
Tracking Event Model, StatusTracking Event Model, Status

The plan,

In the Step I

“Looking at the bright side of life…”

In the Step II

Conclusion, plans

Status of the Tracking Event ModelStatus of the Tracking Event Model

Jose A. Hernando, E. Jose A. Hernando, E. RodriguesRodrigues

PlanPlan
Motivation:

Revisit the tracking code to try to improve the design
Unify code on/off line and define an interface for the clients

Define a Track! (for on/off line)
Define base classes (data and tools) for and tracking developers

Method:
Modify the current code adiabatically
Reusing almost all the code: “adapting” and not “replacing”

Organization:
Task Force (G. Raven) to:

‘define the classes, requirements and implementation constrains’
Plan:

Step I: Interfaces for clients
Track, State, ITrackExtrapolator

Step II: Tracking interfaces
Measurement, Node, FitTrack, ITrackProjector, ITrackFitter

Scale:
6 months

Step I: The classes, current viewStep I: The classes, current view

Track

A TRACK:

flag (bitField) TYPE, HISTORY, FLAG

chi2/ndof, ndof (quality)

physics State = “The persistent State”

<States*> = “the *transient* states”

<LHCbID> = list of LHCbID

Methods:

Access to physics state: p,pt, slopes, position

Access states: at z, plane, LOCATION

State
A STATE:

flag (bitField) TYPE, LOCATION

vector-state, covariance, z

Methods:

Access to physics contents: pt(),p()

ITrackExtrapolator
A Extrapolator: extrapolate a Track/State

Main method: propagate(State, z)

Methods:

propagate the track

get directly physics values:

i.e momentum(track,z)

transportMatrix() (F)

Status, Step IStatus, Step I
Define the client Interfaces

Track, State, ITrackExtrapolator
After long discussions, many compromises, Dec 04

Track finally ‘controlled’ by persistency, a skeleton of a track
A complex and powerful bitfield class

Having some Tracks
Converters: Jan 05

Tr/TrConverters, TrStoredTrack -> Track
Trg/TrgConverter TrgTracks -> Track

Extrapolators
Interface:

Kernel/LHCbInterfaces, Jan 05
Implementations: in

Tr/TrackExtrapolators; base tool : TrackExtrapolator
Linear: TrackLinearExtrapolator Jan05
Others: Parabolic, FastParabolic, Herab, FirstClever, Mar05

Propagators work, but more testing needed
Intersection with a plane temporally simplified

Saving the Tracks:
In progress, we got some problems with persistency, need some help with custom DSTs

Status, Step I (cont)Status, Step I (cont)
Making the Tracks, Tracks!

In private area:
Event/TrgEvent, TrgTrack inheriting from Track, Mar05
A TrgTrack now is Track!, TrgState is in fact just a State

As an exercise:
Trg/TrgVelo using the new TrgTrack, Mar05

In the yellow light, waiting the green light: (end Mar 05)
Commit the new TrgTrack, update the Trg Packages

Implications:
Trg will get a new version
I see no particular problems…, just a delicate work

– We use a Python tool to help us (see next transparency)
It will require revisiting/fixing LHCbID to do:

– The linking with MC:
– The Buffer Tampering

Using the new Tracks:
Ideal Pattern Recognition

In Tr/TrackIdealPR If we can not do it here, forget it!
Minor changes to make independent of old TEM

In Panoramix
In Vis/SoEvent (SoTrackCnv) Mar05
Of course we need to draw Tracks, (one for all?)

Status, Step I (and cont)Status, Step I (and cont)
Migrating

Updating/replacing Clients code: TrCheck, ParticleMaker, Calorimeter, Rich…
With a Python tool

python translate_to_new_tracking.py –f *.cpp *.h –r False
Create new cpp and header files
Replacing the old Trg/TrStored code to the new Tracking
It works quite nice ☺ but of course do not expect a miracle
We tuned the tool with Trg.
We need a guinea-pig (some client code) to be replaced and to tune the tool
When the tool is tuned up, we advertise it, you run the tool in your package, try to
compile…

– If still too many complicated errors show up…
– Just contact us and we will try to make the compilation
– You check them later…

It is a general tool to replace any work for another in files
translate_to_new_tracking.py –f *.cpp *.h –i red –o green –r False

Idea:
All code that uses the Track interface is valid for any type of Track!
Ie. Drawing in Panoramix

