(3)_{R} \times S U(3)_{L}
$$

- Spontaneous symmetry breakdown was discovered in condensed matter physics:

Spontaneous magnetization selects direction
\Rightarrow Rotation symmetry is spontaneously broken
Nambu-Goldstone bosons = spin waves, magnons

- Nambu 1960: state of lowest energy in particle physics is not invariant under chiral rotations $Q_{i}^{\mathrm{A}}|0\rangle \neq 0$

For dynamical reasons, the state of lowest energy must be asymmetric
\Rightarrow Chiral symmetry is spontaneously broken

- Very strong experimental evidence $\sqrt{ }$
- Theoretical understanding on the basis of the QCD Lagrangian ?
- Analog of Magnetization ?
$\bar{q}_{\mathrm{R}} q_{\mathrm{L}}=\left(\begin{array}{ccc}\bar{u}_{\mathrm{R}} u_{\mathrm{L}} & \bar{d}_{\mathrm{R}} u_{\mathrm{L}} & \bar{s}_{\mathrm{R}} u_{\mathrm{L}} \\ \bar{u}_{\mathrm{R}} d_{\mathrm{L}} & \bar{d}_{\mathrm{R}} d_{\mathrm{L}} & \bar{s}_{\mathrm{R}} d_{\mathrm{L}} \\ \bar{u}_{\mathrm{R}} s_{\mathrm{L}} & \bar{d}_{\mathrm{R}} s_{\mathrm{L}} & \bar{s}_{\mathrm{R}} s_{\mathrm{L}}\end{array}\right)$
Transforms like $(\overline{3}, 3)$ under $\operatorname{SU}(3)_{R} \times S U(3)_{L}$
If the ground state were symmetric, the matrix $\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle$ would have to vanish, because it singles out a direction in flavour space
"quark condensate", is quantitative measure of spontaneous symmetry breaking
"order parameter"

$\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle \Leftrightarrow$ magnetization

- Ground state is invariant under SU(3)v
$\Rightarrow\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle$ is proportional to unit matrix $\langle 0| \bar{u}_{\mathrm{R}} u_{\mathrm{L}}|0\rangle=\langle 0| \bar{d}_{\mathrm{R}} d_{\mathrm{L}}|0\rangle=\langle 0| \bar{s}_{\mathrm{R}} s_{\mathrm{L}}|0\rangle$
$\langle 0| \bar{u}_{R} d_{\mathrm{L}}|0\rangle=\ldots=0$

4. Goldstone Theorem

- Consequence of $Q_{i}^{\mathrm{A}}|0\rangle \neq 0$:

$$
H_{0} Q_{i}^{\mathrm{A}}|0\rangle=Q_{i}^{\mathrm{A}} H_{0}|0\rangle=0
$$

spectrum must contain 8 states
$Q_{1}^{\mathrm{A}}|0\rangle, \ldots, Q_{8}^{\mathrm{A}}|0\rangle \quad$ with $E=0$,
spin 0 , negative parity, octet of $S \cup(3) \vee$
Nambu-Goldstone bosons

- Argument is not water tight:
$\langle 0| Q_{i}^{\mathrm{A}} Q_{k}^{\mathrm{A}}|0\rangle=\int d^{3} x d^{3} y\langle 0| A_{i}^{0}(x) A_{k}^{0}(y)|0\rangle$
$\langle 0| A_{i}^{0}(x) A_{k}^{0}(y)|0\rangle$ only depends on $\vec{x}-\vec{y}$
$\Rightarrow\langle 0| Q_{i}^{\mathrm{A}} Q_{k}^{\mathrm{A}}|0\rangle$ is proportional to the volume of the universe, $\left.\left|Q_{i}^{\mathrm{A}}\right| 0\right\rangle \mid=\infty$
- Rigorous version of Goldstone theorem: $\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle \neq 0 \Rightarrow \exists$ massless particles

Proof

$$
\begin{aligned}
& Q=\int d^{3} x \bar{u} \gamma^{0} \gamma_{5} d \\
& {\left[Q, \bar{d} \gamma_{5} u\right]=-\bar{u} u-\bar{d} d}
\end{aligned}
$$

- $F^{\mu}(x-y) \equiv\langle 0| \bar{u}(x) \gamma^{\mu} \gamma_{5} d(x) \bar{d}(y) \gamma_{5} u(y)|0\rangle$

Lorentz invariance $\Rightarrow F^{\mu}(z)=z^{\mu} f\left(z^{2}\right)$
Chiral symmetry $\Rightarrow \partial_{\mu} F^{\mu}(z)=0$

$$
F^{\mu}(z)=\frac{z^{\mu}}{z^{4}} \times \text { constant }\left(\text { for } z^{2} \neq 0\right)
$$

- Spectral decomposition:

$$
\begin{aligned}
& F^{\mu}(x-y)=\langle 0| \bar{u}(x) \gamma^{\mu} \gamma_{5} d(x) \bar{d}(y) \gamma_{5} u(y)|0\rangle \\
& =\sum_{n}\langle 0| \bar{u} \gamma^{\mu} \gamma_{5} d|n\rangle\langle n| \bar{d} \gamma_{5} u|0\rangle e^{-i p_{n}(x-y)}
\end{aligned}
$$

$p_{n}^{0} \geq 0 \Rightarrow F^{\mu}(z)$ is analytic in z^{0} for $\operatorname{Im} z^{0}<0$

$$
F^{\mu}(z)=\frac{z^{\mu}}{\left\{\left(z^{0}-i \epsilon\right)^{2}-\vec{z}^{2}\right\}^{2}} \times \text { constant }
$$

- Positive frequency part of massless propagator: (exercise \# 1)

$$
\begin{aligned}
\Delta^{+}(z, 0) & =\frac{i}{(2 \pi)^{3}} \int \frac{d^{3} p}{2 p^{0}} e^{-i p z}, \quad p^{0}=|\vec{p}| \\
& =\frac{1}{4 \pi i\left\{\left(z^{0}-i \epsilon\right)^{2}-\vec{z}^{2}\right\}}
\end{aligned}
$$

- Result
$\langle 0| \bar{u}(x) \gamma^{\mu} \gamma_{5} d(x) \bar{d}(y) \gamma_{5} u(y)|0\rangle=C \partial^{\mu} \Delta^{+}(z, 0)$
- Compare Källen-Lehmann representation:

$$
\begin{aligned}
\langle 0| \bar{u}(x) \gamma^{\mu} \gamma_{5} d(x) & \bar{d}(y) \gamma_{5} u(y)|0\rangle \\
& =(2 \pi)^{-3} \int d^{4} p p^{\mu} \rho\left(p^{2}\right) e^{-i p(x-y)} \\
& =\int_{0}^{\infty} d s \rho(s) \partial^{\mu} \Delta^{+}(x-y, s)
\end{aligned}
$$

$\Delta^{+}(z, s) \Longleftrightarrow$ massive propagator

$$
\Delta^{+}(z, s)=\frac{i}{(2 \pi)^{3}} \int d^{4} p \theta\left(p^{0}\right) \delta\left(p^{2}-s\right) e^{-i p z}
$$

\Rightarrow Only massless intermedate states contribute:

$$
\rho(s)=C \delta(s)
$$

- Why only massless intermediate states ?
$\langle n| \bar{d} \gamma_{5} u|0\rangle \neq 0$ only if $\langle n|$ has spin 0
If $|n\rangle$ has spin $0 \Rightarrow\langle 0| \bar{u}(x) \gamma^{\mu} \gamma_{5} d(x)|n\rangle \propto p^{\mu} e^{-i p x}$
$\partial_{\mu}\left(\bar{u} \gamma^{\mu} \gamma_{5} d\right)=0 \Rightarrow p^{2}=0$
\Rightarrow Either \exists massless particles or $C=0$
- Claim: $\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle \neq 0 \Rightarrow C \neq 0$

Lorentz invariance, chiral symmetry
$\Rightarrow\langle 0| \bar{d}(y) \gamma_{5} u(y) \bar{u}(x) \gamma^{\mu} \gamma_{5} d(x)|0\rangle=C^{\prime} \partial^{\mu} \Delta^{-}(z)$
$\Rightarrow\langle 0|\left[\bar{u}(x) \gamma^{\mu} \gamma_{5} d(x), \bar{d}(y) \gamma_{5} u(y)\right]|0\rangle$

$$
=C \partial^{\mu} \Delta^{+}(z, 0)-C^{\prime} \partial^{\mu} \Delta^{-}(z, 0)
$$

- Causality: if $x-y$ is spacelike, then $\langle 0|\left[\bar{u}(x) \gamma^{\mu} \gamma_{5} d(x), \bar{d}(y) \gamma_{5} u(y)\right]|0\rangle=0$
$\Rightarrow C^{\prime}=-C$
$\Rightarrow\langle 0|\left[\bar{u}(x) \gamma^{\mu} \gamma_{5} d(x), \bar{d}(y) \gamma_{5} u(y)\right]|0\rangle=C \partial^{\mu} \Delta(z, 0)$
$\Rightarrow\langle 0|\left[Q, \bar{d}(y) \gamma_{5} u(y)\right]|0\rangle=C$
- $\langle 0|\left[Q, \bar{d}(y) \gamma_{5} u(y)\right]|0\rangle=-\langle 0| \bar{u} u+\bar{d} d|0\rangle=C$ Hence $\langle 0| \bar{u} u+\bar{d} d|0\rangle \neq 0$ implies $C \neq 0$ qed.

