Status report of the DIRAC experiment (PS 212)

L. Nemenov

SPS Committee, April 9, 2013

DIRAC collaboration

Contents

- **1.** Long-lived $\pi^+\pi^-$ atoms: status of data obtained in 2011 and 2012.
- 2. Multiple scattering measurements.
- 3. The new ionization hodoscope.
- 4. DIRAC dismantling.
- 5. Status and schedule of $\pi^+\pi^-$ atom analysis (runs 2008-2010).
- 6. Status and schedule of $K^+\pi^-$, $K^-\pi^+$ atom analysis (runs 2008-2010).
- **7.** Atoms consisting of K^+K^- .

8. Generation of $K^+\pi^-$, $K^-\pi^+$ and $\pi^+\pi^-$ atoms in p-nuclear interaction at proton beam momentum 24 GeV/c and 450 GeV/c.

Experimental setup

Target station with Ni foil; 2 First shielding; 3 Micro Drift Chambers;
 4 Scintillating Fiber Detector; 5 Ionization Hodoscope; 6 Second Shielding;
 7 Vacuum Tube; 8 Spectrometer Magnet; 9 Vacuum Chamber; 10 Drift
 Chambers; 11 Vertical Hodoscope; 12 Horizontal Hodoscope; 13 Aerogel
 Čerenkov; 14 Heavy Gas Čerenkov; 15 Nitrogen Čerenkov; 16 Preshower;
 17 Muon Detector

Long-lived $\pi^+\pi$ atoms

The observation of $\pi\pi$ atom long-lived states opens the future possibility to measure the energy difference between *ns* and *np* states $\Delta E(ns-np)$ and the value of $\pi\pi$ scattering lengths $|2a_0+a_2|$.

If a resonance method can be applied for the $\triangle E(ns-np)$ measurement, then the precision of $\pi\pi$ scattering length measurement can be improved by one order of magnitude relative to the precision of other methods.

Method for observing long-lived $A_{2\pi}$ with breakup Pt foil **Magnetic Field** Be target 100 µm Pt foil 2 µm Atomic, Coulomb and Non-Coulomb pairs 24 GeV/c $\Delta, \rho, \omega, \eta, \eta'$. π Interaction point Excitation lonization π^+ 24 GeV/c Atomic pairs Interaction point

l(2p) = 5.7 cm, l(3p) = 19 cm, l(4p) = 44 cm, l(5p) = 87 cm

Magnet was designed & constructed in CERN (TE/MCS/MNC)

- 1- PM block Sm2Co17
- 2- PM block Sm2Co17
- **3- Pole AISI 1010**
- 4- Return yoke AISI 1010

Integrated horizontal field homogeneity inside the GFR X x Y = 20 mm x 30 mm: Δ [Bxdz/ [Bx(0,0,z)dz [%]

Horizontal field distribution along z-axis at X=Y=0 mm [Bx(0,0,z)dz = 24.6x10⁻³ [Txm]

Simulation of long-lived $A_{2\pi}$ observation

V. Yazkov

Without magnet

With magnet after Be target

Simulated distribution of $\pi^+\pi^-$ pairs over Q_Y with criteria: $|Q_X| < 1$ MeV/c, $|Q_L| < 1$ MeV/c. Atomic pairs from long-lived atoms (light area) above background (hatched area) produced in Beryllium target.

Q_Y distribution for e⁺e⁻ pair

Magnetic field stability measured by Q_Y of the e⁺e⁻ pair

Sm₂Co₁₇

$$\frac{\Delta Q_Y}{Q_Y} = 0.26\%$$

Degradation of the old magnet in June-August 2011

The position of the second peak in Q_Y distributions of e^+e^- pairs versus dates.

Schedule of 2011 and 2012 runs data process and analysis

Run 2011 ntuples are ready.

Run 2012 ntuples will be ready in June 2013.

Preliminary results on the search for long-lived $\pi\pi$ atoms are planned for January 2014.

The expected atomic pair signal should be better than 6 σ .

$\pi^+\pi^-$ data

Statistics for the measurement of $|a_0-a_2|$ scattering length difference and expected precision

Year	n _A	δ _{stat} (%)	$\Delta_{\rm syst}$ (%)	δ _{syst} (%)Μ S	δ _{tot} (%)
2001-2003	21000	3.1	3.0	2.5	4.3
2008-2010*	23000	3.1	3.0	2.5	4.3
2001-2003 2008-2010	44000	2.2	3.0 2.1	2.5 1.25	3.7 3.0

* There is 30% of the data with a higher background whose implication will be investigated.

