

Eduardo Rodrigues, CERN

I. LO optimization: set-up and method

- Set-up and method
- Combination of channels -> overall trigger optimization

II. LO optimization without tagging information

- Optimal performance for individual signal channels
- Optimal trigger performance and bandwidth division

III. LO optimization with tagging information

- "Usage" of tagging information
- Checks on tagging performance
- Some remarks

IV. Conclusions and outline

L0 Optimization – Set-up and Method (I)

■ Set-up:

- ✓ use all interactions (single and multiple interaction events)
- ✓ <u>new</u>: use only half of the available samples sizes
 - -> ability to cross-check results on an independent sample
- ✓ <u>new</u>: now also using SPD & Pile-up veto multiplicity cuts (set to values obtained by Massi)
- ✓ <u>new</u>: tagging information available for inclusion in the optimization

■ Method:

- > Optimization done with MINUIT vary LO thresholds and veto height of second peak
 - -> systematic scanning of the whole parameter space (E_T thresholds, veto cut)
- > Maximize:
 - a) LO efficiency <-> no tagging information considered
 - b) LO trigger power <-> tagging information considered

(definition detailed later)

L0 Optimization – Set-up and Method (II)

■ Some technical details:

- ✓ LO thresholds are varied in a discrete way
 - -> less dependence on statistics and fake optimal settings
- ✓ for each set of thresholds there is a corresponding minimum bias retention rate
 - -> constraint implemented in MINUIT
 - -> LO M. B. retention = 1MHz

L0 optimization – Combination of Channels

- Present scenario: some channels representative of each type of measurement
 - → each of the 5 groups is optimized separately
 - → optimization such that each group has the same loss in performance
 - = equal LHCb performance on each type of measurement

Quantity measured	Channel(s)	# events	# off. sel. events	# off. sel. events for optimization
α	B _d -> ππ	49 k	3374	1690
β	B_d -> J/Ψ(μμ/ee) K_s	99 k	1531	773
γ	$B_s \rightarrow D_s K$ $B_s \rightarrow D_s \pi$	337.5 k	7369	3705
2δγ	B _s -> J/Ψ (μμ) Φ	50 k	3863	1951
Rare decays	B _d -> K* γ	48 k	817	410

(Using half the sample (odd-numbered events) for the optimization)

L0 optimization without Tagging Information (I)

1. Optimizing each channel separately on the LO efficiency ... ignoring the tagging information ...

Channels	"Default" (@ last LHCC presentation) L0 eff. (%)	Optimized L0 eff. (%)
Β _d -> ππ	56.6 +/- 1.2	63.1 +/- 1.2
B_d -> J/ Ψ ($\mu\mu$ / ee) K_s	77.3 +/- 1.5	81.4 +/- 1.4
$B_s \rightarrow D_s K$ $B_s \rightarrow D_s \pi$	46.1 +/- 0.8	50.6 +/- 0.8
$B_s \rightarrow J/\Psi (\mu\mu) \Phi$	82.4 +/- 0.9	85.3 +/- 0.8
B _d -> K* γ	72.0 +/- 2.2	91.2 +/- 1.4

Max. eff. obtained with separate optimization of each channel

(eff. calculated on independent sample)

(L0 thresholds as in 1/2003 but SPD and veto multiplicity cuts added!)

L0 optimization without Tagging Information (II)

2. Optimizing the trigger on the LO efficiency ... for a minimal total loss in efficiency ...

Channels	Max L0 eff. (%)	"Optimal trigger" L0 eff. (%)	Loss in L0 eff. (%)
Β _d -> ππ	63.1 +/- 1.2	58.3 +/- 1.2	7.6
$B_d \rightarrow J/\Psi(\mu\mu/ee) K_s$	81.4 +/- 1.4	79.7 +/- 1.5	2.1
$B_s \rightarrow D_s K$ $B_s \rightarrow D_s \pi$	50.6 +/- 0.8	47.2 +/- 0.8	6.7
$B_s \rightarrow J/\Psi (\mu\mu) \Phi$	85.3 +/- 0.8	84.9 +/- 0.8	0.5
B _d -> K* γ	91.2 +/- 1.4	84.9 +/- 1.8	6.9

Optimized LO		
Hadron		4.20
Muon	-	0.60
Electron	-	3.00
Photon	-	4.20
Di-muon	-	9.40
Pi0 Local	-	4.20
Pi0 Global	-	3.20
Sum Et	-	5.00
VetoSumPeak2	-	inf.

... trigger optimization on the LO efficiency for a same loss in each group gives losses in efficiency ~ 11% -> total loss > total loss in above scenario ...

Max. efficiency obtainable inclusively by each trigger!

each curve corresponds to considering separately
 the combination

L0 trigger = sub-trigger + NO pile-up veto

(because max. obtained with no veto)

-> it shows how much one could in principle obtain independently from each trigger

→ After optimization ...

(on this single channel!)

Optimized L0		
Hadron	-	5.40
Muon Electron		4.20 3.60
Photon Di-muon		3.80 2.00
Pi0 Local Pi0 Global		4.80 2.40
Sum Et		5.00
VetoSumPeak2		inf.