5. Gell-Mann-Oakes-Renner relation

Spectrum of QCD with 3 massless quarks must contain 8 massless physical particles, $J^{P}=0^{-}$

- Indeed, the 8 lightest mesons do have these quantum numbers:
$\pi^{+}, \pi^{0}, \pi^{-}, K^{+}, K^{0}, \bar{K}^{0}, K^{-}, \eta$
But massless they are not, because $m_{u}, m_{d}, m_{s} \neq 0$

Quark masses break chiral symmetry

- Chiral symmetry broken in two ways:
spontaneously
$\langle 0| \bar{q}_{\mathrm{R}} q_{\mathrm{L}}|0\rangle \neq 0$
explicitly $m_{u}, m_{d}, m_{s} \neq 0$
- H_{QCD} only has approximate symmetry, to the extent that m_{u}, m_{d}, m_{s} are small

$$
\begin{aligned}
& H_{\mathrm{QCD}}=H_{0}+H_{1} \\
& H_{1}=\int d^{3} x\left\{m_{u} \bar{u} u+m_{d} \bar{d} d+m_{s} \bar{s} s\right\}
\end{aligned}
$$

- H_{0} is Hamiltonian of the massless theory, invariant under $\operatorname{SU}(3)_{R} \times S U(3)_{L}$
- H_{1} breaks the symmetry, transforms with $(3, \overline{3}) \oplus(\overline{3}, 3)$
- For the low energy structure of QCD, the heavy quarks do not play an essential role:
c, b, t are singlets under $S \cup(3)_{R} \times S \cup(3)_{L}$
Can include the heavy quarks in H_{0}
- Nambu-Goldstone bosons are massless only if the symmetry is exact

Gell-Mann-Oakes-Renner formula:

$$
\frac{\left.M_{\pi}^{2}=\left(m_{u}+m_{d}\right) \times|\langle 0| \bar{u} u| 0\right\rangle \left\lvert\, \times \frac{1}{F_{\pi}^{2}}\right.}{\overbrace{\text { explicit }}^{\substack{i \\ \text { expontaneous }}}}
$$

$$
1968
$$

Coefficient: decay constant F_{π}

- Why $M_{\pi}^{2} \propto\left(m_{u}+m_{d}\right)$?

$$
\begin{aligned}
\langle 0| \bar{u}(x) \gamma^{\mu} \gamma_{5} d(x)\left|\pi^{-}\right\rangle & =i \sqrt{2} F_{\pi} p^{\mu} e^{-i p \cdot x} \\
\langle 0| \bar{u}(x) i \gamma_{5} d(x)\left|\pi^{-}\right\rangle & =\sqrt{2} G_{\pi} e^{-i p \cdot x}
\end{aligned}
$$

- Current conservation

$$
\begin{aligned}
\partial_{\mu}\left(\bar{u} \gamma^{\mu} \gamma_{5} d\right) & =\left(m_{u}+m_{d}\right) \bar{u} i \gamma_{5} d \\
\Rightarrow \sqrt{2} F_{\pi} p^{2} & =\left(m_{u}+m_{d}\right) \sqrt{2} G_{\pi} \\
p^{2} & =M_{\pi}^{2} \\
\Rightarrow & M_{\pi}^{2}=\left(m_{u}+m_{d}\right) \frac{G_{\pi}}{F_{\pi}} \quad \text { exact }
\end{aligned}
$$

- Expand in powers of m_{u}, m_{d} :

$$
\begin{aligned}
\frac{G_{\pi}}{F_{\pi}} & =B+O(m) \\
\Rightarrow M_{\pi}^{2} & =\left(m_{u}+m_{d}\right) B+O\left(m^{2}\right)
\end{aligned}
$$

- $M_{\pi}^{2}=\left(m_{u}+m_{d}\right) B+O\left(m^{2}\right)$
- M_{π} disappears if the symmetry breaking is turned off, $m_{u}, m_{d} \rightarrow 0 \sqrt{ }$
- Explains why the pseudoscalar mesons have very different masses

$$
\begin{aligned}
& M_{K^{+}}^{2}=\left(m_{u}+m_{s}\right) B+O\left(m^{2}\right) \\
& M_{K^{-}}^{2}=\left(m_{d}+m_{s}\right) B+O\left(m^{2}\right)
\end{aligned}
$$

$\Rightarrow M_{K}^{2}$ is about 13 times larger than M_{π}^{2}, because m_{u}, m_{d} happen to be small compared to m_{s}

- First order perturbation theory also yields

$$
\begin{aligned}
& M_{\eta}^{2}=\frac{1}{3}\left(m_{u}+m_{d}+4 m_{s}\right) B+O\left(m^{2}\right) \\
\Rightarrow & M_{\pi}^{2}-4 M_{K}^{2}+3 M_{\eta}^{2}=O\left(m^{2}\right)
\end{aligned}
$$

Gell-Mann-Okubo formula for $M^{2} \sqrt{ }$

Checking the GMOR formula on a lattice

- Can determine M_{π} as function of $m_{u}=m_{d}=m$

Lüscher, Lattice conference 2005
ETM collaboration, hep-lat/0701012

- No quenching, quark masses sufficiently light
\Rightarrow Legitimate to use χ P丁 for the extrapolation to the physical values of m_{u}, m_{d}
- Quality of data is impressive
- Proportionality of M_{π}^{2} to the quark mass appears to hold out to values of m_{u}, m_{d} that are an order of magnitude larger than in nature
- Main limitation: systematic uncertainties in particular: $N_{f}=2 \rightarrow N_{f}=3$

II. Chiral perturbation theory

6. Group geometry

- QCD with 3 massless quarks:
spontaneous symmetry breakdown
from $\operatorname{SU}(3)_{R} \times S U(3)_{L}$ to $S U(3)_{V}$ generates 8 Nambu-Goldstone bosons
- Generalization: suppose symmetry group of Hamiltonian is Lie group G
Generators $Q_{1}, Q_{2}, \ldots, Q_{D}, D=\operatorname{dim}(G)$
For some generators $Q_{i}|0\rangle \neq 0$ How many Nambu-Goldstone bosons ?
- Consider those elements of the Lie algebra $Q=\alpha_{1} Q_{1}+\ldots+\alpha_{n} Q_{D}$, for which $Q|0\rangle=0$ These elements form a subalgebra:
$Q|0\rangle=0, Q^{\prime}|0\rangle=0 \Rightarrow\left[Q, Q^{\prime}\right]|0\rangle=0$
Dimension of subalgebra: $d \leq D$
- Of the D vectors $Q_{i}|0\rangle$
$D-d$ are linearly independent
$\Rightarrow D-d$ different physical states of zero mass
$\Rightarrow D-d$ Nambu-Goldstone bosons
- Subalgebra generates subgroup $\mathrm{H} \subset \mathrm{G}$ H is symmetry group of the ground state coset space G/H contains as many parameters as there are Nambu-Goldstone bosons $d=\operatorname{dim}(\mathrm{H}), D=\operatorname{dim}(\mathrm{G})$
\Rightarrow Nambu-Goldstone bosons live on the coset G/H
- Example: QCD with N_{f} massless quarks $\mathrm{G}=\mathrm{SU}\left(N_{f}\right)_{\mathrm{R}} \times \operatorname{SU}\left(N_{f}\right)_{\mathrm{L}}$ $\mathrm{H}=\mathrm{SU}\left(N_{f}\right) \vee$ $D=2\left(N_{f}^{2}-1\right), d=N_{f}^{2}-1$ $N_{f}^{2}-1$ Nambu-Goldstone bosons
- It so happens that $m_{u}, m_{d} \ll m_{s}$
- $m_{u}=m_{d}=0$ is an excellent approximation $\operatorname{SU}(2)_{R} \times S U(2)_{L}$ is a nearly exact symmetry $N_{f}=2, N_{f}^{2}-1=3$ Nambu-Goldstone bosons (pions)

7. Generating functional of QCD

- Basic objects for quantitative analysis of QCD: Green functions of the currents

$$
\begin{aligned}
V_{a}^{\mu} & =\bar{q} \gamma^{\mu} \frac{1}{2} \lambda_{a} q, \quad A_{a}^{\mu}
\end{aligned}=\bar{q} \gamma^{\mu} \gamma_{5} \frac{1}{2} \lambda_{a} q, ~=\bar{q} \frac{1}{2} \lambda_{a} q, \quad P_{a}=\bar{q} i \gamma_{5} \frac{1}{2} \lambda_{a} q
$$

Include singlets, with $\lambda_{0}=\sqrt{2 / 3} \times 1$, as well as

$$
\omega=\frac{1}{16 \pi^{2}} \operatorname{tr}_{c} G_{\mu \nu} \widetilde{G}^{\mu \nu}
$$

- Can collect all of the Green functions formed with these operators in a generating functional: Perturb the system with external fields $v_{\mu}^{a}(x), a_{\mu}^{a}(x), s_{a}(x), p^{a}(x), \theta(x)$
Replace the Lagrangian of the massless theory

$$
\mathcal{L}_{0}=-\frac{1}{2 g^{2}} \operatorname{tr}_{c} G_{\mu \nu} G^{\mu \nu}+\bar{q} i \gamma^{\mu}\left(\partial_{\mu}-i G_{\mu}\right) q
$$

by $\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{1}$

$$
\mathcal{L}_{1}=v_{\mu}^{a} V_{a}^{\mu}+a_{\mu}^{a} A_{a}^{\mu}-s^{a} S_{a}-p^{a} P_{a}-\theta \omega
$$

