| Motivation and Overview | VELO Misalignments | IT/OT Misalignments | Plans and Conclusions | Spares |
|-------------------------|--------------------|---------------------|-----------------------|--------|
|                         |                    |                     |                       |        |

# $B \rightarrow hh$ misalignment studies

### Marco Gersabeck, Jacopo Nardulli, Eduardo Rodrigues

## CP WG Meeting, CERN, 19 December 2007



University of Glasgow

Marco Gersabeck

| Motivation and Overview | VELO Misalignments | IT/OT Misalignments | Plans and Conclusions | Spares |
|-------------------------|--------------------|---------------------|-----------------------|--------|
| Outline                 |                    |                     |                       |        |

Outline

- Motivation and Overview
- VELO Misalignments
- IT/OT Misalignments
- Plans and Conclusions



| Motivation and Overview<br>●○○ | VELO Misalignments | IT/OT Misalignments | Plans and Conclusions | Spares |
|--------------------------------|--------------------|---------------------|-----------------------|--------|
| Motivation                     |                    |                     |                       |        |

- Study effects of a misaligned tracking system on measurements with  $B \rightarrow hh$ .
- Chapter 1 (presented here)
  - Systematically study effect of misalignments purely based on their size.
  - Does not involve any assumptions on quality of metrology or alignment software.
  - Gives a good overview and shows critical alignment DOFs.
- Chapter 2 (future studies)
  - Study remaining misalignment effects after application of alignment algorithms.
  - Use alignment challenge data.
  - Detect potential bias coming from alignment software.



| Motivation and Overview<br>○●○ | VELO Misalignments | IT/OT Misalignments | Plans and Conclusions | Spares |
|--------------------------------|--------------------|---------------------|-----------------------|--------|
| Chapter 1                      |                    |                     |                       |        |

- Create random misalignments for VELO sensors/modules and IT/OT layers.
- Choose scale (Gaussian sigma) to be ≈ 0.3 of the detector's single hit resolution. (called 1σ)
- Generate 10 sets of '1 $\sigma$ ' misalignments and apply each to  $2k B_d \rightarrow \pi\pi$  events<sup>1</sup>.
  - $\Rightarrow$  This gives a 20*k* sample suppressing potentially 'friendly' or 'catastrophic' misalignment sets.
- Create other sets with misalignment scales increased by factors 3 (3σ) and 5 (5σ).

<sup>1</sup>Misalignment are applied at reconstruction level (Brunel v31r11) to  $\bigcup_{fG}$  events generated with perfect geometry.

Marco Gersabeck

University of Glasgow

| Motivation and Overview | VELO Misalignments | IT/OT Misalignments | Plans and Conclusions | Spares |
|-------------------------|--------------------|---------------------|-----------------------|--------|
| Misalignmen             | t scales           |                     |                       |        |

Scales shown here are for the  $1\sigma$  set (in  $\mu$ m and mrad).

|             | translations |            |            | rotations       |              |                 |
|-------------|--------------|------------|------------|-----------------|--------------|-----------------|
|             | $\Delta_x$   | $\Delta_y$ | $\Delta_z$ | $\Delta_{lpha}$ | $\Delta_eta$ | $\Delta_\gamma$ |
| VELO sensor | 3            | 3          | 10         | 1.00            | 1.00         | 0.20            |
| VELO module | 3            | 3          | 10         | 1.00            | 1.00         | 0.20            |
| IT layer    | 15           | 15         | 50         | 0.10            | 0.10         | 0.10            |
| OT layer    | 50           | 0          | 100        | 0.05            | 0.05         | 0.05            |





#### Marco Gersabeck

University of Glasgow

| Motivation and Overview | VELO Misalignments<br>●○○ | IT/OT Misalignments | Plans and Conclusions | Spares |
|-------------------------|---------------------------|---------------------|-----------------------|--------|
| VELO results            | ;                         |                     |                       |        |

• Event numbers and pattern recognition efficiencies after standard  $B \rightarrow hh$  selection.

|           | N <sub>sel</sub> | $\epsilon_{\it forward}$ | $\epsilon_{\textit{match}}$ |
|-----------|------------------|--------------------------|-----------------------------|
| 0σ        | 4185             | 0.86                     | 0.81                        |
| $1\sigma$ | 3978             | 0.86                     | 0.80                        |
| $3\sigma$ | 2617             | 0.84                     | 0.78                        |
| $5\sigma$ | 1355             | 0.81                     | 0.76                        |



 $\epsilon_{\textit{match}}$  for  $5\sigma$  sample

- Effect on PR is small
  - $\Rightarrow$  loss of events has to come from selection



| Motivation and Overview | VELO Misalignments<br>○●○ | IT/OT Misalignments | Plans and Conclusions | Spares |
|-------------------------|---------------------------|---------------------|-----------------------|--------|
|                         |                           |                     |                       |        |

## Effect on selection



- Biggest effect comes from tight upper cut on B impact parameter significance (*IPS*(*B<sub>d</sub>*) < 2.5).</p>
- Additional effect on lower IPS cut of daughters.





