

Eduardo Rodrigues On behalf of the LHCb VELO Group

11th ICATPP Conference Villa Olmo, Como, 5-9 Oct. 2009

Results from the first LHC beam reconstructed tracks in the LHCb Vertex Locator

The LHCb detector @ the LHC

VELO – VErtex LOcator

VELO commissioning highlights

First LHC-induced tracks with the VELO

The LHCb experiment @ the LHC

The VErtex LOcator – VELO

Trigger

- □ Fast reconstruction of primary vertices - select single-interaction collisions
- **Enrichment of B-content in selection**

Tracking

- Excellent pattern recognition
- Precise determination of track parameters

Vertexing

Precise reconstruction and separation of primary and secondary vertices

Π

Vertexing:& Tracking Expected primary vertex resolution ~10µm transverse plane and ~60µm in the longitudinal one

Expected tracking resolution $\delta p/p=0.35\%$ to 0.55%

Expected Impact parameter resolution σ_{IP} =13µm+35µm/p_T

Expected proper-time resol. ~40fs

VELO – overview

VELO – modules

Purpose :

- **Hold the sensors fixed wrt module support**
- **Connect electrical readout to the sensors**
- **Provide means of cooling to the sensors**

G Sensor-sensor positioning accuracy < 5μm

VELO – sensors

- □ Highly segmented; n⁺ on n
- **2048** strips per sensor
- **Radiation tolerant. Expected ratiation dose:**
 - $1.3 \cdot 10^{14} n_{eq}/cm^2/year at r = 0.8 cm$
 - 5 · 10¹²n_{eq}/cm²/year at r = 4.2 cm
- Design operation at -7 degrees

Φ sensors	R sensors
 Measure the azimuthal angle 	 Measure the radial distance
 Stereo angle 20° for the inner strips (10° for the outer strips) ⇒ 2 regions Pitch: 36 -97 µm 	 Divided in quadrants Pitch: 40 -102 μm

Eduardo Rodrigues

VELO modules & sensors

2007

- □ Installation
- Cosmics cannot be used for commissioning

2008

- Comparisons of noise level with data taken in assembly
- □ Single module operations under Neon atmosphere
- Multi-module testing, full half powered for the first time, etc.
- □ First operation in vacuum on 18th June
- **Gamma Full detector operated under vacuum**
- □ Cooling down of detector with modules @ -5 C
- Beam in SPS-to-LHC transfer line stopped on the « TED beam dump » on 22nd-24th August and 5th-6th September

2009

- **TED run in June**
- **U** Tuning of the timing
- □ High rate tests at 1 MHz
- Operation under final conditions (vacuum and temperature)
- Next TED run just a week away 12th Oct. !

"TED runs": see next slides ...

Tests with beam-induced tracks – TED runs

What are these "TED runs" ?

- Passage of secondary tracks through the LHCb detector coming from a dump of LHC's beam 2 on the TED
- TED=Transfer line External beam Dump
 - 4m W/Cu/Al/graphite rod in 1m iron casing
 - absorber located 340m before LHCb

Why does the VELO need them ?

Cosmics not exploitable given the VELO geometry

Goals of these real data sample studies:

- **D** Test the "DAQ recipes"
- **U** Tuning the timing
- **Commission the monitoring (online, offline)**
- □ Test the pattern recognition
- Check performance of alignment algorithms

TED runs – runs & data samples

http://lhcb-vd.web.cern.ch/lhcb-vd/html/first_events.htm

June 2009 TED run – VELO timing (1/2)

Procedure :

Eduardo Rodrigues

11th ICATPP Conference, Villa Olmc

June 2009 TED run – VELO timing (2/2)

Timing could be set with precision better than 2ns with ~100 clusters/sensor/step

June 2009 TED run – signal-to-noise

(ADC distributions fitted with a Landau)

June 2009 TED run – pattern recognition

□ Pseudo-efficiency calculated by interpolation, per sensor

Large search window: 5σ of resolution + tolerance of 100 μ m (5 mrad)

11th ICATPP Conference, Villa Olmo, Como, 5 Oct. 2009

Low intensity run: 2-5x10⁹ protons

High intensity run: ~10¹⁰ protons

TED runs – alignment

2008

- **Given Set 5** First alignment with real tracks
- Modules position differences with respect to metrology within 10 μm

2009

❑ High statistics ⇒ possible to check for the 1st time the distance between detector halves with "traversing tracks"

Detector closed: slight overlap of sensors

June 2009 TED run – VELO halves separation

Detector halves separated by 2.000mm and then moved to 2.450mm, i.e. $\Delta x = 450 \ \mu m$

□ Analysis based on only 1000 tracks determined the relative distance between the detector halves to be $\Delta x = 445 \pm 10 \mu m$!

Conclusions and Outlook

- VELO fully installed and tested
- First operation of full VELO back in June 2008
- First ever beam-induced tracks seen in August 2008
- Very successful commissioning with ~60000 tracks reconstructed
- Obtained resolution ~10 μ m and alignment better than 10 μ m
- Required performance for physics has been achieved

VELO ready for when the LHC beam will see

when traversing it !