- Quark mass terms are included in the external field $s_{a}(x)$
- $|0 \mathrm{in}\rangle$: system is in ground state for $x^{0} \rightarrow-\infty$ Probability amplitude for finding ground state when $x^{0} \rightarrow+\infty$:

$$
e^{i S_{\mathrm{QCD}}\{v, a, s, p, \theta\}}=\langle 0 \text { out } \mid 0 \mathrm{in}\rangle_{v, a, s, p, \theta}
$$

- Expressed in terms of ground state of \mathcal{L}_{0} :

$$
e^{i S_{\mathrm{QCD}}\{v, a, s, p, \theta\}}=\langle 0| T \exp i \int d x \mathcal{L}_{1}|0\rangle
$$

- Expansion of $S_{\mathrm{QCD}}\{v, a, s, p, \theta\}$ in powers of the external fields yields the connected parts of the Green functions of the massless theory

$$
\begin{aligned}
& S_{\mathrm{QCD}}\{v, a, s, p, \theta\}=-\int d x s_{a}(x)\langle 0| S^{a}(x)|0\rangle \\
& +\frac{i}{2} \int d x d y a_{\mu}^{a}(x) a_{\nu}^{b}(y)\langle 0| T A_{a}^{\mu}(x) A_{b}^{\nu}(y)|0\rangle_{\mathrm{conn}}+\ldots
\end{aligned}
$$

- $S_{\mathrm{QCD}}\{v, a, s, p, \theta\}$ is referred to as the generating functional of QCD
- For Green functions of full QCD, set

$$
s_{a}(x)=m_{a}+\tilde{s}_{a}(x), \quad m_{a}=\operatorname{tr} \lambda_{a} m
$$

and expand around $\tilde{s}_{a}(x)=0$

- Path integral representation for generating functional:

$$
e^{i S_{\mathrm{QCD}}\{v, a, s, p\}}=\mathcal{N} \int[d G] e^{i \int d x \mathcal{L}_{\mathrm{G}}} \operatorname{det} D
$$

$$
\mathcal{L}_{\mathrm{G}}=-\frac{1}{2 g^{2}} \operatorname{tr}_{c} G_{\mu \nu} G^{\mu \nu}-\frac{\theta}{16 \pi^{2}} \operatorname{tr}_{c} G_{\mu \nu} \tilde{G}^{\mu \nu}
$$

$$
D=i \gamma^{\mu}\left\{\partial_{\mu}-i\left(G_{\mu}+v_{\mu}+a_{\mu} \gamma_{5}\right)\right\}-s-i \gamma_{5} p
$$

G_{μ} is matrix in colour space
v_{μ}, a_{μ}, s, p are matrices in flavour space $v_{\mu}(x) \equiv \frac{1}{2} \lambda_{a} v_{\mu}^{a}(x)$, etc.

8. Ward identities

Symmetry in terms of Green functions

- Lagrangian is invariant under

$$
\begin{aligned}
& q_{\mathrm{R}}(x) \rightarrow V_{\mathrm{R}}(x) q_{\mathrm{R}}(x), \quad q_{\mathrm{L}}(x) \rightarrow V_{\mathrm{L}}(x) q_{\mathrm{L}}(x) \\
& V_{\mathrm{R}}(x), V_{\mathrm{L}}(x) \in \mathrm{U}(3)
\end{aligned}
$$

provided the external fields are transformed with

$$
\begin{aligned}
v_{\mu}^{\prime}+a_{\mu}^{\prime} & =V_{\mathrm{R}}\left(v_{\mu}+a_{\mu}\right) V_{\mathrm{R}}^{\dagger}-i \partial_{\mu} V_{\mathrm{R}} V_{\mathrm{R}}^{\dagger} \\
v_{\mu}^{\prime}-a_{\mu}^{\prime} & =V_{\mathrm{L}}\left(v_{\mu}-a_{\mu}\right) V_{\mathrm{L}}^{\dagger}-i \partial_{\mu} V_{\mathrm{L}} V_{\mathrm{L}}^{\dagger} \\
s^{\prime}+i p^{\prime} & =V_{\mathrm{R}}(s+i p) V_{\mathrm{L}}^{\dagger}
\end{aligned}
$$

The operation takes the Dirac operator into

$$
\begin{aligned}
D^{\prime} & =\left\{P_{-} V_{\mathrm{R}}+P_{+} V_{\mathrm{L}}\right\} D\left\{P_{+} V_{\mathrm{R}}^{\dagger}+P_{-} V_{\mathrm{L}}^{\dagger}\right\} \\
P_{ \pm} & =\frac{1}{2}\left(1 \pm \gamma_{5}\right)
\end{aligned}
$$

- det D requires regularization
\nexists symmetric regularization
$\Rightarrow \operatorname{det} D^{\prime} \neq \operatorname{det} D$, only $\left|\operatorname{det} D^{\prime}\right|=|\operatorname{det} D|$
symmetry does not survive quantization
- Change in get D can explicitly be calculated For an infinitesimal transformation

$$
V_{\mathrm{R}}=1+i \alpha+i \beta+\ldots, \quad V_{\mathrm{L}}=1+i \alpha-i \beta+\ldots
$$ the change in the determinant is given by

$$
\begin{aligned}
& \operatorname{det} D^{\prime}=\operatorname{det} D e^{-i \int d x\{2\langle\beta\rangle \omega+\langle\beta \Omega\rangle\}} \\
& \langle A\rangle \equiv \operatorname{tr} A \\
& \omega=\frac{1}{16 \pi^{2}} \operatorname{tr}_{c} G_{\mu \nu} \widetilde{G}^{\mu \nu} \\
& \Omega=\frac{N_{c}}{4 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} \partial_{\mu} v_{\nu} \partial_{\rho} v_{\sigma}+\ldots \\
& \text { gluons } \\
& \text { ext. fields }
\end{aligned}
$$

- Consequence for generating functional:

The term with ω amounts to a change in θ, can be compensated by $\theta^{\prime}=\theta-2\langle\beta\rangle$
Pull term with $\langle\beta \Omega\rangle$ outside the path integral
$\Rightarrow S_{\mathrm{QCD}}\left\{v^{\prime}, a^{\prime}, s^{\prime}, p^{\prime}, \theta^{\prime}\right\}=S_{\mathrm{QCD}}\{v, a, s, p, \theta\}-\int d x\langle\beta \Omega\rangle$

$$
S_{\mathrm{QCD}}\left\{v^{\prime}, a^{\prime}, s^{\prime}, p^{\prime}, \theta^{\prime}\right\}=S_{\mathrm{QCD}}\{v, a, s, p, \theta\}-\int d x\langle\beta \Omega\rangle
$$

- S_{QCD} is invariant under $\mathrm{U}(3)_{\mathrm{R}} \times \mathrm{U}(3)_{\mathrm{L}}$, except for a specific change due to the anomalies
- Relation plays key role in low energy analysis: collects all of the Ward identities
For the octet part of the axial current,e.g.

$$
\begin{array}{r}
\partial_{\mu}^{x}\langle 0| T A_{a}^{\mu}(x) P_{b}(y)|0\rangle=-\frac{1}{4} i \delta(x-y)\langle 0| \bar{q}\left\{\lambda_{a}, \lambda_{b}\right\} q|0\rangle \\
+\langle 0| T \bar{q}(x) i \gamma_{5}\left\{m, \frac{1}{2} \lambda_{a}\right\} q(x) P_{b}(y)|0\rangle
\end{array}
$$

- Symmetry of the generating functional implies the operator relations

$$
\begin{aligned}
& \partial_{\mu} V_{a}^{\mu}=\bar{q} i\left[m, \frac{1}{2} \lambda_{a}\right] q, \quad a=0, \ldots, 8 \\
& \partial_{\mu} A_{a}^{\mu}=\bar{q} i \gamma_{5}\left\{m, \frac{1}{2} \lambda_{a}\right\} q, \quad a=1, \ldots, 8 \\
& \partial_{\mu} A_{0}^{\mu}=\sqrt{\frac{2}{3}} \bar{q} i \gamma_{5} m q+\sqrt{6} \omega
\end{aligned}
$$

- Textbook derivation of the Ward identities goes in inverse direction, but is slippery formal manipulations, anomalies ?

9. Low energy expansion

- If the spectrum has an energy gap
\Rightarrow no singularities in scattering amplitudes
or Green functions near $p=0$
\Rightarrow Iow energy behaviour may be analyzed with Taylor series expansion in powers of p

$$
\begin{aligned}
f(t) & =1+\frac{1}{6}\left\langle r^{2}\right\rangle t+\ldots \text { form factor } \\
T(p) & =a+b p^{2}+\ldots \text { scattering amplitude }
\end{aligned}
$$

Cross section dominated by
S-wave scattering length $\quad \frac{d \sigma}{d \Omega} \simeq|a|^{2}$

- Expansion parameter: $\frac{p}{m}=\frac{\text { momentum }}{\text { energy gap }}$
- Taylor series only works if the spectrum has an energy gap, i.e. if there are no massless particles
- Illustration: Coulomb scattering

Photon exchange \Rightarrow pole at $t=0$

$$
T=\frac{e^{2}}{\left(p^{\prime}-p\right)^{2}}
$$

Scattering amplitude does not admit Taylor series expansion in powers of p

- QCD does have an energy gap but the gap is very small: M_{π}
\Rightarrow Taylor series has very small radius of convergence, useful only for $p<M_{\pi}$
- Massless QCD contains infrared singularities due to the Nambu-Goldstone bosons
- For $m_{u}=m_{d}=0$, pion exchange gives rise to poles and branch points at $p=0$
\Rightarrow Low energy expansion is not a Taylor series, contains logarithms

Singularities due to Nambu-Goldstone bosons can be worked out with an effective field theory

Chiral Perturbation Theory

Weinberg, Dashen, Pagels, Gasser, ...

