

Eduardo Rodrigues NIKHEF

On behalf of the LHCb Collaboration Beauty 2006, Oxford, UK 25th-29th Sep 2006

- LHCb Experiment and Detector
- > Trigger strategy and overview
- Hardware trigger: Level-O components, decision unit, performance
- Software trigger: High Level Trigger farm, alleys, exclusive and inclusive strategies, decision, performance
- > Outlook

Eduardo Rodrigues

Beauty 2006, Oxford, 28th Sept 2006

LHCb Detector

Trigger Strategy & Overview

LHC(b) Environment
 Trigger Overview & Strategy

LHC(b) Environment

LHC ENVIRONMENT

- ▷ pp collisions at E_{CM} = 14 TeV
- t_{bunch} = 25 ns ↔ bunch crossing rate = 40 MHz
- > <L> = 2x10³² cm⁻² s⁻¹ @ LHCb interaction region
 - → 10-50 times lower than for ATLAS/CMS

CROSS SECTIONS

B-hadrons are heavy and long-lived !

Physical quantity	Value	Event rate	Yield / year	
σ total	~ 100 mb			
σvisible	~ 60 mb	~ 12 MHz		
σ (c-cbar)	~ 3.5 mb	~ 700 kHz	~ 7x10 ¹² pairs	
σ (b-bbar)	~ 0.5 mb	~ 100 kHz	~ 10 ¹² pairs	

EXPECTED B-SIGNAL RATES

- ▹ branching ratios ~ 10⁻⁹ 10⁻⁴
 - → 10 10⁶ events / year ?

Beauty 2006, Oxford, 28th Sept 2006

Trigger Strategy

Be alert !

Two-level Trigger

LO high E_T / P_T particles

- > hardware trigger, sub-detector specific implementation
- > pipelined operation, fixed latency of 4 μs
- > (minimum bias) rate reduction ~12 MHz -> 1 MHz

HLT: high E_T/P_T & high Impact Param. particles & displaced vertices & B-mass & ...

- > algorithms run on large PC farm with ~1800 nodes
- > several trigger streams to exploit and refine L0 triggering information
- > software reconstruction on part/all of the data
 - → tracking / vertexing with accuracy close to offline
- > selection and classification of interesting physics events
 - ➡ inclusive / exclusive streams
- rate reduction 1 MHz -> 2 kHz
- > estimated event size ~ 30kb

LO Strategy

LO Pile-up System

DETECTOR COMPONENTS

2 silicon planes upstream of nominal IP, part of the Vertex Locator (VELO)

STRATEGY : *identify multi-PV events*

- calculate z of vertices for all combinations of A & B
- Find highest peak in histogram of z
- remove hits contribution to that peak
- Find the second highest peak
 - → 2-interactions crossings identified with efficiency ~60% and purity ~95%

OUTPUT FOR LODU

- pile-up system (hit) multiplicity
- number of tracks on second peak/vertex

LO Calorimeter Trigger (1/2)

ECAL and HCAL

- ECAL: ~6000 cells, 4x4 to 12x12 cm²
- HCAL: ~1500 cells, 13x13 to 26x26 cm²
- Scintillator Pad Detector (SPD)
- Preshower (Prs)

LO Calorimeter Trigger (2/2)

STRATEGY

> identify high- E_{τ} hadrons / e's / γ 's / π^0 's using all 4 sub-detectors:

- ECAL and HCAL
 - \rightarrow large energy deposits $\langle \rangle$ E_T in 2x2 cells
- Scintillator Pad Detector (SPD) & Preshower (Prs)
 - → used for charged/electromagnetic nature of clusters, respectively (PID)

OUTPUT FOR LO DECISION UNIT (LODU)

- highest-E_T candidate of each type
 - → hadron / e / γ / 2 π^{0} 's ("local" and "global")
- global event variables
 - \rightarrow total E_T in HCAL <-> rejection of empty events
 - SPD hit multiplicity <-> rejection of busy events

LO Muon Trigger

DETECTOR COMPONENTS

M1 – M5 muon stations (4 quadrants each)

STRATEGY

- > straight-line search in M2–M5

 and extrapolation to M1 for momentum determination
 > momentum determination from M1-M2
 assuming muons from primary vertex
 (using a look-up table):
 - $\sigma_p/p \sim 20\%$ for b-decays

OUTPUT FOR LODU

> 2 muon candidates per each of the 4 quadrants

LO Trigger Hardware Status

For general status / commissioning of LHCb: see Lluís Garrido's / Gloria Corti's talks

LO TRIGGER

- commissioning due to start early 2007
 - \rightarrow ready for end of Summer 2007
- L0 candidates selection/validation cards ready for production

MUON SYSTEM FOR LO

- > chambers production and tests progressing well (tests with cosmics also performed)
- chambers installation to start now in October ...
- Full L0-muon trigger electronics chain being tested

CALORIMETER FOR LO

- > all CAL parts installed; ECAL & HCAL being commissioned, SPD, Prs will follow ...
- > L0-CAL trigger tests with realistic configuration in Autumn '06

LO Decision Unit (1/2)

Calorimeter

LO Decision Unit (2/2)

GLOBAL EVENT VARIABLES applied first ...

