

$B \rightarrow hh$ studies: physics case(s) and requirements

Eduardo RodriguesUniversity of Glasgow

LHCb CP WG meeting, CERN, 20th November 2008

- The $B \rightarrow hh$ family
- Physics case(s) & requirements
- HLT2 selection or selections?
- Mass window cuts

The $B \rightarrow hh$ family

"Standard" modes:

- \square $B^0 \rightarrow \pi\pi$, $B_s \rightarrow KK$
- $figcup B^0
 ightarrow K\pi \ , \, B_s
 ightarrow \pi K \ .$

Rare modes:

 \square B⁰ \rightarrow KK , B_s $\rightarrow \pi\pi$, not yet found experimentally

Related modes:

 $\hfill \hfill \hfill$

Baryonic "cousins":

- lacksquare B^0 , $B_s \rightarrow p$ pbar , not yet found experimentally
- \Box (could also look for final states with a Λ)

Physics case(s) – rather rich!

- \blacksquare B⁰ $\to \pi\pi$: time-dependent asymmetry
 - so far inconsistency in direct CP contribution ($C_{\pi\pi}$) between BaBar and Belle
- \blacksquare B⁰ \to K⁺ π : direct CP violation measurement
 - \square B_s $\rightarrow \pi^+ K^-$: direct CP violation, branching ratio measurement
- $B_s \rightarrow KK$: time-dependent asymmetry, branching ratio measurement, lifetime measurement
 - ☐ Gronau, Lipkin and Rosner relation

$$\left|A\left(B_{s}\to\pi^{+}K^{-}\right)^{2}-\left|A\left(\overline{B}_{s}\to\pi^{-}K^{+}\right)^{2}\right|=\left|A\left(\overline{B}^{0}\to\pi^{+}K^{-}\right)^{2}-\left|A\left(B^{0}\to\pi^{-}K^{+}\right)^{2}\right|$$

- \square B⁰ \rightarrow K⁺ π ⁻, B⁺ \rightarrow K⁺ π ⁰ : \neq in CP asymmetry hard to understand theoretically
- $B^0 \to \pi\pi$, $B_s \to KK$; determination of the CP angle γ exploiting U-spin symmetry
- Rare B \rightarrow h⁺h' $\stackrel{\cdot}{\cdot}$ h = π , K ... but also a baryon such as p, Λ
- $\Lambda_b \to pK$, $p\pi$: lifetime ratio measurements (wrt B⁰)
 - Etc. List non exhaustive

Requirements to carry out our physics goals

□ We want a selection as efficient as possible
 ⇒ cuts as loose (and clever!) as possible
 □ We want an inclusive selection, to pick up our cocktail of modes
 ⇒ in particular: mass window cut as broad as possible
 □ We want the best out of the detector
 ⇒ the largest possible allocated bandwidth
 □ All in all: a complex and serious optimisation problem ...
 □ ... not to mention the "competition" with the rest of the LHCb benchmark B-decays, and trigger constraints

HLT2 selection or selections?

At present

- Every B-decay channel is typically related to an HLT2 selection
 exclusive, inclusive, common to a group of B-decays
- ❖ Plan A in a nutshell: we optimize for a B → hh HLT rate of R Hz, R ~ 10, and estimate an efficiency ε

Thinking about the future ...

- ❖ All our estimates have been based on MC studies ⇒ we are likely to get it wrong :S
- ❖ If the real-experiment rate turns out to be ~R, we are in business. But if the actual rate is > R, we will be simply downscaled! ⇒ we then loose statistics (efficiency) proportionally to the downscale factor (!): $\varepsilon_{\text{real}} = \varepsilon_{\text{MC}}$ / (downscale factor) Clearly not optimal, even acceptable
- Plan B:
 - introduce a tigher B \rightarrow hh HLT2 selection that reduces the minimum bias rate by, say, a factor 1.5 or 2, while keeping (hopefully ;-)) the efficiency on signal > 80% w.r.t. our present HLT2 selection

Comments on mass window cuts (1/3)

What we have as standard in CVS:

- ☐ Offline: ± 600 MeV mass window
- ☐ HLT2: ±300 MeV mass window
- **□** ⇒ this is inconsistent; does not make sense
- Most importantly: it will also suppress a lot the rare baryonic modes

Mass window: $(m_R = 5280 \text{ MeV}) \pm X \text{ MeV}$

Going ever more inclusive:

- Seems to be the trend for us − c.f. latest info from Hans
- Should we envisage this asap? And try and merge our inclusive selection with e.g. B⁺ → hhh? And …?
- □ Or potentially dangerous in our case?
- □ Look at FIDEL?
- Not completely clear to me at this point needs studies and comparisons

Comments on mass window cuts (2/3)

Invariant mass distributions after pre-selection assuming pion hypothesis

The new mass window seems to have been chosen to "fit as a glove" ;-)!

(thanks to Marco G. for histos)

Comments on mass window cuts (3/3)

Remarks, in short

- ☐ Important message to the outside world not to undersell: "B2HH" stands for a big family of benchmark channels – 10 B-decays!
- We should introduce a tighter HLT2 selection "for safety reasons"
 - I plan to make a "HIt2TightSelB2HH"
- □ The topics collected under the B2HH umbrella will suffer if we go for too narrow a mass-window. Suggest (a) this is revisited and (b) an appropriate B2HH bandwidth is negotiated

P.S.: If you understood I have strong feelings on these matters, then I succeeded in passing the message across ;-)