- Chiral perturbation theory correctly reproduces the infrared singularities of QCD
- Quantities of interest are expanded in powers of external momenta and quark masses
- Expansion has been worked out to next-to-leading order for many quantities "Chiral perturbation theory to one loop"
- In quite a few cases, the next-to-next-to-leading order is also known
- Properties of the Nambu-Goldstone bosons are governed by the hidden symmetry that is responsible for their occurrence
- Focus on the singularities due to the pions

$$
\begin{aligned}
& H_{\mathrm{QCD}}=H_{0}+H_{1} \\
& H_{1}=\int d^{3} x\left\{m_{u} \bar{u} u+m_{d} \bar{d} d\right\}
\end{aligned}
$$

H_{0} is invariant under $\mathrm{G}=\mathrm{SU}(2)_{\mathrm{R}} \times \mathrm{SU}(2)_{\mathrm{L}}$
$|0\rangle$ is invariant under $H=S U(2)_{V}$
mass term of strange quark is included in H_{0}

- Treat H_{1} as a perturbation

Expansion in powers of H_{1}

- Extension to $S U(3)_{R} \times S U(3)_{L}$ straightforward: include singularities due to exchange of K, η

10. Effective Lagrangian

- Replace quarks and gluons by pions

$$
\begin{aligned}
& \vec{\pi}(x)=\left\{\pi^{1}(x), \pi^{2}(x), \pi^{3}(x)\right\} \\
& \mathcal{L}_{\mathrm{QCD}} \rightarrow \mathcal{L}_{e f f}
\end{aligned}
$$

- Central claim:
A. Effective theory yields alternative representation for generating functional of QCD

$$
e^{i S_{\mathrm{QCD}}\{v, a, s, p, \theta\}}=\mathcal{N}_{e f f} \int[d \pi] e^{i \int d x \mathcal{L}_{\text {eff }}\{\vec{\pi}, v, a, s, p, \theta\}}
$$

B. $\mathcal{L}_{\text {eff }}$ has the same symmetries as $\mathcal{L}_{\mathrm{QCD}}$

- Lagrangian of QCD is invariant under

$$
\begin{aligned}
& q_{\mathrm{R}}(x) \rightarrow V_{\mathrm{R}}(x) q_{\mathrm{R}}(x), \quad q_{\mathrm{L}}(x) \rightarrow V_{\mathrm{L}}(x) q_{\mathrm{L}}(x) \\
& V_{\mathrm{R}}(x), V_{\mathrm{L}}(x) \in \mathrm{U}(3)
\end{aligned}
$$

provided the external fields are transformed with

$$
\begin{aligned}
v_{\mu}^{\prime}+a_{\mu}^{\prime} & =V_{\mathrm{R}}\left(v_{\mu}+a_{\mu}\right) V_{\mathrm{R}}^{\dagger}-i \partial_{\mu} V_{\mathrm{R}} V_{\mathrm{R}}^{\dagger} \\
v_{\mu}^{\prime}-a_{\mu}^{\prime} & =V_{\mathrm{L}}\left(v_{\mu}-a_{\mu}\right) V_{\mathrm{L}}^{\dagger}-i \partial_{\mu} V_{\mathrm{L}} V_{\mathrm{L}}^{\dagger} \\
s^{\prime}+i p^{\prime} & =V_{\mathrm{R}}(s+i p) V_{\mathrm{L}}^{\dagger}
\end{aligned}
$$

- $S_{\mathrm{QCD}}\{v, a, s, p, \theta\}$ invariant modulo anomalies
- Action of the symmetry on the meson field:

$$
U^{\prime}=V_{\mathrm{R}} \cdot U \cdot V_{\mathrm{L}}^{\dagger}
$$

- $\mathcal{L}_{e f f}$ also invariant modulo anomalies:

$$
\mathcal{L}_{e f f}\left\{U^{\prime}, v^{\prime}, a^{\prime}, s^{\prime}, p^{\prime}, \theta^{\prime}\right\}=\mathcal{L}_{e f f}\{U, v, a, s, p, \theta\}
$$

11. Explicit construction of $\mathcal{L}_{\text {eff }}$

Construct the general solution of (\star)

- First ignore the external fields,

$$
\mathcal{L}_{e f f}=\mathcal{L}_{e f f}\left(U, \partial U, \partial^{2} U, \ldots\right)
$$

Order in the number of derivatives

- Symmetry fixes leading term up to a constant:

$$
\mathcal{L}_{e f f}=\frac{F^{2}}{4} \operatorname{tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)+O\left(p^{4}\right)
$$

$$
\mathcal{L}_{\text {eff }}=\frac{F^{2}}{4} \operatorname{tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)+O\left(p^{4}\right)
$$

- Lagrangian of the nonlinear σ-model
- Expansion in powers of $\vec{\pi}$:

$$
\begin{gathered}
U=\exp i \vec{\pi} \cdot \vec{\tau}=1+i \vec{\pi} \cdot \vec{\tau}-\frac{1}{2} \vec{\pi}^{2}+\ldots \\
\Rightarrow \mathcal{L}_{e f f}=\frac{F^{2}}{2} \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}+\frac{F^{2}}{48} \operatorname{tr}\left\{\left[\partial_{\mu} \pi, \pi\right]\left[\partial^{\mu} \pi, \pi\right]\right\}+\ldots
\end{gathered}
$$

For the kinetic term to have the standard normalization: rescale the pion field, $\vec{\pi} \rightarrow \vec{\pi} / F$ $\mathcal{L}_{e f f}=\frac{1}{2} \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}+\frac{1}{48 F^{2}} \operatorname{tr}\left\{\left[\partial_{\mu} \pi, \pi\right]\left[\partial^{\mu} \pi, \pi\right]\right\}+\ldots$
\Rightarrow a. Symmetry requires the pions to interact
b. Derivative coupling: Nambu-Goldstone bosons only interact if their momentum does not vanish $\Rightarrow \lambda / \pi^{4}$

- Expression given for $\mathcal{L}_{\text {eff }}$ only holds if the external fields are turned off. Also, $\operatorname{tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)$ is invariant only under global transformations Suffices to replace $\partial_{\mu} U$ by

$$
D_{\mu} U=\partial_{\mu} U-i\left(v_{\mu}+a_{\mu}\right) U+i U\left(v_{\mu}-a_{\mu}\right)
$$

In contrast to $\operatorname{tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)$, the term $\operatorname{tr}\left(D_{\mu} U D^{\mu} U^{\dagger}\right)$ is invariant under local $S \cup(2)_{R} \times S \cup(2)_{L}$

- Can construct further invariants: $s+i p$ transforms like $U \Rightarrow \operatorname{tr}\left\{(s+i p) U^{\dagger}\right\}$ is invariant Violates parity, but $\operatorname{tr}\left\{(s+i p) U^{\dagger}\right\}+\operatorname{tr}\{(s-i p) U\}$ is even under $p \rightarrow-p, \vec{\pi} \rightarrow-\vec{\pi}$

In addition, \exists invariant independent of U :
$D_{\mu} \theta D^{\mu} \theta$, with $D_{\mu} \theta=\partial_{\mu} \theta+2 \operatorname{tr}\left(a_{\mu}\right)$

- Count the external fields as $\theta=O(1), \quad v_{\mu}, a_{\mu}=O(p), \quad s, p=O\left(p^{2}\right)$
- Derivative expansion yields string of the form

$$
\mathcal{L}_{e f f}=\mathcal{L}^{(2)}+\mathcal{L}^{(4)}+\mathcal{L}^{(6)}+\ldots
$$

- Full expression for leading term:

$$
\begin{gathered}
\mathcal{L}^{(2)}=\frac{F^{2}}{4}\left\langle D_{\mu} U D^{\mu} U^{\dagger}+\chi U^{\dagger}+U \chi^{\dagger}\right\rangle+h_{0} D_{\mu} \theta D^{\mu} \theta \\
\chi \equiv 2 B(s+i p), \quad\langle X\rangle \equiv \operatorname{tr}(X)
\end{gathered}
$$

- Contains 3 constants: F, B, h_{0}
"effective coupling constants" "low energy constants", LEC
- Next-to-leading order:

$$
\begin{aligned}
\mathcal{L}^{(4)} & =\frac{\ell_{1}}{4}\left\langle D_{\mu} U D^{\mu} U\right\rangle^{2}+\frac{\ell_{2}}{4}\left\langle D_{\mu} U D_{\nu} U\right\rangle\left\langle D^{\mu} U D^{\nu} U\right\rangle \\
& +\frac{\ell_{3}}{4}\left\langle\chi U^{\dagger}+U \chi^{\dagger}\right\rangle^{2}+\frac{\ell_{4}}{4}\left\langle D_{\mu} \chi D^{\mu} U^{\dagger}+D_{\mu} U D^{\mu} \chi^{\dagger}\right\rangle \\
& +\ldots
\end{aligned}
$$

- Number of effective coupling constants rapidly grows with the order of the expansion
- Infinitely many effective coupling constants Symmetry does not determine these Predictivity ?
- Essential point: If $\mathcal{L}_{\text {eff }}$ is known to given order \Rightarrow can work out low energy expansion of the Green functions to that order (Weinberg 1979)
- NLO expressions for F_{π}, M_{π} involve 2 new coupling constants: ℓ_{3}, ℓ_{4}.

