<u>Lнср</u> Гнср

CITES.

-30

<u>Importance of M1</u>

for the L0 and L1 Triggers

314 315

Eduardo Rodrigues (NIKHEF)

Setting the scene

- motivations
- > emulation of LO without the M1 station

Studies

- > LO-muon comparisons with/without M1 (O. Leroy)
 - \rightarrow "L0-Muon trigger without M1: status with DC04 data", Trigger meeting 24th Jan. 2005
- > LO bandwidth division without M1 (E. Rodrigues)
 - → "Overall L0 optimization without M1", Trigger meeting 7th Feb. 2005
- > luminosity issues related to M1 (H. Dijkstra)
 - \rightarrow "M1 and luminosity", Trigger meeting 24th Jan. 2005
 - \rightarrow "M1 and luminosity", T-Rec meeting 14th Feb. 2005

> L1 without M1 (L. de Paula)

310

→ "L1 without M1 – a first look", T-Rec meeting 28th Feb. 2005

LHCb Collaboration Week, 9th March 2005

2073

Vertex.

ACTION 1

-311

Setting the scene

Via 314 315

Motivations

Magnet

- readiness of M1 for day one might not be granted

- > what are the consequences for the trigger if we do not have M1 from day 1?
- > what is a possible & reasonable scenario without M1?
- > can we in fact have an efficient (muon) trigger system without M1?

but

> M1 is used by the LO-muon trigger to compute the P_T of muon candidates

> it is also used at L1

310

Emulation of LO without M1

- no request of a M1 hit to select a muon candidate
- P_T computation with M2 & M3 instead of M1 & M2

20m

LHCP	<u>_</u>	. 0–Muo Magnet	o <mark>n studies</mark>	s witho SPDTS ECAL	<u>ut M1 (3/</u>	3) ¹¹¹
	<mark>Single-μ</mark> L0 output rate (kHz)	W pT cut (GeV/c)	ith M1 B _s →J/ψφ efficiency (%)	With pT cut (GeV/c)	out M1 B _s →J/ψφ efficiency (%)	Relative B _s →J/ψφ efficiency loss (%)
Locator	80	1.45	85.6±0.4	2.56	66.0±2.9	-23
C	139 (TDR)	1.30	93.1±0.2	1.87	85.8±1.1	-8
	220	1.04	96.2±0.2	1.32	93.0±1.0	-3

- ✓ No M1 ⇒ drop of efficiency between 3 and 23% depending on the M. B. output rate
- ✓ Possibility to have the same $B_s \rightarrow J/\psi\phi$ efficiency (93%) if single-µ output rate increased from 140 to 220kHz
 - ... but what is the loss for hadronic channels?

310

-301

Global cuts applied (pile-up system, SPD, ΣET>5GeV)

20m

- Di-muon and calorimeter sub-triggers ignored
- Fields of interest optimized in each case

3111

LHCb Collaboration Week, 9th March 2005

Single-channel optimization without M1

ICAE

Samples

LHCh

Ventex

ANTIOI DE

- 300

- set of (LHCb) benchmark channels

Magnet

> "representatives" of hadronic / electromagnetic / muon channels

3 RICH

Outcome

- single-channel optimizations with or without M1 give roughly

the same LO-max efficiencies

310

- > this means are roughly as at the time of the TDR
- > slightly worse for muon channels

(DC'04 data)

20m

Ex.:	Channels	L0 eff. Max. (%) With M1	L0 eff. Max. (%) without M1
	B _d -> ππ	55.0 ± 0.9	54.1 ± 0.9
	B_d -> J/ $\Psi(\mu\mu)$ K _s	95.4 ± 0.4	94.5 ± 0.4
	$B_s \rightarrow \phi \gamma$	76.0 ± 1.6	76.2 ± 1.3

	opunizado		710100	
Optimized cuts:	Optimized L0	cuts	(GeV)	
	Hadron	=	3.60	
	Electron	=	2.60	
	Photon	=	2.70	
RICHI	Pi0 Local	=	4.50	
	Pi0 Global	=	3.70	
Difference (1991)	Muon	=	1.30	
18 Junit 21	Di-muon	=	1.40	
	Sum Et	=	5.00	
A Construction of the second se			2 0 0	

化化化化化化化化化化化

-5m

A re-optimization of the LO bandwidth is successful !

