Impact of mis-alignments on propertime resolution

Eduardo Rodrigues, NIKHEF

LHCb Propertime \& Mixing WG Meeting, CERN, 21st June 2007

Contents

I. Goal

II. Methodology
III. Landmark of today's presentation
IV. First results without mis-alignments
V. Final remarks
VI. Future plans

Goal

STUDY THE EFFECT OF MISALIGNMENTS ON THE PROPERTIME (RESOLUTION)

- Run various misalignment scenarios
- most relevant: difficult to constrain degrees of freedom
- "random" (small) displacements/rotations
- Determine the effect on the propertime resolution
- which degrees of freedom affect most the propertime?
- feedback to those doing alignment: what degrees of freedom do we really have to get right?
- can our resolution models (still) cope with the misalignments?

Methodology

B-SELECTION IN DAVINCI :

- Start with reconstructed \& selected B-mesons in DaVinci - ex.: $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi(\mu \mu) \phi(\mathrm{K} K)$
- Get the tracks which form the final state of the B - the μ 's \& the K's tracks

MAKE NEW B FROM REFITTED TRACKS WITH MISALIGNMENTS:

- Refit the "final state" tracks with a mis-aligned geometry
- lie to the reconstruction about the geometry of the detector, using a geometry with misalignments, not corresponding to the one in simulation/initial recons.
- Re-build the B from the refitted tracks
- tracks \rightarrow proto-particles \rightarrow particles (μ 's, K's) \rightarrow particles (J/ Ψ, ϕ) \rightarrow B-meson

PROPERTIME STUDY:

- Compute propertime of "original" and "refitted" B
- compare propertime difference wrt typical propertime error
- quick: only refitting a few tracks per event
- statistically powerful: fully correlated samples

Landmark of today's presentation

Proof of principle: follow method with no misalignment

- Set up all the machinery : not so trivial!
- Check there is no bug / l'm doing the right thing ;-)
- Check the sensitivity of the method itself

First results without mis-alignments (1/4)

First results without mis-alignments (2/4)

First results without mis-alignments (3/4)

Propertime before \& after refit

are very well correlated !

First results without mis-alignments (4/4)

Final remarks

AVAILABLE SOFTMARE/TOOLS:

$>$ DaVinci \& co., but not much is available to do all I need
$>$ using PropertimeFitter, Particle2State tools, etc.
$>$ playing with (private version of) the conditions database

PRIVATE SOFTWARE/TOOLS:

$>$ options to be able to refit tracks
$>$ private Python algorithm to do the sequence
"final state" tracks \rightarrow proto-particles \rightarrow particles (μ 's, K's)
> simplified options files (ex. taken from PhysSel/Bs2JpsiPhi) for the sequence particles (μ 's, K's) \rightarrow particles ($\mathrm{J} / \Psi, \phi$) \rightarrow B-meson
$>$ will investigate what can be further used from DaVinci
$>$ maybe existing tools can be adapted/"generalized"?
$>$ running the job as a standalone (Gaudi)Python job

Future plans

APPLY MISALIGNMENTS:

$>$ collect set of useful misalignments to consider
$>$ for now will use sub-detector tolerance numbers in the
(draft) note on "Overview of LHCb misalignment challenge" from S. Blusk
> input from sub-detector experts welcome ;-)

STUDIES WITH MISALIGNMENTS:

$>$ make a micro DST with the minimal DaVinci output info I need, using the nominal geometry
$>$ use local copy of conditions database with tags for each misalignment
$>$ Read back micro DST and perform the study with misaligned geom., i.e. refit the tracks, rebuild the B, etc. ...