In the $\pi \pi$ scattering amplitude, two further coupling constants enter at NLO: ℓ_{1}, ℓ_{2}.

- Note: effective theory is a quantum field theory Need to perform the path integral

$$
e^{i S_{\mathrm{QCD}}\{v, a, s, p, \theta\}}=\mathcal{N}_{e f f} \int[d \pi] e^{i \int d x \mathcal{L}_{e f f}\{\vec{\pi}, v, a, s, p, \theta\}}
$$

- Classical theory \Leftrightarrow tree graphs

Need to include graphs with loops

- Power counting in dimensional regularization: Graphs with ℓ loops are suppressed by factor $p^{2 \ell}$ as compared to tree graphs
\Rightarrow Leading contributions given by tree graphs Graphs with one loop contribute at next-toleading order, etc.
- The leading contribution to $S_{\text {QCD }}$ is given by the sum of all tree graphs = classical action:

$$
S_{\mathrm{QCD}}\{v, a, s, p, \theta\}=\underset{U(x)}{\operatorname{extremum}} \int d x \mathcal{L}_{e f f}\{U, v, a, s, p, \theta\}
$$

III. Illustrations

12. Some tree level calculations

A. Extracting the quark condensate from the generating functional

- To calculate the quark condensate of the massless theory, it suffices to consider the generating functional for $v=a=p=\theta=0$ and to take a constant scalar external field

$$
s=\left(\begin{array}{cc}
m_{u} & 0 \\
0 & m_{d}
\end{array}\right)
$$

- Expansion in powers of m_{u} and m_{d} treats

$$
\begin{aligned}
& H_{1}=\int d^{3} x\left\{m_{u} \bar{u} u+m_{d} \bar{d} d\right\} \text { as a perturbation } \\
& S_{\mathrm{QCD}}\{0,0, m, 0,0\}=S_{\mathrm{QCD}}^{0}+S_{\mathrm{QCD}}^{1}+\ldots
\end{aligned}
$$

- S_{QCD}^{0} is independent of the quark masses (cosmological constant)
- S_{QCD}^{1} is linear in the quark masses
- First order in $m_{u}, m_{d} \Rightarrow$ expectation value of H_{1} in unperturbed ground state is relevant

$$
S_{\mathrm{QCD}}^{1}=-\int d x\langle 0| m_{u} \bar{u} u+m_{d} \bar{d} d|0\rangle
$$

$\Rightarrow\langle 0| \bar{u} u|0\rangle$ and $\langle 0| \bar{d} d|0\rangle$ are the coefficients of the terms in S_{QCD} that are linear in m_{u} and m_{d}
B. Condensate in terms of effective theory

- Need the effective action for $v=a=p=\theta=0$ to first order in s
\Rightarrow classical level of effective theory suffices.
- extremum of the classical action: $U=1$

$$
S_{\mathrm{QCD}}^{1}=\int d x F^{2} B\left(m_{u}+m_{d}\right)
$$

- comparison with

$$
\begin{gather*}
S_{\mathrm{QCD}}^{1}=-\int d x\langle 0| m_{u} \bar{u} u+m_{d} \bar{d} d|0\rangle \text { yields } \\
\langle 0| \bar{u} u|0\rangle=\langle 0| \bar{d} d|0\rangle=-F^{2} B \tag{1}
\end{gather*}
$$

C. Evaluation of M_{π} at tree level

- In classical theory, the square of the mass is the coefficient of the term in the Lagrangian that is quadratic in the meson field:

$$
\begin{aligned}
& \frac{F^{2}}{4}\left\langle\chi U^{\dagger}+U \chi^{\dagger}\right\rangle=\frac{F^{2} B}{2}\left\langle m\left(U^{\dagger}+U\right)\right\rangle \\
&=F^{2} B\left(m_{u}+m_{d}\right)\left\{1-\frac{\vec{\pi}^{2}}{2 F^{2}}+\ldots\right\}
\end{aligned}
$$

Hence

$$
\begin{equation*}
M_{\pi}^{2}=\left(m_{u}+m_{d}\right) B \tag{2}
\end{equation*}
$$

- Tree level result for F_{π} :

$$
\begin{equation*}
F_{\pi}=F \tag{3}
\end{equation*}
$$

- $(1)+(2)+(3) \Rightarrow$ GMOR relation:

$$
M_{\pi}^{2}=\frac{\left.\left(m_{u}+m_{d}\right)|\langle 0| \bar{u} u| 0\right\rangle \mid}{F_{\pi}^{2}}
$$

13. M_{π} beyond tree level

- The formula $M_{\pi}^{2}=\left(m_{u}+m_{d}\right) B$ only holds at tree level, represents leading term in expansion of M_{π}^{2} in powers of m_{u}, m_{d}
- Disregard isospin breaking: set $m_{u}=m_{d}=m$ A. M_{π} to 1 loop
- Claim: at next-to-leading order, the expansion of M_{π}^{2} in powers of m contains a logarithm:

$$
\begin{aligned}
& M_{\pi}^{2}=M^{2}-\frac{1}{2} \frac{M^{4}}{(4 \pi F)^{2}} \ln \frac{\wedge_{3}^{2}}{M^{2}}+O\left(M^{6}\right) \\
& M^{2} \equiv 2 m B
\end{aligned}
$$

- Proof: Pion mass \Leftrightarrow pole position, for instance in the Fourier transform of $\langle 0| T A_{a}^{\mu}(x) A_{b}^{\nu}(y)|0\rangle$ Suffices to work out the perturbation series for this object to one loop of the effective theory
- Result (exercise \# 5):
$M_{\pi}^{2}=M^{2}+\frac{2 \ell_{3} M^{4}}{F^{2}}+\frac{M^{2}}{2 F^{2}} \frac{1}{i} \Delta\left(0, M^{2}\right)+O\left(M^{6}\right)$
$\Delta\left(0, M^{2}\right)$ is the propagator at the origin (exercise \# 2):

$$
\begin{aligned}
\Delta\left(0, M^{2}\right) & =\frac{1}{(2 \pi)^{d}} \int \frac{d^{d} p}{M^{2}-p^{2}-i \epsilon} \\
& =i(4 \pi)^{-d / 2} \Gamma(1-d / 2) M^{d-2}
\end{aligned}
$$

- Contains a pole at $d=4$:

$$
\left\ulcorner(1-d / 2)=\frac{2}{d-4}+\ldots\right.
$$

- Divergent part is proportional to M^{2} :

$$
\begin{aligned}
M^{d-2} & =M^{2} \mu^{d-4}(M / \mu)^{d-4}=M^{2} \mu^{d-4} e^{(d-4) \ln (M / \mu)} \\
& =M^{2} \mu^{d-4}\{1+(d-4) \ln (M / \mu)+\ldots\}
\end{aligned}
$$

- Denote the singular factor by

$$
\begin{aligned}
\lambda & \equiv \frac{1}{2}(4 \pi)^{-d / 2} \Gamma(1-d / 2) \mu^{d-4} \\
& =\frac{\mu^{d-4}}{16 \pi^{2}}\left\{\frac{1}{d-4}-\frac{1}{2}\left(\ln 4 \pi+\Gamma^{\prime}(1)+1\right)+O(d-4)\right\}
\end{aligned}
$$

- The propagator at the origin then becomes

$$
\frac{1}{i} \Delta\left(0, M^{2}\right)=M^{2}\left\{2 \lambda+\frac{1}{16 \pi^{2}} \ln \frac{M^{2}}{\mu^{2}}+O(d-4)\right\}
$$

- In the expression for M_{π}^{2}
$M_{\pi}^{2}=M^{2}+\frac{2 \ell_{3} M^{4}}{F^{2}}+\frac{M^{2}}{2 F^{2}} \frac{1}{i} \Delta\left(0, M^{2}\right)+O\left(M^{6}\right)$
the divergence can be absorbed in ℓ_{3} :

$$
\ell_{3}=-\frac{1}{2} \lambda+\ell_{3}^{\text {ren }}
$$

- $\ell_{3}^{\text {ren }}$ depends on the renormalization scale μ $\ell_{3}^{\text {ren }}=\frac{1}{64 \pi^{2}} \ln \frac{\mu^{2}}{\Lambda_{3}^{2}}$ running coupling constant
- \wedge_{3} is the ren. group invariant scale of ℓ_{3}

Net result for M_{π}^{2}

$$
M_{\pi}^{2}=M^{2}-\frac{1}{2} \frac{M^{4}}{(4 \pi F)^{2}} \ln \frac{\wedge_{3}^{2}}{M^{2}}+O\left(M^{6}\right)
$$

$\Rightarrow M_{\pi}^{2}$ contains a chiral logarithm at NLO

- Crude estimate for \wedge_{3}, based on $\operatorname{SU}(3)$ mass formulae for the pseudoscalar octet:

$$
\begin{aligned}
& 0.2 \mathrm{GeV}<\wedge_{3}<2 \mathrm{GeV} \\
& \bar{\ell}_{3} \equiv \ln \frac{\Lambda_{3}^{2}}{M_{\pi}^{2}}=2.9 \pm 2.4
\end{aligned}
$$

$$
\text { Gasser, L. } 1984
$$

\exists better determination $\bar{\ell}_{3}$ on the lattice, to be discussed later
\Rightarrow Next-to-leading term is small correction:

$$
0.005<\frac{1}{2} \frac{M_{\pi}^{2}}{\left(4 \pi F_{\pi}\right)^{2}} \ln \frac{\wedge_{3}^{2}}{M_{\pi}^{2}}<0.04
$$

