

First studies on rare $B \rightarrow hh$ decays Today – report primarily on $B \rightarrow p$ pbar

Eduardo Rodrigues, Chris Parkes University of Glasgow

LHCb CP Measurements WG meeting, CERN, 15 April 2008

Outline

Motivations

- theory and experimental review of (rare) charmless baryonic B decays
- Brief reminder of Bd \rightarrow KK and Bs \rightarrow pp

First steps in the analysis of $B \rightarrow p$ pbar decays

- kinematics
- long tracks, "standard loose protons"

$B \rightarrow p$ pbar pre-selection: making of

- distributions of cut variables
- pre-selection cuts
- background and reduction factors

Theory review / B. R.s Experimental review

Reminder from CP meeting 31/01/2008

Charmless baryonic B decays: theoretical predictions

4/37

Charmless baryonic B decays: measurements (1/2)

Heavy Flavor Averaging Group

Aug. 2007

No 2-body decay discovered

Compilation of B^+ Baryonic Branching Fractions All branching fractions are in units of 10^{-6} ; limits are 90% CL

In PDG2006 New since PDG2006 (preliminary) New since PDG2006 (published)

RPP#	Mode	PDG2006 Avg.	BABAR	Belle	CLEO	New Avg.	
286	$p\overline{p}\pi^+$	$3.1^{+0.8}_{-0.7}$	$1.69 \pm 0.29 \pm 0.26 \dagger$	$1.68^{+0.26}_{-0.22} \pm 0.12 \ddagger$	< 160	$1.69^{+0.24}_{-0.22}$	
289	$p\overline{p}K^+$	5.6 ± 1.0	$6.7 \pm 0.5 \pm 0.4 ~\dagger$	$5.98^{+0.29}_{-0.27} \pm 0.39 \ddagger$		$6.24_{-0.38}^{+0.39}$	
290	⊖++ <u></u> 7 *	< 0.091	< 0.09	< 0.091		< 0.09	
291	$f_J(2221)K^+ *$	< 0.41		< 0.41		< 0.41	
292	$p\overline{\Lambda}(1520)$	< 1.5	< 1.5			< 1.5	
294	$p\overline{p}K^{*+}$	$10.3^{+3.6+1.3}_{-2.8-1.7}$	$5.3 \pm 1.5 \pm 1.3 ~\dagger$	$10.3^{+3.6+1.3}_{-2.8-1.7}$ ‡		6.6 ± 1.7	Easy with
_	$f_J(2221)K^{*+*}$	New	< 0.77			< 0.77	LHCb?
295	$p\overline{\Lambda}$	< 0.49		< 0.32	< 1.5	< 0.32	
_	$p\overline{\Lambda}\pi^0$	New		$3.00^{+0.61}_{-0.53} \pm 0.33$		$3.00^{+0.69}_{-0.62}$	
-	$p\overline{\Sigma}(1385)^0$	New		< 0.47		< 0.47	
-	$\triangle^+\overline{\Lambda}$	New		< 0.82		< 0.82	
299	$\Lambda \overline{\Lambda} \pi^+$	< 2.8		< 2.8 ‡		< 2.8 ‡	
300	$\Lambda \overline{\Lambda} K^+$	$2.9^{+0.9}_{-0.7} \pm 0.4$		2.9 +0.9 ± 0.4 ‡		$2.9^{+1.0}_{-0.8}$	
301	$\overline{\bigtriangleup}^{0}p$	< 380		< 1.42	< 380	< 1.42	
302	$\triangle^{++}\overline{p}$	< 150		< 0.14	< 150	< 0.14	

§Di-baryon mass is less than 2.85 GeV/ c^2 ; † Charmonium decays to $p\bar{p}$ have been statistically subtracted.

‡ The charmonium mass region has been vetoed. * Product BF - daughter BF taken to be 100%: $\Theta(1540)^{++} \rightarrow K^+p$ (pentaquark candidate);

Charmless baryonic B decays: measurements (2/2)

§Di-baryon mass is less than 2.85 GeV/ c^2 ; † Charmonium decays to $p\bar{p}$ have been statistically subtracted. ‡ The charmonium mass region has been vetoed. * Product BF - daughter BF taken to be 100%; $\Theta(1540)^+ \rightarrow pK^0$ (pentaquark candidate).