Eduardo Rodrigues

LHCb Collaboration Week, 21st May 2003

L0 optimization with Tagging Information

- LO optimization using the tagging information:
 - · maximize the trigger power rather than the efficiency ...
- Tagging information available:
 - muon tagging
 - electron tagging
 - opposite-side kaon tagging & same-side kaon tagging (only relevant for B_s decays)
- "Usage" of tagging information in LO optimization:
 - B_d decays:
 - use only opposite-side kaon tagging as the kaon tag
 - B_s decays:
 - opposite- and same-side kaon tags are both available
 - → how to combine the tagging information ...?

Tagging Information (I)

Combination of tagging information:

- Marta Calvi and Clara Matteuzzi's proposal, LHCb-light meeting, 25/3/2003:
 - ✓ if only 1 tag in the event: take decision on that tag (sign of tag)
 - \checkmark if e + μ tags: chose tag from the highest momentum particle
 - -> left with at most 3 tags ...

$$\checkmark$$
 e + K_{OS}
$$\mu$$
 + K_{OS}
$$K_{OS}$$
 + K_{SS} -> consider event as untagged if the 2 tags disagree e + K_{SS}

$$\checkmark \mu + K_{os} + K_{ss}$$
 -> tag = sum of all tags

 $\mu + K_{ss}$

Tagging Information (II)

- Combination of tagging information adaptation to the LO optimization:
 - reason: no information on the tagging particles momenta at LO
 - algorithm:

```
TagFlag = 0

IF ( not a Bs ) KSSTag = 0

IF ( (ElTag and Mutag) <> 0 ) ElTag = 0

SumOfTags = ElTag + MuTag + KOSTag + KSSTag

IF ( SumOfTags >= 1 ) TagFlag = 1

IF ( SumOfTags <= -1 ) TagFlag = -1

( TagFlag = 0 / 1 / -1 for untagged / correctly tagged / wrongly tagged events )
```


Tagging Information (III)

■ General definitions:

- wrong tag fraction
 - omega = (# wrongly tagged events) / (# tagged events)
- tagging efficiency
 - eff = (# tagged events) / (# offline selected events)
- tagging effective efficiency

$$eff_eff = eff \times (1 - 2 \times omega)^2$$

... have to be slightly modified for the trigger optimizations ...

Tagging Information (IV)

■ Tagging-dependent definitions used in the LO optimization:

```
wrong tag fraction
```

```
omega = % of triggered and tagged events wrongly tagged
= (# triggered & wrongly tagged events) / (# triggered + tagged events)
```

combined trigger+tag efficiency

```
eff_trigtag = % of selected events that pass L0 and are tagged

= (# triggered & tagged selected events) / (# selected events)
```

■ trigger power

```
P = eff_{trigtag} \times (1 - 2 \times omega)^2
```


Quantity to be optimized!

■ Samples available in our "grouping scenario":

Quantity measured	Channel(s)	# events	# off. sel. events	# off. sel. events for optimization with combined tag	(Combined) tagging effective efficiency (%)
α	B _d -> ππ	49 k	3374	425 (1690 sel.)	1.3 +/- 0.5
β	$B_d \rightarrow J/\Psi(\mu\mu/ee) K_s$	99 k	1531	257 (773 sel.)	0.7 +/- 0.6
γ	$B_s \rightarrow D_s K$ $B_s \rightarrow D_s \pi$	337.5 k	7369	1063 (3705 sel.)	1.9 +/- 0.4
2δγ	$B_s \rightarrow J/\Psi (\mu\mu) \Phi$	50 k	3863	707 (1951 sel.)	2.8 +/- 0.7
Rare decays	B _d -> Κ* γ	48 k	817	- (410 sel.)	-

* The tagging effective efficiencies have errors ~ 20-80%!

... then the statistics are still reduced when calculating the trigger power ... (trigger efficiency included)

■ Details for $B_d \rightarrow \pi \pi$

Tag	Tagging Efficiency	Wrong Tag Fraction	eff*(1-2*omega)^2
MuTag	5.09 +/- 0.53 % (86 / 1690)	36.05 +/- 5.18 % (31 / 86)	0.40 +/- 0.30 %
	2.07 +/- 0.35 %		0.00 +/- 0.02 %
KOTag		37.61 +/- 2.68 %	1.19 +/- 0.52 %
Comb.	25.15 +/- 1.06 %	38.59 +/- 2.36 %	1.31 +/- 0.54 %
<u> </u>	(425 / 1690)	(164 / 425)	

Effective efficiency after combination of tagging info. (see above for details)

Then for the default trigger setting ...

Tag	Trig+Tag Efficiency	Wrong Tag Fraction	Trigger Power
Comb.		37.98 +/- 3.02 % (98 / 258)	0.88 +/- 0.45 %

Quantity to be optimized

- Error on the trigger powerversus the # of selected events
- → need ~ 10-20 k selected events per channel for a relative error on the trigger power ~ 10%!

Channel(s)	# events
B _d -> ππ	500 k
B_d -> J/ $\Psi(\mu\mu/ee)$ K_s	2000 k
$B_s \rightarrow D_s K$ $B_s \rightarrow D_s \pi$	1500 k
B _s -> J/Ψ (μμ) Φ	500 k
B _d -> Κ* γ	100 k

Conclusions and Final Remarks

- LO trigger is performing well
- Optimization on trigger efficiencies shows a reasonable working point
- Inclusion of tagging in the LO optimization needs further statistics
- Is it feasible to provide more statistics for a handful of channels used in the LO optimization?
 - Set of specific channels can be discussed and agreed upon ...