- Scale of the expansion is set by size of pion mass in units of decay constant:

$$
\frac{M^{2}}{(4 \pi F)^{2}} \simeq \frac{M_{\pi}^{2}}{\left(4 \pi F_{\pi}\right)^{2}}=0.0144
$$

B. M_{π} to 2 loops

- Terms of order $m_{\text {quark }}^{3}$:

$$
\begin{aligned}
M_{\pi}^{2} & =M^{2}-\frac{1}{2} \frac{M^{4}}{(4 \pi F)^{2}} \ln \frac{\Lambda_{3}^{2}}{M^{2}} \\
& +\frac{17}{18} \frac{M^{6}}{(4 \pi F)^{4}}\left(\ln \frac{\Lambda_{M}^{2}}{M^{2}}\right)^{2}+k_{\mathrm{M}} M^{6}+O\left(M^{8}\right)
\end{aligned}
$$

F is pion decay constant for $m_{u}=m_{d}=0$ ChPT to two loops Colangelo 1995

- Coefficients $\frac{1}{2}$ and $\frac{17}{18}$ determined by symmetry
- $\wedge_{3}, \wedge_{\mathrm{M}}$ and $k_{\mathrm{M}} \Longleftrightarrow$ coupling constants in $\mathcal{L}_{e f f}$

14. F_{π} to one loop

- Also contains a logarithm at NLO:

$$
\begin{aligned}
F_{\pi} & =F\left\{1-\frac{M^{2}}{16 \pi^{2} F^{2}} \ln \frac{M^{2}}{\Lambda_{4}^{2}}+O\left(M^{4}\right)\right\} \\
M_{\pi}^{2} & =M^{2}\left\{1+\frac{M^{2}}{32 \pi^{2} F^{2}} \ln \frac{M^{2}}{\Lambda_{3}^{2}}+O\left(M^{4}\right)\right\}
\end{aligned}
$$

F is pion decay constant in limit $m_{u}, m_{d} \rightarrow 0$

- Structure is the same, coefficients and scale of logarithm are different

15. Pion form factors

- Scalar form factor of the pion:

$$
F_{s}(t)=\left\langle\pi\left(p^{\prime}\right)\right| \bar{q} q|\pi(p)\rangle, \quad t=\left(p^{\prime}-p\right)^{2}
$$

- Definition of scalar radius:

$$
F_{s}(t)=F_{s}(0)\left\{1+\frac{1}{6}\left\langle r^{2}\right\rangle_{s} t+O\left(t^{2}\right)\right\}
$$

- Low energy theorem:

$$
\left\langle r^{2}\right\rangle_{s}=\frac{6}{(4 \pi F)^{2}}\left\{\ln \frac{\Lambda_{4}^{2}}{M^{2}}-\frac{13}{12}+O\left(M^{2}\right)\right\}
$$

\Rightarrow In massless QCD, the scalar radius diverges, because the density of the pion cloud only decreases with a power of the distance

- Same infrared singularity also occurs in the charge radius (e.m. current), but coefficient of the chiral logarithm is 6 times smaller:

$$
\begin{aligned}
& \left\langle r^{2}\right\rangle_{s}=\frac{6}{(4 \pi F)^{2}}\left\{\ln \frac{\Lambda_{4}^{2}}{M^{2}}-\frac{13}{12}+O\left(M^{2}\right)\right\} \\
& \left\langle r^{2}\right\rangle_{e m}=\frac{1}{(4 \pi F)^{2}}\left\{\ln \frac{\Lambda_{6}^{2}}{M^{2}}-1+O\left(M^{2}\right)\right\}
\end{aligned}
$$

$\left.\Rightarrow\left\langle r^{2}\right\rangle_{s}\right\rangle\left\langle r^{2}\right\rangle_{e m}$ if M small enough

- $\left\langle r^{2}\right\rangle_{e m}$ can be determined experimentally

$$
\left\langle r^{2}\right\rangle_{e m}=0.439 \pm 0.008 \mathrm{fm}^{2}
$$

NA7 Collaboration, NP B277 (1986) 168

- Scalar form factor of the pion can be calculated by means of dispersion theory
- Result for the slope:

$$
\left\langle r^{2}\right\rangle_{s}=0.61 \pm 0.04 \mathrm{fm}^{2}
$$

Colangelo, Gasser, L., Nucl. Phys. 2001
\Rightarrow Corresponding value of the scale Λ_{4} :

$$
\wedge_{4}=1.26 \pm 0.14 \mathrm{GeV}
$$

16. Lattice results for M_{π}, F_{π}

A. Results for M_{π}

- Determine the scale \wedge_{3} by comparing the lattice results for M_{π} as function of m with the χ PT formula

$$
\begin{aligned}
& M_{\pi}^{2}=M^{2}-\frac{1}{2} \frac{M^{4}}{(4 \pi F)^{2}} \ln \frac{\wedge_{3}^{2}}{M^{2}}+O\left(M^{6}\right) \\
& M^{2} \equiv 2 B m
\end{aligned}
$$

lattice results for $\bar{\ell}_{3}$

Horizontal axis shows the value of $\bar{\ell}_{3} \equiv \ln \frac{\Lambda_{3}^{2}}{M_{\pi}^{2}}$
Range for Λ_{3} obtained in 1984 corresponds to $\bar{\ell}_{3}=2.9 \pm 2.4$
Result of RBC/UKQCD 2008:

$$
\bar{\ell}_{3}=3.13 \pm 0.33 \pm 0.24
$$

B. Results for F_{π}

$$
F_{\pi}=F\left\{1-\frac{M^{2}}{16 \pi^{2} F^{2}} \ln \frac{M^{2}}{\Lambda_{4}^{2}}+O\left(M^{4}\right)\right\}
$$

Horizontal axis shows the value of $\bar{\ell}_{4} \equiv \ln \frac{\Lambda_{4}^{2}}{M_{\pi}^{2}}$

- Lattice results beautifully confirm the prediction for the sensitivity of F_{π} to m_{u}, m_{d} :

$$
\frac{F_{\pi}}{F}=1.072 \pm 0.007
$$

Colangelo, Dürr 2004

17. $\pi \pi$ scattering

A. Low energy scattering of pions

- Consider scattering of pions with $\vec{p}=0$
- At $\vec{p}=0$, only the S -waves survive (angular momentum barrier). Moreover, these reduce to the scattering lengths
- Bose statistics: S-waves cannot have $I=1$, either have $I=0$ or $I=2$
\Rightarrow At $\vec{p}=0$, the $\pi \pi$ scattering amplitude is characterized by two constants: a_{0}^{0}, a_{0}^{2}
- Chiral symmetry suppresses the interaction at low energy: Nambu-Goldstone bosons of zero momentum do not interact
$\Rightarrow \quad a_{0}^{0}, a_{0}^{2}$ disappear in the limit $m_{u}, m_{d} \rightarrow 0$
$\Rightarrow \quad a_{0}^{0}, a_{0}^{2} \sim M_{\pi}^{2}$ measure symmetry breaking

B. Tree level of $\chi \mathbf{P T}$

- Low Energy theorem Weinberg 1966:

$$
\begin{aligned}
& a_{0}^{0}=\frac{7 M_{\pi}^{2}}{32 \pi F_{\pi}^{2}}+O\left(M_{\pi}^{4}\right) \\
& a_{0}^{2}=-\frac{M_{\pi}^{2}}{16 \pi F_{\pi}^{2}}+O\left(M_{\pi}^{4}\right)
\end{aligned}
$$

\Rightarrow Chiral symmetry predicts a_{0}^{0}, a_{0}^{2} in terms of F_{π}

- Accuracy is limited: Low energy theorem only specifies the first term in the expansion in powers of the quark masses
Corrections from higher orders ?

C. Scattering lengths at 1 loop

- Next term in the chiral perturbation series:

$$
a_{0}^{0}=\frac{7 M_{\pi}^{2}}{32 \pi F_{\pi}^{2}}\left\{1+\frac{9}{2} \frac{M_{\pi}^{2}}{\left(4 \pi F_{\pi}\right)^{2}} \ln \frac{\Lambda_{0}^{2}}{M_{\pi}^{2}}+O\left(M_{\pi}^{4}\right)\right\}
$$

- Coefficient of chiral logarithm unusually large Strong, attractive final state interaction
- Scale Λ_{0} is determined by the coupling constants of $\mathcal{L}_{\text {eff }}^{(4)}$:
$\frac{9}{2} \ln \frac{\Lambda_{0}^{2}}{M_{\pi}^{2}}=\frac{20}{21} \bar{\ell}_{1}+\frac{40}{21} \bar{\ell}_{2}-\frac{5}{14} \bar{\ell}_{3}+2 \bar{\ell}_{4}+\frac{5}{2}$
- Information about $\bar{\ell}_{1}, \ldots, \bar{\ell}_{4}$?

$$
\bar{\ell}_{1}, \bar{\ell}_{2} \Longleftrightarrow \begin{aligned}
& \text { momentum dependence } \\
& \text { of scattering amplitude }
\end{aligned}
$$

\Rightarrow Can be determined phenomenologically

$$
\bar{\ell}_{3}, \bar{\ell}_{4} \Longleftrightarrow \begin{aligned}
& \text { dependence of scattering } \\
& \text { amplitude on quark masses }
\end{aligned}
$$