Reconstructed and simulated (blue) MS distributions

Run 2011. Analysis of multiple scattering in Ni (100 μ m). Only events with one track in each projection were analyzed. $\delta\theta/\theta \sim 0.7$ %. After including in the analysis of all available events the statistics will be doubled and the expected value will be less than 0.5 %.

New dE/dx counter

Scintillator plane for new IH

New dE/dx counter

Counter needed to separate the single minimum-ionizing particles (MIPs) and DIRAC pairs (2 MIPs with very small distances).

Required to

• Give constant pulse-height independently of the hit position (Landau tail effect can be removed using multiple laters) with a good resolution,

- Works as a front-end detector accepting about 3 x 10⁷ particles/s on a 10 x 10 cm² plane,
- Have a good timing resolution.

Solution: Use of

- 32 scintillator slabs with width: 3.5 mm and thickness: 2 mm, read-out from 2 ends,
- Read-out with flexible 28 clear fibres attached to each end of a slab,
- PMT with a ultra bialkali photocathode (Hamamatsu H6568Mod III),
- F1-TDC-ADC to record timing and pulse-height of each hit.

DIRAC dismantling

February 2013

Arpil 2013

Method of $\pi\pi$ and $K\pi$ atom observation and investigation

Coulomb pairs and atoms

For charged pairs from short-lived sources and with small relative momentum Q there is a strong Coulomb attraction in the final state. This interaction increases the production yield of the free pairs with Q decreasing and also creates atoms.

There is a precise ratio between the number of produced Coulomb pairs (N_C) with small Q and the number of atoms (N_A) produced simultaneously with these Coulomb pairs:

$$N_{A} = K(Q_{0})N_{C}(Q \le Q_{0}), \frac{\delta K(Q_{0})}{K(Q_{0})} \le 10^{-2}$$

 n_A ... atomic pairs number: $P_{br} = \frac{n_A}{N_A}$

Break-up dependencies P_{br} from atoms lifetime for $K^{+}\pi^{-}$ atom $(A_{K\pi})$ and $K^{-}\pi^{+}$ atom $(A_{\pi K})$

Probability of breakup as a function of lifetime in the ground state for $A_{\pi K}$ (solid line) and $A_{K\pi}$ atoms (dashed line) in the Ni target of thickness 108 μ m. Average momentum of $A_{K\pi}$ and $A_{\pi K}$ are 6.4 GeV/c and 6.5 GeV/c, accordingly.

Mechanism of production of false pairs with small \boldsymbol{Q}_{T}

Distribution of $\pi^+\pi^-$ pairs without Coulomb peak (Q_L>10 MeV/c) over distance between tracks in X-plane of SFD

π⁺π⁻ atoms, run 2008

Run 2008, statistics with low and medium background (2/3 of all statistics). Point-like production of all particles.

π⁺π⁻ atoms, run 2009

Run 2009, statistics with low and medium background (2/3 of all statistics). Point-like production of all particles.

π⁺π⁻ atoms, run 2010

Run 2010, statistics with low and medium background (2/3 of all statistics). Point-like production of all particles.

π⁺π⁻ atoms, run 2008-2010

Run 2008-2010, statistics with low and medium background (2/3 of all statistics). Point-like production of all particles.

$\pi^+\pi^-$ pair analysis

	2008	2009	2010
$N_A(Q_L)$	12480±120	19640±150	19160±160
$N_A(Q_L-Q_T)$	12600±110	19860±140	19360±140
n _A (Q _L)	5680±330	8700±400	8480±400
$n_A(Q_L-Q_T)$	5330±220	6700±270	6420±270
P _{br} (Q _L)	0.455±0.030	0.443±0.023	0.443±0.023
$\mathbf{P}_{br}(\mathbf{Q}_{L}-\mathbf{Q}_{T})$	0.423±0.020	0.337±0.015	0.331±0.016

$P_{br}(2001-2003)=0.446\pm0.0093$

π^+K^- atoms, run 2008

Run 2008, statistics with low and medium background (2/3 of all statistics). Point-like production of all particles.

π⁺K⁻ atoms, run 2008-2010

Run 2008-2010, statistics with low and medium background (2/3 of all statistics). Point-like production of all particles.

$K^+\pi^-$ atoms, run 2010

Run 2010, statistics with low and medium background (2/3 of all statistics). Point-like production of all particles.

K⁺π⁻ atoms, run 2009-2010

Run 2009-2010, statistics with low and medium background (2/3 of all statistics). Point-like production of all particles.

