Jet Physics and Event Shape Studies at **HERA**

Eduardo Rodrigues University of Bristol

On behalf of ZEUS and H1

XXXVIIth Rencontres de Moriond 18th March 2002

- ► Deep Inelastic Scattering at HERA and Jet Production
- Inclusive Cross Sections in DIS and Photoproduction
- α_s from Inclusive and Dijet Production
- Studies of Dijet Production
- ► 3-jet Production in DIS
- $\blacktriangleright \alpha_s$ from Jet Substructure: Subjet Multiplicities and Jet Shapes in DIS
- Event Shapes: Power Corrections and Resummations
- Conclusions and Summary

Kinematics: DEEP INELASTIC SCATTERING AT HERA Q_2^2 $e^{\pm}(k'^{\mu})$

$$\sqrt{s} \approx 300 \text{ GeV} (-1997), 320 \text{ GeV} (1998-)$$

 $Q^2 = -q^2 = (k - k')^2$
 $x = \frac{Q^2}{200}$

Up to $\mathcal{O}(lpha_s)$ jet production occurs via:

JET PRODUCTION IN DIS

- Inclusive Jet / Dijet Cross Sections
- \Rightarrow test of pQCD calculations
- \Rightarrow sensitivity to parton densities (PDFs)
- \Rightarrow extraction of α_s

Jet studies in the Breit frame:

- \triangleright high- E_T jets in the Breit frame \iff hard pQCD processes
- \triangleright 2 possible hard energy scales: Q and $E_T \Leftrightarrow$ choice of renormalisation scale

INCLUSIVE CROSS SECTIONS IN DIS IN THE BREIT FRAME

Advantages of inclusive measurements:

no infrared sensitivity problems related to the jet selection cuts as in dijet analyses

smaller theoretical uncertainties compared to dijet calculations

1996-97 Data, Kinematic range k_T -cluster algorithm used 1^{st} observation in jets of $\frac{d\sigma}{d\phi^B_{iet}} \propto A + C\cos 2\phi^B_{jet}$ Jet cuts ONLY in Breit frame: (assure good reconstruction) $-0.7 < \cos \gamma_h < 0.5$ $Q^2 > 125 \text{ GeV}^2$ $-2 < \eta_{\rm jet}^{\rm B} < 1.8$ $E_{\rm T,jet}^{\rm B} > 8 {
m GeV}$ $\frac{1}{\sigma} \frac{d\sigma}{d\phi_{jet}}^{0.4}$ x 10⁻² 0.150.350.250.2 0.3 0.1 wrt lepton scattering plane) $(\phi^B_{jet} = {\sf jet} \; {\sf azimuthal} \; {\sf angle}$ ----- DISENT (MRST99, $\mu_{\pi}=E_{\tau_{\mu}}^{*}$) ----- DISENT (MRST99, $\mu_{\pi}=Q$) (corrected to hadron level) NLO QCD 50 ZEUS (prel.) 96–97 100 $-0.7 < \cos \gamma_h < 0.5$ ZEUS Q² > 125 GeV² Er,# > 8 GeV $-2 < \eta_{\mu}^{e} < 1.8$ 150 200 250ф <mark>в</mark> (°) 300 350

α_s From Inclusive Cross Sections

 $\alpha_s(M_Z) = 0.1186 \pm 0.0030(\exp)^{+0.0039}_{-0.0045}(\text{th})^{+0.0033}_{-0.0023}(\text{pdf})$ (incl. jets - H1)

α_s from Dijet Rates at High Q^2

Dijet Rates at medium Q^2

Motivations:

- \triangleright test NLO pQCD in dijet production at medium Q^2
- \triangleright what is the effect of the choice of μ_R ?
- 1996-97 Data, Kinematic range

$$10^{-4} < x < 10^{-2}$$

< $Q^2 < 100 \text{ GeV}^2$

CT

$$T_{CM} > 1$$
 GeV , $E_{T,HCM} > 0$

$$-1 < \eta_{lab} < 2$$
$$= O^2 \Rightarrow \text{ large scale un}$$

$$\mu_R = Q^- \Rightarrow$$
 large scale unc.
but NLO describes data

$$\mu_R = Q^2 + \overline{E_T^{jet}} \Rightarrow$$
 smaller scale unc.
but NLO unable to
describe data

DIJET PRODUCTION IN DIS AT SMALL JET SEPARATION

Motivations:

- investigate minimum inter-jet separation necessary to allow accurate description of the dijet rate using NLO pQCD
- 1995-97 Data, Kinematic range

$$150 < Q^2 < 35000 \text{ GeV}^2$$

 $0.1 < y < 0.7$

I modified Durham algorithm applied in lab. frame

$$y_2 = rac{\min k_{Ti,j}^2}{W^2}$$
, ($_{\text{of had. system}}^{w^2 = \text{ inv. mass}}$)
 $k_{Ti,j}^2 = 2\min[E_i^2, E_j^2](1 - \cos \theta_{ij})$

