The L0 Muon Trigger and Offline Selected Events

- Present relevant questions:
 - How the muon trigger affects the offline selection of interesting physics channels?
 - What are the present L0 efficiencies (normalised to offline selection)?
 - → For physics channels with available lists of selected run/event numbers

$$B_s \rightarrow J/\Psi(\mu\mu) \phi (KK)$$

$$B_d \rightarrow \pi \pi$$

→ inclusion of other channels as they become available ...

$$B_s \rightarrow Ds(KK\pi) K, B_d \rightarrow K^* \gamma$$

- First hints on the L0 bandwidth division with LHCb-light setup ...
- Effects of multiple interaction events and the pile-up veto

Details of the Study

Main set-up:

- single interaction events (taken from MC info)
- pile-up veto ignored
- > h+μ triggers -> 800 kHz
- > other triggers -> 200 kHz

Procedure:

- > vary the μ P_T threshold ...
- Arr adjust the hadron P_T threshold for h+μ = 800kHz (h/μ bandwidth division changes accordingly)
- > Repeat all including also true multiple interaction events

L0 Efficiency for B_s ->J/ $\Psi(\mu\mu)$ ϕ (KK) Offline Selected Events

Results encouraging!

- ✓ In the range 0.5-1 GeV
 (relevant for studies of muon group)
 the efficiency is rather constant
- ✓ At high P_T the eff. flattens off
 as the hadron trigger dominates
- ✓ Inclusion of multiple interactions has little effect

(efficiency calculated wrt offline selected events!)

Antagonistic Trigger Behaviours:

 B_s ->J/ $\Psi(\mu\mu)$ ϕ (KK) **and** B_d -> $\pi\pi$, B_s -> D_s (KK π) K

- Procedure repeated for other channels ...
 - > single interaction events
 - pile-up veto ignored
- □ B_s ->J/ $\Psi(\mu\mu) \phi$ (KK) eff. \rightleftharpoons P_T of μ
- \blacksquare B_d-> $\pi\pi$ eff. \nearrow P_T of μ at low end
- □ B_s -> $D_s K$ eff. \nearrow P_T of μ at low end
- Bandwidth division has net effect!
- $ightharpoonup P_T$ of $\mu \sim 0.8-1$ GeV preferred ...

Simple Model for the Pile-up Veto

- Present pile-up veto is known to be vetoeing too much
- → use simple model: veto if height of 2nd peak of algorithm > 2

Simple Model for the Pile-up Veto (II)

* recovers ~ 15% of signal events (from hPeak2 cut at 2 -> 3)

Simple Model for the Pile-up Veto : effect on B_s -> $J/\Psi(\mu\mu) \phi$ (KK)

- A "softer" pile-up veto has a small effect on the L0 efficiency for selected events
- Data seems to indicate that we can cope (to a certain extent) with multiple Interaction events
- same conclusion can be drawn for (at least) B_d -> $\pi\pi$