Interactive reconstructionInteractive reconstruction

How to make the reconstruction interactive?: via Python
From Python you can execute and use C++ code
Python is an interactive language, has introspection

>> dir(track)
Other pros: Python is very intuitive, dynamically typed, no pointers, heterogenic
containers, dictionaries…
One develop code ~4 times faster than in C++

GaudyPython and Bender
Pere already exposed Gaudi framework to Python

>> gaudi.run(1)
Vanya has exposed most of DaVinci tools/data for analysis, including his ‘meta-
language’ LoKI in Python

Idea:
Expose the base track data classes and interfaces tracking tools to Python
The base tracking classes allow to write code in a base level for reconstruction

You will be able to do this code in Python and check it interactively
You can debug/test and develop tracking code with the Base classes in Python

That is what we are doing already!

“Reconstruction sans frontières”

Looking at the bright side of life…Looking at the bright side of life…
Already done:

Expose ITrackExtrapolator, Track/State to Python, thanks to Vanya and Pere, Mar 05
Example:

pol = extrapolator(“TrackParabolicExtrapolator”)
state = track.physicsState().clone()
pol.propagate(state,z=1000.)

And Panoramix?:
Panoramix has methods exposed to Python (Guy also was in the business :)

So we can ‘use’ Panoramix from Python
The other direction is needed (and can be made), nice requirement

If you click in a Track in Panoramix you can get the Object in your Python prompt!
In the future:

We will expose to Python:
Measurement and ITrackProjector, Measurement/FitTrack and IFitter

Some things that will be possible to do interactively :
Pattern Recognition algorithms:

– extrapolate this track to ‘here’, get the best measurement, update the track
Refitting

– Replace/Remove this measurement and refit
– Change the fitter and refit, change the extrapolator (this has better error estimate…) and refit

Alignment:
– I want to try this new set of parameters, replace the Projector, refit the track or the Event

Interactive and with displayInteractive and with display
Python:

Just import modules: PyROOT, Hippys
pol = extrapolator(“TrackParabolicExtrapolator”)

state = track.physicsState().clone()

z = state.z(), xx = [], zz = []

for i in range(50):

z = z + 10

pol.propagate(state,z)

xx.append(state.x())

zz.append(z)

hxy(z,x)

Preliminary: Tracks in Panoramix A scatter plot from a Python prompt

Step II: The Step II: The clasesclases

FitTrackA FitTrack:

<Measurement*>

<Nodes*>

Methods:

Add/remove measurements

Nodes are the ‘Transient’ state of the
Track while fitting it

Measurement
A Measurement:

type (I.e RVelo)

z, measure, error (double)

LHCbID

ITrackProjector

A Projector: Project a state into a measurement

Main method: project(State, Measurement)

Internally deals with the Alignment/Calibration

Methods:

residual, chi2, node, ProjectionMatrix (H)

NodeA Node:

type (I.e RVelo)

Measurement* (“refined”)

State*

residual, error

Methods:

chi2(), …

Internal?…

A DRAFT VERSION

IFitter

Step II, Status and PlansStep II, Status and Plans

Define the client Interfaces:
Measurement, Node, FitTrack, ITrackProjector, Ifitter

http://cern.ch/eduardo.rodrigues/lhcb/tracking
Please contact us if you want to discuss them…
A draft version in:

Event/TrackEvent and Event/FitTrackEvent
Next steps:

Creating Measurements from Clusters
Coding the projectors
Expose them to Python
Check how they work…
Make the Kalman Filter work with Projectors and Extrapolator

The present code already has almost the ‘same’ philosophy.
A delicate work from Tr/TrFitter to Tr/TrackFitter

Study of how to refit the Track starting only from Track
It could imply to write in persistency some extra info (Marcel, Matt)

Conclusions and PlansConclusions and Plans

Status:
Steady work, many fronts, small forces (E.R,JAH, Edwin Bos –Nikhef-)
Guide by G. Raven as a Task Force.

In the Plans
Step I

TrgTracks to be Track
Tune the Python tool to migrate code to the new tracking
To have Ideal Pattern Recognition

Step II
Code Measurement, Projectors,
Adapt Fitter package
PR packages will follow accordingly with Task Force

In the Python front:
Expose the base classes inside Bender

– “Bender”: exposing LHCb code (DaVinci, LoKi, Brunell) into Python
Interact with Panoramix

This A C++ chirurgic operation:
For the moment the patient behaves fine, no anesthesia applied yet

