
DIRAC 2001-02March 14, 2001Muon identi�cation in DIRAC experimentV. Brekhovskikh], M. V. Gallas[] Protvino IHEP, [ CERNAbstractThe �-identi�cation problem in DIRAC spectrometer is studied. Description andresults of muon �nder procedure are shown and the needed input-output variables es-tablished. As a result of these studies some \experimental" constants should be addedto detector.dat �le in order to get a better description of muon detector placementby correction of survey geometry data. Acceptable time and spatial coordinates cutsfor \muon-signal" de�nition are also proposed. Finally some physical consequences ofmuon extraction are presented.The goal of �-identi�cation in DIRAC experiment [1] is to clean the �+�� triggerdata sample and remove those events in which a muon instead of a pion is detected. Ofcourse, the way to do this is a selective way; this means that muon label is associatedto reconstructed tracks and the events should be accepted as good �+�� if there are atleast two tracks (positive and negative) without muon label. Events with multiplicityhigher than 1+1 can be saved even though there is a muon signal for one of these tracks.This and the o�-line de�nition of \muon signal" are the advantages of the o�-line muonsubtraction with respect to an on-line muon trigger used as a veto.For �-identi�cation purpose a muon detector (Mu) was installed at the end of DIRACtwo arm spectrometer. Two scintillation counter layers per arm, behind iron absorber,and the associated electronics (CFD+Meantimer+TDC) detect muons from pion decaysthat cross the iron absorber. Apart from Mu data, preshower detector (Prsh) could alsohelp in the muon track identi�cation. Because there is no way to reconstruct tracks afterdrift chambers (DC), Prsh detector must be used to ensure that the particle associatedwith a reconstructed track reaches the iron absorber. After that if a muon hit is detectedin proper spatial, x, and time, t, coordinates the muon nature of the reconstructed trackis feasible 1Muon and preshower data were not used at all during the 1999 data-processing andfor the 2000 data-processing the raw data should be prepared. Preshower data come fromthe 16 individual ADC-channels and 16 time-channels; amplitude and time alignment isnot done for 2000-data although these data can be used to check that hit in the expectedpreshower slab is present; further constraints in ADC and time information are not possibleunless data will be prepared. The muon time alignment was performed for a subset of1The iron absorber for muon detector was designed in order to minimize the admixture of muons in piondata and the rejected pions, identi�ed like muons, are around 2� 3% (V.Yazkov, private communication).1



2000-data 2 and this allows us to use time criteria (base on a good time resolution of Mudetector) in parallel with x-coordinate criteria to de�ne \muon-signal". Concerning to1999-data the muon identi�cation is hard because at that run period the muon detectorsu�ered from a huge background and the collected data came not from TDC but fromregisters L2366 (two muon-slabs per channel). Only in 2000 year, after introduction ofsecond muon layer, meantimer and TDC electronics [2], it is possible to make a reasonablemuon identi�cation for which the preliminary results[3] showed a 10% reduction of theinitial �+�� trigger data sample after subtraction of ��, ��, and �� events.1 The muon �nder procedureThe way to identify muon tracks has the following steps:� For each reconstructed track at the level of DC chambers it is needed to extrapolateit to the z-coordinate of Prsh and Mu detector planes and obtain the coordinates(x0; y0; z0) of the track intersection point with these detector planes in local referencesystem given by MoPlanesToTLN ARIANE subroutine.� After this, the procedure should scan over all muon hits (\good time" information isrequired) looking for a hit slab in the appropriate spectrometer arm and center slabposition, x0centerslab, \close enough" to the coordinate of track intersection point3, x0tr. Of course the studied track should be in the acceptance of Prsh and Mu detectors.� Once a muon hit is associated with a track, Prsh information could also be used toensure that at least the particle reached the iron absorber and the muon hit slabwas not originated by a coincidence of a DC track and background hit coming fromthe downstream wall. To use Prsh it is needed to follow the same strategy as usedin the previous step.Input data to PrshMuFinder(XyzTr,IsaMuon) subroutine are the (x; y; z) coordinatesof two points of a DC-track in secondary reference system. The real input arrayXyzTr(3; 2)is enough to establish arm and muon characteristic of the track. As an example one canuse ParTrDC(3; 2; nTr; nArm) variables from TmTrxDC common block as input data.The output is given by the integer vector IsaMuon(2) in which the �rst number is themuon hit slab associated with the track de�ned by XyzTr(3; 2) and the second num-ber corresponds to the Prsh hit slab. Internally, the PrshMuFinder(XyzTr,IsaMuon) callstoMuFinder(XyzTr,FoundHitSlabMu) and PrshFinder(XyzTr,FoundHitSlabPrsh) subrou-tines to �nd the hit-track correspondence in Mu and Prsh detectors, in this way they canbe used independently for other purposes in ARIANE. The output variables: FoundHit-SlabPrsh, FoundHitSlabMu and IsaMuon(2) can be 0, positive or negative integer numbers.The 0 value means that was not found any time hit in the arm corresponding to the ana-lyzed track. Positive numbers correspond to the number of slab hit by the track. Negative2The analysis presented in this report is based on � 35million events of mix-trigger 2000-data from runnumber 2454 to 2523.3\good time" information and \close enough" x-coordinate are concepts that will be de�ned latter andwill be adjustable by the users 2