* Belle collab., hep-ex/0703048v1

Reminder from CP meeting 31/01/2008 LHCb CP WG Meeting, CERN, 15 April 2008

Charmless baryonic B decays in LHCb

□ Several 3-body decays observed by BaBar and/or Belle; e.g. :

$$B^{-} \to p\overline{\Lambda}\pi^{-} , \quad B^{+} \to p\overline{p}\pi^{+} , \quad B^{0} \to p\overline{p}K^{0}$$
$$B^{+} \to p\overline{p}K^{*+} , \quad B^{+} \to \Lambda\overline{\Lambda}K^{+} , \quad B^{+} \to p\overline{\Lambda}\gamma$$

• Branching fractions ~10⁻⁶

- □ But no 2-body decays yet discovered! At least at the level of 10⁻⁷-ish ...
- Note: calculations tricky and not all "schools" in agreement ...
- Glasgow group wants to change this and exploit large LHCb samples "from day 1"
- Focus first on the easiest: 2-body proton- antiproton final state!
- $\Box \quad \text{Will also study rare B} \rightarrow \text{hh decays}$
 - □ First studies done with DC04 data by Charlotte Newby (CERN-THESIS 2007-018)
 - □ Expect ~ 2000 $B_d \rightarrow KK$ and $B_s \rightarrow \pi\pi$ events per nominal year

assuming branching ratios 10x smaller than ${\rm B_d} \to \pi\pi$, etc.

First steps in the analysis of $B \rightarrow p\overline{p}$ decays

Software versions

- □ B-decay DSTs produced with Brunel v30r14
- **b** bbar inclusive DSTs produced with Brunel v30r14
- □ Minimum bias DSTs produced with Brunel v30r17
- □ All analyses done with DaVinci v19r11p1

- on signal samples
- ~ half of the events do not have
- both B-daughters in the acceptance

Kinematics of decay

Distributions for events with both MC B-daughter protons are in LHCb acceptance

MC-truth distributions when both protons in acceptance

Long tracks

Distributions for events with both MC B-daughter protons are in LHCb acceptance

Input tracks: « long tracks »

- □ B signal sample contains ~ 32 long tracks per event
- **On a B** \rightarrow p pbar sample just over 3 long tracks are real protons
- □ We should not have to deal with large combinatorics ...
 - ... provided the PID is excellent ;-)

Standard loose protons

Distributions for events with both MC B-daughter protons are in LHCb acceptance

Input particles: « standard loose protons » (1/5)

All loose protons

On average, we start from ~ 3.4 long tracks that are real protons and the "standard loose" PID provides ~ 11 "standard loose protons"

- □ Only ~2.9 "standard loose protons" are real protons
- Proton PID inefficiencies account for the difference

Loose protons MC-matched to protons

Eduardo Rodrigues

Input particles: « standard loose protons » (2/5)

Input particles: « standard loose protons » (3/5)

Eduardo Rodrigues

LHCb CP WG Meeting, CERN, 15 April 2008

Input particles: « standard loose protons » (4/5)

Purity loose protons versus p_T cut

□ A p_T cut helps the PID

Input particles: « standard loose protons » (5/5)

The B signal is indeed present even without any (pre-)selection
 ... on a signal sample ;-)

Pre-selection: making of

□ What variables do we have at hand?

□ Let's look at some distributions before any pre-selection ...

Well, nearly dummy cuts applied so as to be able to use the "DaVinci machinery" ;-) :

- "standard loose protons" are defined with $\Delta \ln \mathcal{L}_{p\pi} > -5$
- minimum p_T of B-daughters > 100 MeV
- B-candidate invariant mass within 2 GeV

Distributions for signal and b-inclusive background (1/6)

Eduardo Rodrigues

LHCb CP WG Meeting, CERN, 15 April 2008

Distributions for signal and b-inclusive background (2/6)

Eduardo Rodrigues

Distributions for signal and b-inclusive background (3/6)

Distributions for signal and b-inclusive background (4/6)

Distributions for signal and b-inclusive background (5/6)

Distributions for signal and b-inclusive background (6/6)

B invariant mass resolution on signal

> This is promising ...

