

ECAL and Hadronic Channels

Eduardo Rodrigues, CERN

Puzzle:

electromagnetic triggers can account for 2/3 of the LO efficiency even without the hadron trigger

- fix the hadron trigger to a certain bandwith
- let all other thresholds free, to fill the 1.0 MHz bandwidth, and optimize LO
- scan from "no hadron trigger" to "hadron trigger = full bandwidth"

Sub-triggers "importance": $B_s \rightarrow D_s K$ Example

Max. efficiency obtainable inclusively by each trigger!

- → dominance of the hadron trigger
- → other (ECAL) triggers seems to perform rather well also ...

	Configuration	L0 efficiency (%)
•	TDR Efficiency	~ 47
	ECAL+HCAL triggers only	~ 47
	HCAL trigger only	~ 46
	no HCAL trigger	~ 35
	ECAL triggers only	~ 33
	π^0 triggers only	~ 33
	e + γ triggers only	~ 28
	muon triggers only	~ 15

(one possible setting ...)

L0 trigger	$\mathbf{E_t^{had}}$	$\mathbf{E_{T}}^{\mu}$	E _T e	$\mathbf{E_T}^{\boldsymbol{\gamma}}$	$\mathbf{E_{T}}^{\mu\mu}$	$\pi^0_{ m global}$	$\pi^0_{ m local}$	Veto Cut	Spd Mult. Cut	Pile-up Mult. Cut
TDR Thresholds (GeV)	3.6	1.1	2.8	2.6	1.3	4.0	4.5	3.0	280	112
"no HCAL" Thresholds (GeV)	infinity	1.9	3.3	2.5	1.0	2.3	3.3	3.0	280	112

Bandwith divisions

With the TDR settings ...

% L0-pass for:	h	е	γ	πº local	πº global	μ	μμ
All events	25	3	3	3	5	5	8
L0-pass events	74	10	8	9	15	16	22
Offline selected events	50	5	5	6	8	7	8
LO-pass events & off. sel. events	85	9	9	11	15	13	15

"no HCAL" trigger ...

% L0-pass for:	h	е	γ	πº local	πº global	μ	μμ
All events	0	2	3	8	21	3	9
L0-pass events	0	7	10	27	73	11	32
Offline selected events	0	3	5	12	33	6	8
LO-pass events & off. sel. events	0	8	14	32	87	17	22

Bandwith divisions ... (II)

How is the bandwidth divided in these 2 examples used ...?

L0 Inclusive efficiency	HCAL	ECAL	Muons
TDR settings	39	11	8
"no HCAL" trigger	0	29	9

LO Eff.				
47				
35				

B_s -> **D_s** K Events not triggered by the Hadron Trigger (I)

How do the other sub-triggers recover the "no hadron trigger" setting?

muons:

- some events (~ a few percent) recovered (= pass LO either with the muon or di-muon tirgger)
- most often these triggering muons are the highest Pt muon of the event, and do not come from the signal B-meson

electrons / photons:

- small contribution to the "efficiency recovery"
- these electrons / photons do not come from the signal B-meson (sometimes highest Et electron in the event)

■ piO local:

- this trigger allows a good recovery of the efficiency
- often photons or electrons (and the highest Et in the event)
- particles rather rarely coming from the signal B-meson

...

B_s -> D_s K Events not triggeredby the Hadron Trigger (II)

How do the other sub-triggers recover the "no hadron trigger" setting?

■ piO global:

- main actor of the "efficiency recovery"
- a "jet trigger": picks up 2 closely spaced energetic clusters/deposits (2 charged kaons, charged pions, electrons, etc.)
- although the statistics are limited: in ~ 20% of the events π^0_{global} -triggered the MC-associated particles are mostly kaons and pions that come from the signal B or the other B (in a ration ~ 4 / 1)
- for the other cases the "random" triggering is affected by energy resolution effects at LO

-> some conclusions:

- Investigations tend to point at the pion triggers as the "recovery-trigger"
- Need to be more quantitative on the electron/pion/photon contributions stated above
- Some correlation plots could be useful
- ... other suggestions / comments ?