Have discussed their values already

D. Numerical predictions from $\chi \mathbf{P T}$

Sizable corrections in a_{0}^{0}
a_{0}^{2} nearly stays put

E. Consequence of lattice results for ℓ_{3}, ℓ_{4}

- Uncertainty in prediction for a_{0}^{0}, a_{0}^{2} is dominated by the uncertainty in the effective coupling constants ℓ_{3}, ℓ_{4}
- Can make use of the lattice results for these

F. Experiments concerning a_{0}^{0}, a_{0}^{2}
- Production experiments $\pi N \rightarrow \pi \pi N$, $\psi \rightarrow \pi \pi \omega, B \rightarrow D \pi \pi, \ldots$

Problem: pions are not produced in vacuo
\Rightarrow Extraction of $\pi \pi$ scattering amplitude is not simple

Accuracy rather limited

- $K^{ \pm} \rightarrow \pi^{+} \pi^{-} e^{ \pm} \nu$ data:

CERN-Saclay, E865, NA48/2

- $K^{ \pm} \rightarrow \pi^{0} \pi^{0} \pi^{ \pm}, K^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}$: cusp near threshold, NA48/2
- $\pi^{+} \pi^{-}$atoms, DIRAC

G. Results from $K_{e 4}$ decay

$K^{ \pm} \rightarrow \pi^{+} \pi^{-} e^{ \pm} \nu$

- Allows clean measurement of $\delta_{0}^{0}-\delta_{1}^{1}$

Theory predicts $\delta_{0}^{0}-\delta_{1}^{1}$ as function of energy

Prediction: $a_{0}^{0}=0.220 \pm 0.005$

NA48/2: $a_{0}^{0}=0.2206 \pm \underset{\text { stat }}{0.0049} \pm \underset{\text { syst }}{0.0018} \pm \underset{\text { theo }}{0.0064}$
Bloch-Devaux, Chiral Dynamics 2009

- There was a discrepancy here, because a pronounced isospin breaking effect from

$$
K \rightarrow \pi^{0} \pi^{0} e \nu \rightarrow \pi^{+} \pi^{-} e \nu
$$

had not been accounted for in the data analysis
Colangelo, Gasser, Rusetsky 2007, Bloch-Devaux 2007

- The correction is not enormous, but matters: If a_{0}^{0} is determined from the uncorrected NA48 data, the central value comes out higher than the theoretical prediction by about 4 times the uncertainty attached to this prediction.

H. Summary for a_{0}^{0}, a_{0}^{2}

18. Conclusions for $\operatorname{SU}(2) \times \operatorname{SU}(2)$

- Expansion in powers of m_{u}, m_{d} yields a very accurate low energy representation of QCD
- Lattice results confirm the GMOR relation
$\Rightarrow M_{\pi}$ is dominated by the contribution from the quark condensate
\Rightarrow Energy gap of QCD is understood very well
- Lattice approach allows an accurate measurement of the effective coupling constant ℓ_{3} already now
- Even for ℓ_{4}, the lattice starts becoming competitive with dispersion theory

19. Expansion in powers of m_{s}

- Theoretical reasoning
- The eightfold way is an approximate symmetry
- The only (?) way to understand this within QCD: $m_{s}-m_{d}, m_{d}-m_{u}$ are small, can be treated as perturbations
- Since $m_{u}, m_{d} \ll m_{s}$
$\Rightarrow m_{s}$ can be treated as a perturbation
\Rightarrow Expect expansion in powers of m_{s} to work, but convergence to be comparatively slow
- This can now also be checked on the lattice
- Consider the limit $m_{u}, m_{d} \rightarrow 0, m_{s}$ physical - F is value of F_{π} in this limit - B is value of $M_{\pi}^{2} /\left(m_{u}+m_{d}\right)$ in this limit - Σ is value of $|\langle 0| \bar{u} u| 0\rangle \mid$ in this limit
- Exact relation: $\Sigma=F^{2} B$
- F_{0}, B_{0}, Σ_{0} : values for $m_{u}=m_{d}=m_{s}=0$
- $N_{c} \rightarrow \infty: F, B, \Sigma$ become independent of m_{s}

$$
F / F_{0} \rightarrow 1, B / B_{0} \rightarrow 1, \Sigma / \Sigma_{0} \rightarrow 1
$$

\Rightarrow The differences $F / F_{0}-1, B / B_{0}-1, \Sigma / \Sigma_{0}-1$ measure the violations of the OZI rule

A. Condensate

- PACS-CS indicates only modest OZI-violations - MILC and RBC/UKQCD allow juicy violations
\Rightarrow The lattice results do not yet allow to draw conclusions about the size of the OZI-violations in the quark condensate

B. Results for B, F

- F is the crucial factor in $\Sigma=F^{2} B$
- Picture for size of OZI-violations in B, F remains unclear
- Main problem: systematic uncertainties of the lattice calculations
- If the central value $F / F_{0}=1.23$ of RBC/UKQCD were confirmed within small uncertainties, we would be faced with a qualitative puzzle:
- F_{π} is the pion wave function at the origin
- F_{K} is larger because one of the two valence quarks is heavier \rightarrow moves more slowly \rightarrow wave function more narrow \rightarrow higher at the origin: $F_{K} / F_{\pi} \simeq 1.19$
- $F / F_{0}=1.23$ indicates that the wave function is more sensitive to the mass of the sea quarks than to the mass of the valence quarks ... very strange \rightarrow most interesting if true
- No such puzzle with the PACS-CS results

C. Expansion to NLO

Involves the effective coupling constants L_{4} and L_{6} of the $\mathrm{SU}(3) \times \mathrm{SU}(3)$ Lagrangian:

$$
\begin{aligned}
& F / F_{0}=1+\frac{8 \bar{M}_{K}^{2}}{F_{0}^{2}} L_{4}+\chi \log +\ldots \\
& \Sigma / \Sigma_{0}=1+\frac{32 \bar{M}_{K}^{2}}{F_{0}^{2}} L_{6}+\chi \log +\ldots \\
& B / B_{0}=1+\frac{16 \bar{M}_{K}^{2}}{F_{0}^{2}}\left(2 L_{6}-L_{4}\right)+\chi \log +\ldots
\end{aligned}
$$

\bar{M}_{K} is the kaon mass for $m_{u}=m_{d}=0$.
\Rightarrow The LECs L_{4} and L_{6} measure the deviations from the OZI-rule
D. Effective coupling constants $L_{4}, L_{5}, L_{6}, L_{8}$

Numerical values shown refer to running scale $\mu=M_{\rho}$
\Rightarrow For PACS-CS, only the statistical errors are indicated

- Latest lattice results for the OZI-violating coupling constants L_{4} and L_{6} are consistent with one another
- Indicate that the OZI-rule is well obeyed: values are close to zero
- For L_{5} and L_{8}, the lattice results are less clear

20. Conclusions for $\operatorname{SU}(3) \times \operatorname{SU}(3)$

- The crude estimates given 25 years ago for the LECs relevant at NLO are confirmed
\Rightarrow Expansion in powers of m_{s} appears to work: In all cases I know, where the calculation is under control, the truncation at low order yields a decent approximation
\Rightarrow The picture looks coherent, also for $\operatorname{SU}(3) \times \operatorname{SU}(3)$
- $m_{s} \gg m_{u}, m_{d} \Rightarrow$ higher orders more important
- For many observables \exists representation to NNLO
- Main problem: new LECs relevant at NNLO \exists estimates based on resonance models Vector meson dominance $\sqrt{ }$ Scalar meson dominance?
Dependence on m_{u}, m_{d}, m_{s} : scalar resonances
- Lattice results now start providing more precise values for the LECs, but the settling of dust is a slow process...

IV. Some recent results

21. Masses of the light quarks

- χ PT plays an important role in the analysis of lattice data: describes the dependence of the various observables on the quark masses and on the size of the box in terms of a few LECs

Results for quark mass ratios

$\frac{m_{s}}{m_{u d}}=27.8 \pm 1.0 \quad \frac{m_{u}}{m_{d}}=0.474 \pm 0.040$
FLAG 2010 (preliminary)

None of the lattice results is consistent with the "solution" $m_{u}=0$ of the strong CP problem

Comparison

22. $V_{u s}$ and $V_{u d}$

- Experimental sources for $V_{u s}$ and $V_{u d}$: superallowed nuclear β transitions

$$
\begin{gathered}
\left|V_{u d}\right| \\
\left|f_{+}(0) V_{u s}\right| \\
\left|V_{u d} F_{\pi}\right| \\
\left|V_{u s} F_{K}\right| \\
\left|V_{u s}\right|
\end{gathered}
$$

$\pi \rightarrow \ell \nu, \tau \rightarrow \pi \nu$
$K \rightarrow \ell \nu, \tau \rightarrow K \nu$
inclusive τ decays

- Vector current relevant for nuclear β decay is conserved modulo $m_{u}-m_{d}$
\Rightarrow analog of $f_{+}(0)$ is very close to unity
$\left|V_{u d}\right|=0.97425 \pm 0.00022 \quad$ Hardy + Towner 2009
- Can determine $V_{u s}$ from $K \rightarrow \pi \ell \nu$ only if $f_{+}(0)$ is known. Early determinations were based on χ PT prediction for that
- Lattice calculations now provide reliable and precise determination of $f_{+}(0) \Rightarrow\left|V_{u s}\right|$
- Results for F_{π}, F_{K} do not yet reach sufficient precision, but those for the ratio F_{K} / F_{π} do
$\Rightarrow \frac{V_{u s}}{V_{u d}}$ can be determined from $\frac{\Gamma(K \rightarrow \ell \nu)}{\Gamma(\pi \rightarrow \ell \nu)}$
\Rightarrow can test the Standard Model:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2} \stackrel{?}{=} 1
$$