Channels	L0 eff. (%) With M1	L0 eff. (%) without M1
$B_d \rightarrow \pi \pi$	53.1 ± 0.9	52.5 ± 0.9
$B_d \rightarrow K \pi$	54.3 ± 0.8	53.8 ± 0.8
B _s -> KK	53.3 ± 0.8	52.9 ± 0.8
B _d -> D* π	51.0 ± 1.0	50.5 ± 1.2
$B_{\rm d}$ -> J/ $\Psi(\mu\mu)$ K _s	93.5 ± 0.5	93.2 ± 0.5
B _d -> Κ*μμ	95.5 ± 0.6	95.2 ± 0.6
B _s -> μμ	98.1 ± 0.3	98.3 ± 0.3
B _s -> φγ	72.1 ± 1.7	72.1 ± 1.4
2111	1011L	16.111

(DC'04 data)

nex	Channels	HCAL	ECAL	Muons	<u>(DC'04 data</u>
sater	$B_d \rightarrow \pi \pi$	44.4 ± 0.9	12.0 ± 0.6	9.3 ± 0.5	
Star 1	B _s -> K K	44.5 ± 0.8	11.5 ± 0.5	10.6 ± 0.5	1111
	B_d -> J/Ψ(μμ) K_s	17.6 ± 0.7	6.5 ± 0.5	92.1 ± 0.5	
	B _d -> K*μμ	19.0 ± 1.1	7.6 ± 0.8	94.5 ± 0.6	
	B _s -> φγ	30.7 ± 1.5	66.3 ± 1.5	11.7 ± 1.0	1.1.1
					117
- 5m	Bandwidth on minimum bias events (kHz)	608	231	312	
	was ~ 700 kHz in TDR	/	Almost doubles compare	ed to TDR	75
	Sun	LHCb Collaboration	Week, 9th March 2005		1

enter

-30

L1 without M1 (3/4)

113 514 115

To recuperate the single- μ efficiency (42%)

Mannet

- -> need to increase its bandwidth from 8.8 to 18 kHz
- For the di-muon sub-trigger the efficiency drops from 26 to 18% even if one doubles its bandwidth (from 1.5 to 3 kHz)
- The J/ Ψ sub-trigger efficiency drops from 50 to 30% going from 3 to 4.5 kHz
- \Rightarrow set a possible operation point = "tuned BW":

	BW with M1	BW without M1 & tuning
generic	29.4	25.2
single-µ	8.8	15.1
μμ	1.5	3.6
J / /Ψ	3.1	4.4
electron	3.7	3.7
Photon	4.1	4.0
2,111	A 4 4 4 4	101111

13

CHEN

ACTION 101

-310

<u>Conclusions (1/2)</u>

13 14 115

For Level-O

RICH

- stagging of the M1 station is not critical !
 - > without M1 the B_s -> $J/\Psi(\mu\mu)\phi$ efficiency decreases by up to ~20% depending on the running conditions (muon bandwidth)
 - Iosses in efficiency for muon channels can be recovered with a larger share of the LO bandwidth being taken by the muon triggers
 - > optimization of the LO bandwidth division also prevents the hadronic and electromagnetic channels from losses in efficiency
 - -> it is possible to find an operating point giving similar results as with M1
 - > these conclusions are rather independent on the luminosity

For Level-1

- losses are somewhat larger than at LO
 - > losses for muon channels ~ 10%

310

- > losses for hadronic channels ~6% (more checks with other channels needed)
 - ... can this be recovered using the T stations at L1 ... ? Very likely ...

2073

