

Eduardo Rodrigues, CERN

I. Behaviour of the LO sub-triggers

- overflap between them
- conditional probabilities -> how useful is a sub-trigger given the "main trigger"?

II. Efficiency for hadron-dominated channels: $B_s \rightarrow D_s K$

- relative importance of the various sub-triggers
- some Monte Carlo studies

Overlapping LO trigger rates (off-diagonal terms)

Exclusive LO trigger rates (diagonal terms)

M. B. rate (kHz)	hadron	electron	photon	π^0 local	π^0 global	muon	$\Sigma p_{\mathrm{T}}^{\mu}$
hadron	561	47	50	58	76	27	24
electron		27	11	44	51	4	4
photon		₹6 - E	44	43	53	5	4
π^0 local				7	81	6	5
π^0 global	-61				15	7	6
muon						13	93
$\Sigma p_{\mathrm{T}}^{\mu}$		776		(V)**	194		51
Inclusive M. B. rate (kHz) 705	103	126	110	145	110	145

Inclusive trigger rates

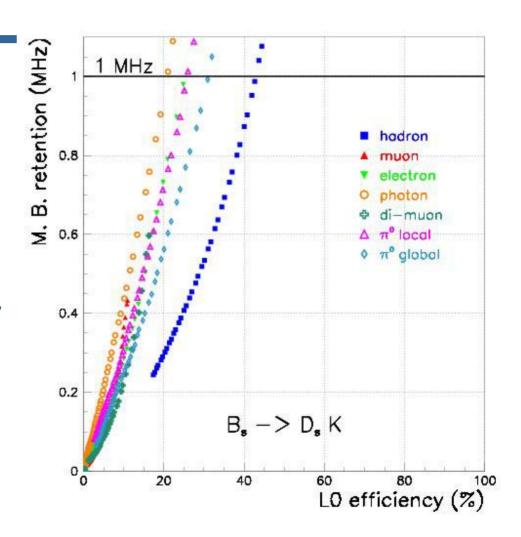
"L0 Conditional Triggering": Minimum Bias Events

How often does the LO-hadron trigger given that the we had a LO-electron trigger?

On 46 % of the cases in minimum bias events ...

- -> large redundancy between all electromagnetic triggers ...
- -> is the π^0 -global trigger really "optimal" as it is defined now?

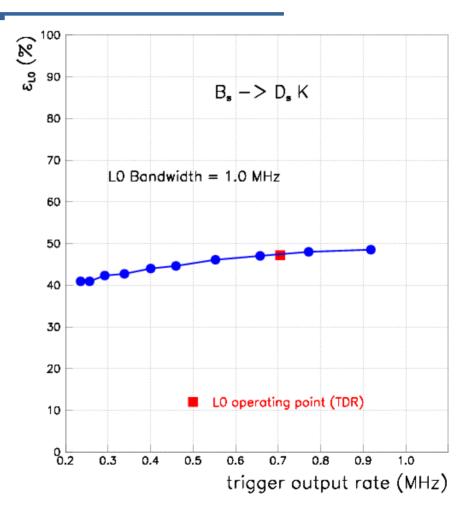
Probability (%)	hadron	electron	photon	π^0 local	π^0 global	muon	$\Sigma p_{\mathrm{T}}^{\mu}$
hadron		46	39	53	53	24	17
electron	7		9	40	35	4	3
photon	7	10		39	37	4	3
π^0 local	8	43	34		56	5	4
π^0 global	11	50	42	74		7	5
muon	4	4	4	5	5		64
$\Sigma p_{\mathrm{T}}^{\mu}$	3	4	3	5	5	85	


Sub-triggers "importance": $B_s \rightarrow D_s K$ Example

Max. efficiency obtainable inclusively by each trigger!

- → dominance of the hadron trigger
- → one would expect the efficiency to "strongly" depend on the hadron threshold ...

But ...



Sub-triggers Overlap: $B_s \rightarrow D_s K$ Example

Procedure:

- fix the hadron trigger to a certain bandwith
- let all other thresholds free, to fill the 1.0 MHz
 bandwidth, and optimize LO
- scan from "no hadron trigger" to"hadron trigger = full bandwidth"
 - → dependency is rather flat!
 - → why ?
 - > what is recovering the events?

Sub-triggers Performance: $B_s \rightarrow D_s K$ Example

Configuration	L0 efficiency (%)				
TDR Efficiency	~ 47.2				
ECAL+HCAL triggers only	~ 46.7				
HCAL trigger only	~ 46.4				
ECAL triggers only	~ 33				
π^0 triggers only	~ 33				
e + γ triggers only	~ 28				

- → not completely clear yet how the efficiency is always recovered ...
- → looking into the MC particles associated with the LO candidates ...
- → a few more checks needed:
 - MC association to π^0 not obvious
 - π^{O} 's do not seem to be the "only responsible"
 - are the π^0 's triggering from B decays?