• for $y_2 > 0.001$, NLO describes data well: y_2 , $\overline{E_T}^{jet}$ and η^{jet} distributions

• RAPGAP performs very well over all
$$y_2$$
 range

• 1/3 events classified as dijets for $y_2 > 0.001$ (compared to $\approx 1/10$ in standard analyses)

THREE-JET PRODUCTION IN DIS

Motivations:

▷ LO contribution is $\mathcal{O}(\alpha_s^2) \rightarrow \text{high sensitivity}$

H1 data

- ▷ detailed test of pQCD
- 1995-97 Data, Kinematic range

$$5 < Q^2 < 5000 \text{ GeV}^2$$

 k_T -cluster algorithm applied in Breit frame

$$E_{T,Breit}^{jet} > 5 \text{ GeV}$$

 $-1 < \eta_{lab}^{jet} < 2.5$

• NLO describes the data reasonably well over all
$$Q^2$$
 range, and the μ_R and gluon PDF dependences largely cancel in the ratio \Rightarrow potential extraction of α_s

BUT need for more stats ...

α_s from Subjet Multiplicities

jet substructure with subjets infrared-safe to all orders \Longleftrightarrow theoretically interesting

Jet Physics and Event Shape Studies at HERA

Q_S FROM THE INTEGRATED JET SHAPE

jet substructure at high $E_{
m T}^{
m jet}$ (frag. effects are less important) \Longleftrightarrow detailed test of pQCD

- \blacksquare k_T -cluster algorithm in the Lab. frame
- $Q^2 > 125 \text{ GeV}^2$
- $E_{\mathrm{T}}^{\mathrm{jet}} > 21 \ \mathrm{GeV}$, $-1 < \eta_{jet} < 2$

- $\Psi(r) =$ integrated jet shape: average fraction of the E_{T}^{jet} that lies inside a cone of radius $r = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ concentric with the jet's axis (in the $\eta - \phi$ plane) • NLO describes the distributions $\Psi(r)$ very well
- the measurement is rather sensitive to α_s
- \Rightarrow suited for α_s extraction

Jet Physics and Event Shape Studies at HERA

POWER CORRECTIONS AND RESUMMATIONS EVENT SHAPES:

Event shape variables:

thrust
$$\tau_{\gamma} = 1 - T_{\gamma} = 1 - \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}|}{\sum_{i} |\vec{p}_{i}|} = 1 - \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}|}{\sum_{i} |\vec{p}_{i}|}$$

jet broadening $B_{\gamma} = \frac{\sum_{i} |\vec{p}_{i} \times \vec{n}|}{2\sum_{i} |\vec{p}_{i}|} = \frac{\sum_{i} p_{i,\perp}}{2\sum_{i} |\vec{p}_{i}|}$
normalised invariant jet mass $\rho = \frac{(\sum_{i} p_{i,\perp})^{2}}{(2\sum_{i} E)^{2}}$
 C -parameter $C = \frac{3\sum_{ij} |\vec{p}_{i}| |\vec{p}_{j}| \sin^{2} \theta_{ij}}{2\sum_{ij} |\vec{p}_{i}| |\vec{p}_{j}|}$.
H1 uses massive hadrons
2 ZU assumes massless hadrons

 $(P ext{-scheme:} |ec{p}_h| ext{ preserved, } E_h ext{ rescaled})$

Event shapes F computed with

$$\langle F \rangle (Q) = \underbrace{\langle F \rangle}_{\mathcal{O}(\alpha_s^2)} + \underbrace{\langle F \rangle}_{f(\alpha_s,\overline{\alpha}_0)} + \underbrace{\langle F \rangle}_{f(\alpha_s,\overline{\alpha}_0)}$$

- NLO program non-perturbative effects
- Power corrections depend on
- α_s and non-pert. parameter $\overline{\alpha}_0$
- \Rightarrow 2-dim. fits to data
- H1 also fitted the event shape distributions

- ▷ fits suggest $\overline{\alpha_0} \approx 0.5 \pm 20\%$
- \triangleright spread in $\alpha_S(M_Z)$ suggests need for higher order corrections
- ▷ general reasonable and consistent description:
- ZEUS and H1 fits agree in general within errors, but some discrepancies still remain (au_C)

POWER CORRECTIONS AND RESUMMATIONS EVENT SHAPES

H1 has performed fits also to event shapes spectra:

- Q_{S} \Rightarrow can resummed QCD calculations help? $-\overline{lpha}_0$ simultaneous fit \rightarrow fit yields values inconsistent with those from event shapes means
- H1 data on jet mass ho and thrust au (wrt thust axis) spectra and QCD resummed results

1/N dn/dp

Jet Physics and Event Shape Studies at HERA

Conclusions

- NLO pQCD in general describes well jet data over large Q^2 and E_T^{jet} ranges BUT the theoretical uncertainties are among the largest, and limit high precision QCD tests
- \Rightarrow future jet studies at HERA will strongly benefit from higher order theoretical calculations

- α_s is extracted in DIS from a variety of jet observables
- the various α_s extracted values are consistent with each other and the world average