Goal:

- **Define a loose set of cuts for stripping**
- Keep as much signal as possible while rejecting as much background as possible

"Optimisation":

- Vary a few of the cuts considered and check reduction factor on a b-bbar inclusive background
- **Cross-check reduction factor on signal**
- **Given Series 1** First look at reduction factor on minimum bias

At the end:

Better knowledge of possible/potential sources of background

Pre-selection cuts consist of various requirements:

Particle identification:

p- π separation based on PID likelihood difference ($\Delta ln \mathcal{L}_{p\pi}$)

Topological:

clear separation of primary vertex and B-decay vertex

B-daughters impact parameter (IP) and B-decay length significance

Kinematic:

minimal B-daughters transverse momentum

- □ Vertexing:
- χ² of vertex fit to B-daughters

Mass:

mass window cut on invariant mass of B-daughters

• Other cuts possible but not considered: e.g. p_T of B, $\Delta ln \mathcal{L}_{pK}$

Example of cut not considered: p_T of B candidate

Cut variable	Cut value		
B-mass window	± 600 MeV		
min p _T of each B-daughter	800 MeV		
min p _T of at least one B-daughter	1600 MeV		
B-verte χ ²	< 15		
min IPS of each B-daughter	> 3.5		
min IPS of at least one B-daughter	> 4.0		
IPS of B-vertex	< 6		
B flight distance significance	> 10		

Backgrounds and reduction factors

Note: 40k samples

Reduction factors:

in each case

- □ 3.5 on signal for ~2200 on b-bbar inclusive background
- □ No minimum bias event passed in a sample of 40k
 - clearly this needs to be checked on much larger a sample ...
 - ... keep fingers crossed ...

Specific background :

D Looked at $B_s \rightarrow KK$, $B^0 \rightarrow KK$ and $\Lambda_b \rightarrow pK$:

all contribute as background (main contributor is $\Lambda_b \to pK$)

- □ Note: Belle reports B-decay background to be negligible in their selection. They are dominated by $e^+e^- \rightarrow q$ qbar background
- □ We just started looking at background. Much more to be done ...
 - e.g.: do we need to apply DLL cuts at pre-selection level?
 - look at channels such as B \rightarrow hh with misid., 3-body B-decays with 2 protons in final state, $\Lambda_b \rightarrow$ p+anything, etc.

Path towards a selection

Investigating TMVA for cut optimisation

Proof of principle only

- arbitrary normalisation

Trained with

- samples: $B_s \to K^+ K^-, B^0 \to K^+ K^-, \Lambda_b \to p K^-$
- variables:

 $B^0\,$: mass, vertex $\chi^2,$ IPS , Flight distance signif., proton : $p_T,$ IPS, proton ID

Conclusions and outlook (1/2)

□ No 2-body baryonic charmless decays observed so far, e.g

 $B^0 \to p\overline{p}$, $B^0 \to \Lambda\overline{\Lambda}$, $B^+ \to p\overline{\Lambda}$

Theoretical calculations/predictions do not always agree
 some limits already exclude certain models

Focus for now on early measurement of pp mode: is easiest for LHCb

- we could expect of order 1000-3000 events per nominal year?
- first pre-selection is available and performance seems very reasonable

⇒ Possible observation by LHCb of first 2-body baryonic B decay

 \Box We could also look e.g. at Λ 's ... see the decays above ...

- **Cross-check (stripping) pre-selection satisfies all requirements**
- □ And release the agreed-upon pre-selection
- Work on a "final" selection starting from pre-selected events
 use TMVA for the optimisation task
- **D** Pay particular attention to protons particle identification
 - not very much studied so far since LHCb benchmark channels do not contain protons
 - Can anything be gained here?
- □ In parallel will start work on $B^0 \rightarrow KK$ and $B_s \rightarrow \pi\pi$