

VI. Summary

- 311

VII. Open questions and ongoing studies

<u>The Trigger System of LHCb</u>

- components
- decision unit
- status and performance

IV. Level-1

- basic principles
- decision
- status and performance

V. HLT - High Level Trigger

- basic principles
- exclusive and inclusive strategies

MARIE CURIE

Marie Curie Fallowships

LHC environment

- > pp collisions at E_{CM} = 14 TeV
- > <L> = 2×10³² cm⁻² s⁻¹ = 2×10⁵ mb⁻¹ s⁻¹
- > Δt_{bunch} = 25 ns <-> bunch crossing rate = 40 MHz

Cross sections

Physical quantity	Value	Event rate	Yield / year
σ total	~ 100 mb		
σ visible	~ 60 mb	~ 12 MHz	
σ (c-cbar)	~ 3.5 mb	~ 700 kHz	~ 7x10 ¹² pairs
σ (b-bbar)	~ 0.5 mb	~ 100 kHz	~ 10 ¹² pairs

> branching ratii ~ 10⁻⁹ - 10⁻⁴

→ 10 - 10⁶ events / year ?

314 315

B-hadrons are heavy and long-lived !

-311

<u>II. Trigger overview</u>

314 315

LO: high E_T / P_T particles

- > hardware trigger with fixed latency
- > pipelined operation, fixed latency of 4 μs
- rate reduction 40 MHz -> 1 MHz
- high E_{T} / P_{T} & high impact parameter particles
 - > software reconstruction on part of the data (from a few sub-detectors)
 - > algorithm runs on large PC farm, average latency of 1 ms
 - > rate reduction 1 MHz -> 40 kHz

HLT: high E_T / P_T & high IP particles & displaced vertices & B-mass & ...

- > software full event reconstruction
 - \rightarrow tracking / vertexing with accuracy close to offline
- > selection and classification of interesting physics events
 - → inclusive / exclusive selections run
- > algorithm runs on large PC farm (shared with L1)
- > rate reduction 40 kHz -> ~ 200 Hz

Ventex

M2 M3 M4 M5

Detector components

Magnet

- ECAL and HCAL
 - → large energy deposits <-> E_T in 2x2 cells
- > Scintillator Pad Detector (SPD) & Preshower (Prs)
 - → used for charged / electromagnetic nature of clusters, respectively (PID)

<u>Strategy</u>

> identify hadrons / e / γ / π^{0} 's using all 4 sub-detectors

Output for LODU

- > highest- E_T candidate of each type
 - \rightarrow hadron / e / γ / π^0 local & global
- > global event variables
 - \rightarrow total E_T in HCAL \rightarrow rejection of empty events
 - → SPD hit multiplicity <-> rejection of busy events

erres

- 30

RET

Detector components

> M1 - M5 muon stations (4 quadrants each)

Magnet

<u>Strategy</u>

- > straight-line search in M2-M5
 - and extrapolation to M1 for momentum determination
- > momentum determination from M1-M2
- assuming muons from primary vertex
- (using a look-up table)

Output for LODU

> 2 muon candidates per each of the 4 quadrants

M4 M5

CIDEN

- 300

Detector components

> 2 silicon planes upstream of nominal IP

Magnet

<u>Strategy</u>

- > calculate z_{vtx} of vertices for all combinations of A and B
- > find highest peak in histogram of z_{vtx}
- > remove hits contribution to that peak
- > find the second highest peak

Output for LODU

- > pile-up system multiplicity
- > height of second peak (with sum of directly adjacent bins)
 - → also the z-position is transferred,
 - together with same info for 1st peak

- 30

Calorimeter

- SPD multiplicity
- total E_T in HCAL
- highest- E_T candidates:
- h, e, γ , π^0 local, π^0 global

Muon system

2 μ candidates
per each of 4 quadrants

Pile-up system

M3 M4 M5

HCAL

- total multiplicity
- # tracks in second peak

20m

L0 Decision unit

 \checkmark cuts on global event variables \checkmark thresholds on the E_{T} candidates

LODU report

crite

Sec. 1

<u>Global event v</u>	applied	applied first	
Global event cuts	Cut	Rate	(MHz)
$\Sigma \mathbf{E}_{T}$	5.0 GeV	~ 8.3	
SPD multiplicity	280 hits	~ 13	
Tracks in 2 nd vertex	3		~ /
Pile-up multiplicity	112 hits		

<u>r candidate</u>	25
	<u>, candidate</u>

Trigger	Threshold (GeV)	Rate (kHz)		
Hadron	3.6	705	705	
Electron	2.8	103		
Photon	2.6	126	280	
π^{o} local	4.5	110	280	
π ^o global	4.0	145		
Muon	1.1	110	160	
Di-muon	1.3	145	100	

Di-muon trigger is special

- $P_T^{\mu\mu}$ = $P_T^{\mu 1}$ + $P_T^{\mu 2}$ with $P_T^{\mu 2}$ = 0 possible
- "tags" clean B-signatures
- not subject to the global event selection