π^+K^- and $K^+\pi^-$ pair analysis

	π ⁺ K ⁻ pairs 2008-2010	K ⁺ π ⁻ pairs 2009-2010				
$N_A(Q_L)$	200±24	390±40				
$N_A(Q_L-Q_T)$	200±20	400±33				
n _A (Q _L)	53±37	33±53				
$n_A(Q_L-Q_T)$	65±25	10±34				
P _{br} (Q _L)	0.27±0.20	0.089±0.150				
$P_{br}(Q_L - Q_T)$	0.33±0.15	0.026±0.089				
$n_A(Q_L) (sum) = 86 \pm 65$						
$P_{br}^{theor} = 0.278 \pm \frac{0.012}{0.011}$						

2010 data: distribution of pairs on (t₊+t₋)/2 for P=(1800, 2000) MeV/c

Mom. inter. [MeV/c]	K^+	$\operatorname{sse}(K^+)$	K^{-}	$\operatorname{sse}(K^{-})$	K^+K^-	$\operatorname{sse}(K^+K^-)$
1000-1200	75	± 9	40	± 6	-	-
1200-1400	2032	± 64	1308	± 51	522	± 23
1400-1600	4546	± 95	3628	± 85	1884	± 61
1600-1800	6314	± 112	5450	± 104	2101	± 65
1800-2000	-	-	-	-	2068	± 64

 $\operatorname{sse}(K^+)$...standard statistic error for K^+

 $\operatorname{sse}(K^{-})$...standard statistic error for K^{-}

 $sse(K^+K^-)$...standard statistic error for K^+K^- pairs

Total number of K^+K^- pairs in low momenta is 6575.

Mom. intervals [MeV/c]	$p\bar{p}$	$\operatorname{error}_{p\bar{p}}$	ratio [%]	$\mathrm{error}_{\mathrm{ratio}}$	K^+K^- pairs	$\operatorname{error}_{K^+K^-}$
3000-3200	85	± 14	0.33	± 0.18	1366	± 105
3200-3400	116	± 17	0.56	± 0.16	830	± 86
3400-3600	96	± 17	0.73	± 0.19	709	± 69
3600-3800	88	± 15	0.99	± 0.18	326	± 52

ratio...ratio between $p\bar{p}$ and $\pi^+\pi^-$ pairs error_{$p\bar{p}$}...error of fit for $p\bar{p}$ pairs error_{ratio}...error for the $p\bar{p}$ and $\pi^+\pi^-$ pair ratio error_{K^+K^-}...error of fit for K^+K^- pairs

> Total number of K^+K^- pairs in high momenta is 3231. The sum of low and high energy kaon pairs is 9806.

Coulomb pairs and atoms

For charged pairs from short-lived sources and with small relative momentum Q there is a strong Coulomb attraction in the final state. This interaction increases the production yield of the free pairs with Q decreasing and also creates atoms.

There is a precise ratio between the number of produced Coulomb pairs (N_C) with small Q and the number of atoms (N_A) produced simultaneously with these Coulomb pairs:

$$N_{A} = K(Q_{0})N_{C}(Q \le Q_{0}), \frac{\delta K(Q_{0})}{K(Q_{0})} \le 10^{-2}$$

 n_A ... atomic pairs number: $P_{br} = \frac{n_A}{N_A}$

K⁺K⁻ atom and its lifetime

Properties of the K^+K^- atom (kaonium or A_{2K}):

 $a_{B} = [\alpha m_{K}/2]^{-1} = 109.6 \text{ fm}$... Bohr radius $|E_{1s}| = \alpha^{2} m_{K}/4 = 6.57 \text{ keV}$... binding energy $\tau(A_{2K}) \approx [\Gamma(A_{2K})]^{-1} = \int \dots$ lifetime

The lifetime for the kaonium decay into 2 pions is strongly reduced by the presence of strong interaction (OBE, scalar meson f_0 and a_0).

	τ (A _{2K} → ππ,πη)	K ⁺ K ⁻ interaction
ction ty	1.2×10 ⁻¹⁶ s	Coulomb-bound
intera	3.2×10 ⁻¹⁸ s	+ one-boson exchange (OBE)
-X ⁺ K ⁻	1.1×10 ⁻¹⁸ s	+ f_0' (I=0) + $\pi\eta$ -channel (I=1)

Ref.: S. Wycech, A.M. Green, Nucl. Phys. A562 (1993), 446;
S. Krewald, R. Lemmer, F.P. Sasson, Phys. Rev. D69 (2004), 016003.