numbers could appear if there is a time hit in the apropriatte arm but time and spatialcriteria are not satis�ed and then the hit does not match with the track.As has been mentioned, the muon �nder procedure involves cuts in time and x0 co-ordinate to de�ne \muon signal" and reject \muon background" hits. These cuts will bemade available to the muon �nder procedure through the appropriate FFreadInput cards:DtwindowMusignal and DxwindowMusignal. After muon time alignment the user can de-�ne a window [�DtwindowMusignal;DtwindowMusignal] in such a way that time of\muon signal" must be in this interval. In a similar manner it is possible to play with x0trcoordinate and de�ne \muon signal" only if jx0centerslab�x0trj � DxwindowMusignal; butDxwindowMusignal can not be half of muon slab width due to huge multiple scatteringinside iron absorber.Multiple scattering and tracks that cross two slabs in Prsh have been also introducedin the muon �nder algorithm. In those situations in which the track hit a Prsh slab in aslice of xslicePrsh cm next to slab edge and time information was not found in this slabthe algorithm looks for a hit in the appropriate adjacent slab. The variable xslicePrshwill be made also available through FFreadInput card and the value xslicePrsh = 3 cmis enough to remove the Prsh-slab granularity in (x0tr; y0tr) coordinates projection at Mu zplane (see �gure 12).2 Muon data2.1 Muon time alignmentFor a subset (� up to 2550) of 2000-runs a time alignment of 28 � 2 TDC L3377 timedata channels was done. As a result all the Mu-time channels are now centered at zeroand this means that particles with time zero are \in time" with the corresponding hit invertical hodoscopes (VH).Individual slab time hit distributions can be �tted to a gaussian and uniform back-ground; the sigma per slab plotted for each muon arm as is shown in �gures 1 and 2.

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25
Muon slab number (Arm 1)

Si
gm

a t
im

e  
hi

t d
ist

rib
ut

ion
 (n

s)

Figure 1: Sigma of time hit distribution permuon slab in arm one after alignment pro-cedure. 0
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Figure 2: Sigma of time hit distribution permuon slab in arm two after alignment pro-cedure.3



Apart from the not clear slab structure, all slabs have a more or less acceptable timeresolution (intrinsic TDC resolution is 0.5 ns).The overall time resolution and background contamination can be extracted fromthe �gures 3 and 4, individual slab time hit distributions were added and �tted to agaussian plus a uniform background. The baseline spurious hits could contribute to a\false muon" identi�cation in a proportion less than 1:5% for Arm1 and 2% for Arm 2 inthe interval [�5;+5]ns. The non gaussian part of the distribution can be cut if we setDtwindowMusignal = 4:0ns instead of DtwindowMusignal = 5:0ns.
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it is possible to observe some trends related with iron thickness. These steps coincide withMu slabs numbers 6; 13; 18; 25, and are also visible in the Mu hit distributions (�gure 10).
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Figure 7: (x0tr � x0expcenterslab) sigma distributions per Mu slab, Arm1 and Arm2.
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2.2.1 Muon slabs placementApart from the time, muon alignment data was also needed to correct geometrical data indetector.dat in order to describe better the Mu center slab position. From a data sampleof \good pair"events with 1 + 1 tracks and only one Mu hit per arm, the x0tr coordinatedistribution per hit slab was �tted to a gaussian and the mean value taken as a center hitslab position. The di�erences x0expcenterslab�x0centerslab will be stored in the new detector.dat�le, where x0centerslab values are stored by mean of x0slab1 and pitch ofMu detector (12:1 cm).Experimental values are displayed in �gure 9.
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Figure 9: Di�erences x0expcenterslab�x0centerslab and experimental pitch values for all Mu slabs.Another improvement that should be included in detector.dat concerns theMu sensitivearea. Mu sensitive area was slightly increased in the x0 direction to take in account themultiple scattering e�ect (3:92 cm in the outer part and 5:12 cm in the inner side).3 Preshower dataPrsh data was not used for the present A2�-data processing and the ADC and TDC infor-mation still remains as pure raw data. This data could induce a better muon identi�cationso far amplitude and time are not aligned, Prsh comes to muon �nder procedure in a softway: only a presence of a time hit in proper slab is checked, no matter if time and am-plitude are good. To outline two problems that should be also investigated: Prsh exhibitsa central y0 coordinate ine�ciency probably due to Cherenkov (Ch) internal support andthe amplitude spectra for pions shows a long tail compatible with electron signal.4 Some results and physical considerationsAs has been mentioned in section 2.2 the step thickness in iron absorber is visible inMu hit distributions. Figure 10 shows Mu hit distributions for raw-data (crosses) and �-candidates (solid line) by PrshMuFinder routine. The ratio between both informs aboutthe \muon background" that was removed by muon �nder procedure; inner and outer8



muon slabs are the most a�ected. Five trends limited by slabs 6; 13; 18; 25 are present inMu hit distributions and coincide with di�erent thicknesses of iron absorber. This pointshould be taken into account in the on-line tuning job of Mu detector.
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5 ConclusionsA procedure for muon identi�cation has been developed and it is available in standardARIANE. The \muon signal" criteria can be easily modify in the FFReadInput �leand with the proposed cuts for \muon signal" de�nition (DtwindowMusignal = 5ns,DxwindowMusignal = 18 cm) the data reduction is � 7%. The lost of pion events couldbe estimated in 2� 3% of the rejected muons due to Mu detector design and 3� 4% dueto background and false muon identi�cation.References[1] B.Adeva et al., Lifetime measurement of �+�� atoms to test low energy QCD predic-tions, (Proposal to the SPSLC, CERN/SPSLC 95{1, SPSLC/P 284, Geneva 1995)[2] V. Brekhovskikh, \Status of Muon Detector",DIRAC collaboration meeting, June2000.[3] V. Brekhovskikh, M. Gallas, \The �-identi�cation", DIRAC collaboration meeting,November 2000.
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