Global event cuts	Cut	Rate (MHz)	
ΣE_{T}	5.0 GeV	~ 8.3	
SPD multiplicity	280 hits	~ 13	~ 7
Tracks in 2 nd vertex	3		
Pile-up multiplicity	112 hits		

Redundancy: Sub-triggers overlap

... and then cuts on the E_T / P_T CANDIDATES

	Trigger	Threshold (GeV)	Approx. rate (kHz)		
	Hadron	3.6	700	700	
vent selection ^{µ2} = 0 possible	Electron	2.8	100	290	
	Photon	2.6	130		
	π ^o local	4.5	110	200	
	π ^o global	4.0	150		
	Muon	1.1	110	160	
	Di-muon	1.3	150		

Di-muon trigger is special

- not subject to the global event selection
- $P_T^{\mu\mu} = P_T^{\mu 1} + P_T^{\mu 2}$ with $P_T^{\mu 2} = 0$ possi
- "tags" clean B-signatures

LO Performance

Dedicated sub-triggers most relevant for each « channel type »

Eduardo Rodrigues

High Level Trigger

STRATEGY

INDEPENDENT ALLEYS:

Follow the L0 triggered candidate alley

 \rightarrow Muon, Muon + Hadron,

Hadron, ECal streams

Partial Reconstruction:

- A few tracks selected per alley (cuts e.g. on P_T, Impact Parameter, mass)
- full reconstruction done at the end of the alleys

Summary Information:

decision, type of trigger fired, info on what triggered

Trigger Farm

- Event Filter Farm with ~1800 nodes • (estimated from 2005 Real-Time Trigger **Challenge**)
- Sub-divided in 50 sub-farms •
- Readout from Level-0 at 1 MHz • → 50 Gb/s throughput
- Scalable design \leftrightarrow possible upgrade •••

HLT algos CPU time tested on a real farn \rightarrow will fit in the size of the farm foreseen

HLT Tracking / Reconstruction

RECONSTRUCTION STRATEGY

- Do reconstruction with VELO and select tracks with Impact Parameter
- Fast measurement of P_T (use TT or match VELO tracks with the muon stations)
- Refine P_T measurement (use T stations)

Hadron Alley - Strategy

Hadron Alley - Performance

HADRON PRETRIGGER

- Single hadron: IP>150μm, P_T>2.5 GeV
- **Double hadron** :IP>150μm, P_{T1}>1.1 GeV, P_{T2}>0.9 GeV
- 14% b content
- Signal efficiency:
 - ~80% for e.g. $B \rightarrow \pi\pi$, $B_s \rightarrow D_s K$

efficiency 90 80 Preliminary 70 60 50 $Bs \rightarrow DsK$ 40 Bs $\rightarrow \Phi \Phi$ Bd $\rightarrow \pi\pi$ 30 F Bd \rightarrow D* π 20 $Bd \rightarrow DoK^*$ 10 0.5 1.5 2 2.5 3 3.5 45

HADRON TRIGGER

- |IP|>100 μm, P_T> 1GeV
- Make 2 track vertices:
 - Dist. Of Closest Approach < 200 μm
- vertex "pointing" to PV
- 48% b content, 17% c content
- Signal efficiency: ~90% $B_s \rightarrow D_s K, B \rightarrow \pi \pi$

~4 kHz

Rate (kHz)

Muon Alley - Strategy

MUON PRETRIGGER

- Standalone μ reconstruction: $\sigma_p/p \sim 20\%$
- VELO tracks reconstruction
- Primary vertex reconstruction
- Match VELO tracks and muons: $\sigma_p/p \sim 5\%$

MUON TRIGGER

- Tracking of VELO track candidates in the downstream T stations: σ_p/p ~ 1%
- Refine µ identification: match long (VELO-T) tracks and muons

~20 kHz

~1.8 kHz

Muon Alley - Performance

MUON PRETRIGGER

- b→μ ~11%
- Signal efficiency: ~88%

MUON TRIGGER

- Single muon
 - $P_T > 3 GeV \text{ and } IPS > 3$
 - $B \rightarrow \mu$ content 60%
- Dimuon
 - mass >0.5GeV and IP>100µm
 - J/ψ : mass>2.5GeV (no IP cut!)
- Signal efficiency: ~87%

Inclusive Streams

STRATEGY

~250 Hz

- Full tracking reconstruction at a few kHz
- Select Inclusive streams (e.g. $D^*, D_s, \Phi, ...$)

D* INCLUSIVE STREAM

- Clear signal of $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$
- With very high statistics
 - Useful to calibrate Particle Identification

MUON INCLUSIVE STREAMS

- Single Muon: enhanced b-sample: $B \rightarrow \mu X$
 - 70% B-purity, enables trigger-check on unbiased other B-meson
 - · Could be used for studying the tagging performance

• Dimuon:

- J/Ψ, Ψ(2S), etc.
- Propertime resolution studies from prompt J/Ψ events
- Use narrow mass to study alignment, momentum calibration due to B-field
- Select a di-muon with no lifetime bias!

e LIICH IIIgger System

z5/27

Exclusive Selections

Outlook

CHCB TRIGGERS IN GOOD SHAPE

LEVEL-0

- strategy well defined
- good performance for B-decays
- rather flexible, robust, with built-in redundancy
- production of hardware components well under way
- commissioning early 2007

♦ HLT

- strategy details being finalized
- exploitation of Level-0 triggering information
- high efficiency for B-decays
- flexible and robust