$A_{2\pi}$ and $A_{\pi K}$ production

$$\frac{d\sigma_{nlm}^{A}}{d\vec{P}_{A}} = (2\pi)^{3} \frac{E}{M} \left| \psi_{nlm}^{(C)}(0) \right|^{2} \frac{d\sigma_{s}^{0}}{d\vec{p}_{1}d\vec{p}_{2}} \right|_{\vec{v}_{1}=\vec{v}_{2}} \propto \frac{d\sigma}{d\vec{p}_{1}} \cdot \frac{d\sigma}{d\vec{p}_{2}} \cdot R(\vec{p}_{1},\vec{p}_{2};s)$$

$$\vec{P}_A = \vec{p}_1 + \vec{p}_2$$

for atoms $\vec{v_1} = \vec{v_2}$ where $\vec{v_1}, \vec{v_2}$ - velocities of particles in the L.S. for all types of atoms

for $A_{2\pi}$ production $\vec{p}_1 = \vec{p}_2$ for $A_{\pi K}$ production $\vec{p}_{\pi} = \frac{m_{\pi}}{m_K} \vec{p}_K$

 $R(\vec{p}_1, \vec{p}_2; s)$ - correlation function

Yield of $A_{2\pi}$ per one p-Ni interaction

Yield of $A_{2\pi}$ dependence as a function of the atoms angle production and momentum in L. S. Bin = 15 MeV/c.

Yield of $A_{K\pi}$ per one p-Ni interaction

Yield of $A_{K\pi}$ dependence as a function of the atoms angle production and momentum in L. S. Bin = 9.6 MeV/c.

Yield of $A_{\pi K}$ per one p-Ni interaction

Yield of $A_{\pi K}$ dependence as a function of the atoms angle production and momentum in L. S. Bin = 9.6 MeV/c.

Thank you for your attention!

Experimental conditions (run 2008-2010)

Primary proton beam	24 GeV/c
Beam intensity	(10.5÷12)·10 ¹⁰ proton/spill
Single count of one IH plane	(5÷6)·10 ⁶ particle/spill
Spill duration	450 ms

Ni target					
Purity	99.98%				
Target thickness (year)	98±1 μm (2008)	108 ±1 μm (2009-2010)			
Radiation thickness	6.7·10 ⁻³ X ₀	$7.4 \cdot 10^{-3} X_0$			
Probability of inelastic proton interaction	6.4·10 ⁻⁴	7.1·10 ⁻⁴			

Experimental conditions

Secondary particles channel (relative to the proton beam)	5.7°
Angular divergence in vertical and horizontal planes	±1°
Solid angle	1.2•10 ⁻³ sr
Dipole magnet	$B_{max} = 1.65 \text{ T}, \text{BL} = 2.2 \text{ Tm}$

Time resolution [ps]								
	VH	IH					SFD	
plane	1	1	2	3	4	X	Y	W
2008	112	713	728	718	798	379	508	518
2010	113	907	987	997	1037	382	517	527

Experimental conditions

SFD								
(Coordinate precision	$\sigma_{\rm X}$ = 60 µm	$\sigma_{\rm X} = 60 \ \mu {\rm m}$		$\sigma_{\rm Y} = 60 \ \mu {\rm m}$		$\sigma_{\rm W}$ = 120 μ m	
]	Fime precision	$\sigma^t_X = 380 \text{ ps}$		$\sigma_{Y}^{t} = 512 \text{ ps}$		σ^t_W	= 522 ps	
	DC				VH	-		
	Coordinate precision	σ = 85 μm	T	ime precisio	on	σ	= 100 ps	
		Spec	tro	meter				
	Relative resolution of	n the particle m	e particle momentum in L.S.			3•10 -3		
	Precision on Q-projections σ_{Q_2}		J _{QY}	= 0.5 MeV/c	$\sigma_{QL} = \sigma_{QL} =$	0.5 Me ^v 0.9 Me ^v	V/c (ππ) V/c (πK)	
	Trigger efficiency 9	8 % for pairs	with	$Q_{\rm L} < 28 { m M}$	[eV/c			
	$Q_X < 6 \text{ MeV/c}$							
	$Q_v < 4 \text{ MeV/c}$							

Extrapolation to the target

Break-up dependencies P_{br} from the target thickness for $K^+\pi^-$ atom $(A_{K\pi})$ and $K^-\pi^+$ atom $(A_{\pi K})$

Probability of break-up as a function of Ni target thickness for $A_{\pi K}$ (solid line) and $A_{K\pi}$ atoms (dashed line), $\tau_{1S} = 3.7 \cdot 10^{-15}$ s. Average momentum of $A_{K\pi}$ and $A_{\pi K}$ are 6.4 GeV/c and 6.5 GeV/c, accordingly.