3m

- 300

RICH

M3 M4 M5

<u>Software</u>

> packages up-to-date (honest simulation) and ready for DC'04

- → LO Muon package re-written recently
- → new LOChecker package for performance checks
 - and providing information for subsequent studies of LO

Optimization

- > LO bandwidth division performed for the Trigger TDR
- > DC'04 data will provide means for performance cross-checks
 - and further studies

Performance

- > hadronic channels: ε ~ 50 %
- > electromagnetic channels: $\epsilon~$ ~ 50-70 %
- > muon channels: ε ~ 90 %

Nr. events

10 ³

10²

10

1

0

M3 M4 M5

all events

40

▲ IO-pass events

global-cuts- and IO+pass

60

80

Nr. visible tracks

100

each curve corresponds to considering separately the combination L0 trigger = sub-trigger

+ global event cuts

313 314 315

- 30

M3 M4 M5

- \triangleright select events with long-lived particles and high P_T
 - \rightarrow multiple scattering can fake high impact parameters -> need P_T measurement as well

Detector components

Magnet

> VELO and TT stations (+ LO information)

Strategy

Goal

- > fast 2D tracking in VELO (forward and backward tracks)
 - → R-Z straight-line tracking (VELO R-sensors only)
- \succ primary vertex reconstruction (VELO sector number is used as ϕ measurement)
- > selection of tracks with large IP (IP \in [0.15 , 3.0] mm)
- > matching to LO calorimeter and muon "objects"
- > 3D tracking for those selected tracks
 - → because P_T measurement from extrapolation to TT necessitates 3D tracks
- > P_T measurement on selected tracks
- > issue a L1 decision based on the $log(P_{T1}) + log(P_{T2})$ of these 2 tracks and on the "bonus" from the L0 matching

ACTION

- 511

Impact parameter measurement

use VELO stations

Magnet

ightarrow R-Z projection contains most of the IP information

<u>P_T measurement</u>

use TT for extrapolation of tracks
and momentum determination
σ(P_T) / P_T ~ 30%

M4 M5

<u>Clean B-signatures</u>

- ightarrow P_T can also be determined from a matching to LO candidates!
 - → VELO tracks are matched to LO muons / calorimeter clusters
 - \Rightarrow high E_T e / γ , high mass $\mu\mu$
- > extra information used in the making of the L1 decision ...

3m

20m

lowships

- 511

M3 M4 M5

<u>Software</u>

> new version of whole L1 packages ready for DC'04

- \Rightarrow tracks reconstruction
- → primary vertex finder (also treatment of multiple PV)
- → decision package re-written (very modular <-> flexibility)

Optimization

> whole reconstruction has been optimized/tuned on pre-production data

- → tracks reconstruction (track quality cuts, clone killing)
- → VELO-TT track matching (quality cuts)
- → vertex finder (cuts on min. # tracks, min. distance between vertices)

<u>Performance</u>

- > efficiencies expected to be ~10% better compared to TDR!
 - → improvements mainly due to faster and better reconstruction

(improved tracking, bug fixed in handling of vertices)

> fast algorithm within the design time budget: ~ 4.7 ms (compared to ~ 8 ms @ TDR time)

Ventex

- 30

RICHI

M3 M4 M5

Primary vertex resolution (of only the 1st PV)

Magnet

310

20m

20m

<u>HLT – generic algorithms</u>

23

M4 M5

Eduardo Rodrigues

NIKHEF B Physics Seminar, 18th June 2004

- 300

M3 M4 M5

<u>Software</u>

> new version of whole Trg packages has just been released for DC'04

- → tracking
- → primary vertex finder

Optimization

Magnet

- > to be done with DC'04 data
 - → tracking optimization done to some extent on "old" data

<u>Performance</u>

- > the best possible ...
- > fast algorithms within the design time budget
- > exclusive selections show that individual signal channels give
- HLT rates ~ 10 Hz for ϵ > 95%

Eduardo Rodrigues

310

NIKHEF B Physics Seminar, 18th June 2004

26

20m

- 31

VII. Open questions

ongoing studies

RICH

<u>Level-O</u>

RICH

- > implementation of di-electrons
- > monitoring / performance from real data

Level-1

- L1 decision strategy
- > improved usage of LO muon and calorimeter information
- > treatment of events with multiple primary vertices
- > nature of minimum-bias / signal events passing L1

<u>HLT</u>

- > development of reconstruction
- > development of generic / exclusive selections
- > RICH information @ HLT -> improvement in physics reach from PID?
 - \rightarrow main use: K/ π separation for similar final states (e.g. B⁰ -> $\pi \pi$, K π)
 - \blacktriangleright lower rates of channels with high rates without K/ π separation
 - \Rightarrow efficient reconstruction of inclusive decays (e.g. B -> K*X))