$\left|V_{u b}\right|$ known well enough, contribution is tiny

- Testing the Standard Model with the lattice data alone

$$
\left|V_{u}\right|^{2} \equiv\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1.002 \pm 0.016
$$

- Lattice results for $V_{u d}$ are consistent with the value obtained from nuclear β-decay
\Rightarrow Test sharpens if the two are combined:

$$
\begin{array}{cc}
\left|V_{u}\right|^{2}=1.0000 \pm 0.0007 & f_{+}(0)+V_{u d} \\
\left|V_{u}\right|^{2}=0.9999 \pm 0.0007 & F_{K} / F_{\pi}+V_{u d} \\
& \Uparrow \Uparrow \Uparrow \\
& \text { Lattice } \beta \text {-decay }
\end{array}
$$

\Rightarrow Can impose $\left|V_{u}\right|^{2}=1$ as a constraint (SM)

	$\left\|V_{u s}\right\|$	$\left\|V_{u d}\right\|$	$f_{+}(0)$	f_{K} / f_{π}
Lattice	$0.225(2)$	$0.9743(4)$	$0.960(8)$	$1.193(11)$
β decay	$0.225(1)$	$0.9743(2)$	$0.960(5)$	$1.192(6)$

FLAG review 2010 (preliminary)

- Direct determination of $\left|V_{u s}\right|$ from τ decay: Sort out the final states in the inclusive decay $\tau \rightarrow \nu+$ hadrons:
$\Gamma=\Gamma(\tau \rightarrow \nu+$ strange hadrons $)+$ rest
First term dominated by $\left|V_{u s}\right|^{2}$, rest by $\left|V_{u d}\right|^{2}$

Gamiz, Jamin, Pich, Prades, Schwab Maltman, Wolfe, Banerjee, Nugent, Roney

Data on $\left|V_{u s}\right|$ and $\left|V_{u d}\right|$ analyzed within the SM:

23. Concluding remarks

- These lectures focused on the low energy properties of the sector with zero baryon number: $N_{B}=\frac{1}{3}\left(N_{u}+N_{d}+N_{s}+N_{c}+N_{b}+N_{t}\right)=0$. Moreover, only states with $N_{c}=N_{b}=N_{t}=0$ were discussed.
- There is considerable progress in extending χ PT to the sector with $N_{B}=1$, as well as to nuclei, where $N_{B}=2,3 \ldots$

Hint: ask Prof. Scherer for a course on these developments

- Effective theory for heavy quark bound states
- Mesons with a heavy and a light quark
- Extension from QCD to QCD + QED

- Puzzle in $K \rightarrow \pi \mu \nu$

Plot shows normalized scalar form factor $\bar{f}_{0}(t)=\frac{f_{0}(t)}{f_{0}(0)}$

- History of the issue: data on the slope of the scalar form factor

$$
f_{0}(t)=f_{0}(0)\left\{1+\lambda_{0} t+\lambda_{0}^{\prime} t^{2}+O\left(t^{3}\right)\right\}
$$

$$
\lambda_{0} \text { in units of } 10^{-3} \mathrm{M}_{\pi}^{-2}
$$

- Extend χ PT with dispersion theory

Example: form factors relevant for $K \rightarrow \pi \ell \nu$ $f_{0}(t)=f_{0}(0)\left\{1+\lambda_{0} t+\lambda_{0}^{\prime} t^{2}+\ldots\right\}$ χ PT: $\lambda_{0} \leftrightarrow$ NLO, $\lambda_{0}^{\prime} \leftrightarrow$ NNLO

Dispersion theory implies very strong correlation between λ_{0} and λ_{0}^{\prime}

Abbas, Ananthanarayan, Caprini, Imsong 2010

- Dispersive analysis of $\pi \pi$ and πK scattering, $\eta \rightarrow 3 \pi, \ldots$

If time permits, I can explain how dispersion theory can be used to extend the $\chi \mathrm{PT}$ result for the $\pi \pi$ scattering lengths to a model-independent prediction for mass and width of the σ meson

Exercises

1. Evaluate the positive frequency part of the massless propagator

$$
\Delta^{+}(z, 0)=\frac{i}{(2 \pi)^{3}} \int \frac{d^{3} k}{2 k^{0}} e^{-i k z}, \quad k^{0}=|\vec{k}|
$$

for $\operatorname{Im} z^{0}<0$. Show that the result can be represented as

$$
\Delta^{+}(z, 0)=\frac{1}{4 \pi i z^{2}}
$$

2. Evaluate the d-dimensional propagator

$$
\Delta(z, M)=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{e^{-i k z}}{M^{2}-k^{2}-i \epsilon}
$$

at the origin and verify the representation

$$
\Delta(0, M)=\frac{i}{4 \pi} \Gamma\left(1-\frac{d}{2}\right)\left(\frac{M^{2}}{4 \pi}\right)^{\frac{d}{2}-1}
$$

How does this expression behave when $d \rightarrow 4$?
3. Leading order effective Lagrangian:

$$
\begin{aligned}
\mathcal{L}^{(2)} & =\frac{F^{2}}{4}\left\langle D_{\mu} U D^{\mu} U^{\dagger}+\chi U^{\dagger}+U \chi^{\dagger}\right\rangle+h_{0} D_{\mu} \theta D^{\mu} \theta \\
D_{\mu} U & =\partial_{\mu} U-i\left(v_{\mu}+a_{\mu}\right) U+i U\left(v_{\mu}-a_{\mu}\right) \\
\chi & =2 B(s+i p) \\
D_{\mu} \theta & =\partial_{\mu} \theta+2\left\langle a_{\mu}\right\rangle \\
\langle X\rangle & =\operatorname{tr} X
\end{aligned}
$$

- Take the space-time independent part of the external field $s(x)$ to be isospin symmetric (i. e. set $m_{u}=m_{d}=m$):

$$
s(x)=m \mathbf{1}+\tilde{s}(x)
$$

- Expand $U=\exp i \phi / F$ in powers of $\phi=\vec{\phi} \cdot \vec{\tau}$ and check that, in this normalization of the field ϕ, the kinetic part takes the standard form

$$
\mathcal{L}^{(2)}=\frac{1}{2} \partial_{\mu} \vec{\phi} \cdot \partial^{\mu} \vec{\phi}-\frac{1}{2} M^{2} \vec{\phi}^{2}+\ldots
$$

with $M^{2}=2 m B$.

- Draw the graphs for all of the interaction vertices containing up to four of the fields $\phi, v_{\mu}, a_{\mu}, \tilde{s}, p, \theta$.

4. Show that the classical field theory belonging to the QCD Lagrangian in the presence of external fields is invariant under

$$
\begin{aligned}
v_{\mu}^{\prime}+a_{\mu}^{\prime} & =V_{\mathrm{R}}\left(v_{\mu}+a_{\mu}\right) V_{\mathrm{R}}^{\dagger}-i \partial_{\mu} V_{\mathrm{R}} V_{\mathrm{R}}^{\dagger} \\
v_{\mu}^{\prime}-a_{\mu}^{\prime} & =V_{\mathrm{L}}\left(v_{\mu}-a_{\mu}\right) V_{\mathrm{L}}^{\dagger}-i \partial_{\mu} V_{\mathrm{L}} V_{\mathrm{L}}^{\dagger} \\
s^{\prime}+i p^{\prime} & =V_{\mathrm{R}}(s+i p) V_{\mathrm{L}}^{\dagger} \\
q_{\mathrm{R}}^{\prime} & =V_{\mathrm{R}} q_{\mathrm{R}}(x) \\
q_{\mathrm{L}}^{\prime} & =V_{\mathrm{L}} q_{\mathrm{L}}
\end{aligned}
$$

where $V_{\mathrm{R}}, V_{\mathrm{L}}$ are space-time dependent elements of $\mathrm{U}(3)$.
5. Evaluate the pion mass to NLO of $\chi \mathrm{PT}$. Draw the relevant graphs and verify the representation

$$
M_{\pi}^{2}=M^{2}+\frac{2 \ell_{3} M^{4}}{F^{2}}+\frac{M^{2}}{2 F^{2}} \frac{1}{i} \Delta\left(0, M^{2}\right)+O\left(M^{6}\right)
$$

6. Start from the symmetry property of the effective action,

$$
S_{\mathrm{QCD}}\left\{v^{\prime}, a^{\prime}, s^{\prime}, p^{\prime}, \theta^{\prime}\right\}=S_{\mathrm{QCD}}\{v, a, s, p, \theta\}-\int d x\langle\beta \Omega\rangle,
$$

and show that this relation in particular implies the Ward identity

$$
\begin{aligned}
& \partial_{\mu}^{x}\langle 0| T A_{a}^{\mu}(x) P_{b}(y)|0\rangle=-\frac{1}{4} i \delta(x-y)\langle 0| \bar{q}\left\{\lambda_{a}, \lambda_{b}\right\} q|0\rangle \\
&+\langle 0| T \bar{q}(x) i \gamma_{5}\left\{m, \frac{1}{2} \lambda_{a}\right\} q(x) P_{b}(y)|0\rangle \\
& a=1, \ldots, 8, b= 0, \ldots, 8
\end{aligned}
$$

7. What is the Ward identity obeyed by the singlet axial current,

$$
\partial_{\mu}^{x}\langle 0| T A_{0}^{\mu}(x) P_{b}(y)|0\rangle=?
$$