Analysis of multiple scattering in Ni (150 µm)

Reconstructed and simulated (blue) MS distributions

Run 2011. Analysis of multiple scattering in Ni (150 μ m). Only events with one track in each projection were analyzed. $\delta\theta/\theta \sim 0.7$ %. After including in the analysis of all available events the statistics will be doubled and the expected value will be less than 0.5 %.

Light-yield – pulse-height spectrum

Test in the DIRAC spectrometer (with F1-TDC-ADC; pedestal is not visible)

SumTwoEndsX1

Average number of photoelectrons is larger than 20.

Left-side peak is due to the crosstalk at PMT photocathode (almost 1 PE) and between slabs (a few PE).

Time resolution and efficiency

Time resolution

Efficiency

using spectrometer prediction

0.970

using only e⁺e⁻ trigger events

0.993 (better prediction precision)

Efficiency in a high-intensity flux is yet to know.

between mutual planes

0.988

using only e⁺e⁻ trigger events

0.994 (better prediction precision)

Q_L distribution $K^+\pi^-$ pairs

Q_L distribution $\pi^+ K^-$ pairs

2010 data: distribution of pairs on (t₊+t₋)/2 for P=(1200, 1400) MeV/c

2010 data: distribution of $\pi^+\pi^-$ pairs detected by CHF on $(t_++t_-)/2$ for P=(3400, 3600) MeV/c

2010 data: distribution of π⁺π⁻, pp̄ and K⁺K⁻ pairs on (t₊+t_)/2 for P=(3400, 3600) MeV/c

No signal in CHF.

K⁺K⁻ atom and its lifetime

Interests in KK physics?

•General:

non-understood KK interplay with the scalar mesons $[I^G(J^{PC})]$ $f_0[0^+(0^{++})]$ and $a_0[1^-(0^{++})]$

•DIRAC experiment:

study of low-energy K^+K^- scattering \rightarrow estimate **number of produced atoms** A_{2K}

Kaonium decay width or lifetime "expected":

•Decay width $\Gamma(A_{2K}) = [\tau(A_{2K})]^{-1} = \alpha^3 m_K^2 Im(a_{KK}) \dots A_{2K}$ structure dependent: Strong effects enter through the complex scattering length a_{KK} .

•DIRAC experiment:

search for "atomic pairs" K^+K^- from A_{2K} ionization \rightarrow upper limit on $\tau(A_{2K}) \rightarrow$ info about scattering length \mathbf{a}_{KK} !

K⁺K⁻ atoms ionization probability

28 µm Pt

Lamb shift measurement with external magnetic field

L. Nemenov, V. Ovsiannikov, Physics Letters B 514 (2001) 247

Impact on atomic beam by external magnetic field B_{lab} & Lorentz factor γ

Resonant enhancement of the annihilation rate of $A_{2\pi}$

L. Nemenov, V. Ovsiannikov, E. Tchaplyguine, Nucl. Phys. (2002)

Resonant enhancement

Resonant method

Published results on $\pi\pi$ atom: lifetime & scattering length

DIRAC data	$ au_{1s}$ (10 ⁻¹⁵ s) value stat syst <i>theo</i> * tot	$ a_0-a_2 $ value stat syst <i>theo</i> * tot	Reference
2001	$\begin{array}{cccc} \textbf{2.91} & +0.45 & +0.19 \\ & -0.38 & -0.49 \end{array} \begin{bmatrix} +0.49 \\ -0.62 \end{bmatrix}$	$\begin{array}{cccc} 0.264 & + \ 0.017 & + \ 0.022 \\ & - \ 0.020 & - \ 0.009 \end{array} \begin{bmatrix} + \ 0.033 \\ & - \ 0.020 \end{bmatrix}$	PL B 619 (2005) 50
2001-03	$3.15 \begin{array}{c} +0.20 \\ -0.19 \\ -0.18 \end{array} \left[\begin{array}{c} +0.28 \\ -0.26 \end{array} \right]$	$0.2533 + 0.0078 + 0.0072 + 0.0106 \\ - 0.0080 - 0.0077 + 0.0111 \end{bmatrix}$	PL B 704 (2011) 24

* theoretical uncertainty included in systematic error

NA48	K-decay	value	stat	a ₀ -a ₂ _{syst}	theo	tot	Reference
2009	$K_{3\pi}$	0.2571	± 0.0048	± 0.0029	± 0.0088	3	EPJ C64 (2009) 589
2010	$K_{e4} \& K_{3\pi}$	0.2639	± 0.0020	± 0.0015			EPJ C70 (2010) 635

$A_{2\pi}$ lifetime, τ , in np states