• Proper time resolution after standard  $B \rightarrow hh$  selection.



Marco Gersabeck

University of Glasgow

| Motivation and Overview | VELO Misalignments | IT/OT Misalignments<br>●੦੦ | Plans and Conclusions | Spares |
|-------------------------|--------------------|----------------------------|-----------------------|--------|
| IT/OT results           |                    |                            |                       |        |

• Event numbers and pattern recognition efficiencies after standard  $B \rightarrow hh$  selection.



- Forward pattern recognition seems to collapse under the weight of the misalignments. Forward is the only PR used in the trigger!
- ► Effect on trigger will also be followed by Eduardo's studies on  $B \rightarrow hh$  & HLT.





#### Marco Gersabeck

University of Glasgow



• Mass resolution after standard  $B \rightarrow hh$  selection.



Marco Gersabeck

| Motivation and Overview | VELO Misalignments | IT/OT Misalignments | Plans and Conclusions<br>●○ | Spares |
|-------------------------|--------------------|---------------------|-----------------------------|--------|
| Plans                   |                    |                     |                             |        |

- Look at combined VELO and T station misalignments (First look didn't show any surprises)
- Look at more variables
  Towards B2hhFit: What input variables have to be changed? (σ<sub>m</sub>, B/S, σ<sub>τ</sub>, ...)
- Chapter 2: Study the 're-aligned' case in the alignment challenge
- Study other effects like z-scaling
- Any wishes for particular variables to be checked?



| Motivation and Overview | VELO Misalignments | IT/OT Misalignments | Plans and Conclusions<br>○● | Spares |
|-------------------------|--------------------|---------------------|-----------------------------|--------|
| Conclusions             |                    |                     |                             |        |

- ▶ VELO misalignments strongly affect  $B \rightarrow hh$  selection and proper time resolution.
- T station misalignments critically affect forward PR.
  > very bad for trigger! To be followed up...
- If software alignment is better than our '1σ' case things look fine.
- Looking forward to chapter 2!



University of Glasgow

| Motivation and Overview | VELO Misalignments | IT/OT Misalignments | Plans and Conclusions | Spares |
|-------------------------|--------------------|---------------------|-----------------------|--------|
| VELO results            |                    |                     |                       |        |

▶ Pattern recognition efficiencies in  $B \rightarrow hh$  study and LHCb alignment challenge.

.

|   |                                                                                                    |           | $\epsilon_{V\!elo3D}$ | $\epsilon_{TSA}$ | $\epsilon_{\textit{match}}$ | $\epsilon_{\it forward}$ |  |
|---|----------------------------------------------------------------------------------------------------|-----------|-----------------------|------------------|-----------------------------|--------------------------|--|
|   | B2hh 0                                                                                             | $\sigma$  | 0.97                  | 0.92             | 0.81                        | 0.86                     |  |
|   | B2hh T                                                                                             | $5\sigma$ | 0.97                  | 0.90             | 0.77                        | 0.15                     |  |
|   | MisAlC                                                                                             | h1        | 0.67                  | 0.80             | 0.48                        | 0.41                     |  |
|   | MisAIC                                                                                             | h2        | 0.33                  | 0.53             | 0.12                        | 0.07                     |  |
|   | 1                                                                                                  |           |                       |                  |                             | ,                        |  |
|   | $\epsilon_{match}/(\epsilon_{Velo3D} 	imes \epsilon_{TSA}) = \epsilon_{forward}/\epsilon_{Velo3D}$ |           |                       |                  |                             | )3L                      |  |
| - |                                                                                                    |           |                       |                  |                             |                          |  |

|                  | $\epsilon_{\textit{match}}/(\epsilon_{\textit{Velo3D}}	imes\epsilon_{\textit{TSA}})$ | $\epsilon_{forward}/\epsilon_{Velo3D}$ |
|------------------|--------------------------------------------------------------------------------------|----------------------------------------|
| B2hh 0 $\sigma$  | 0.91                                                                                 | 0.89                                   |
| B2hh T5 $\sigma$ | 0.88                                                                                 | 0.15                                   |
| MisAlCh1         | 0.89                                                                                 | 0.61                                   |
| MisAlCh2         | 0.71                                                                                 | 0.21                                   |

Marco Gersabeck

University of Glasgow

University of Glasgow