

Performance of a Di-electron trigger at Level-0

Eduardo Rodrigues, CERN

I. Reminder of first look at a di-electron trigger

II. Inclusion of a di-electron trigger at LO

- LODU algorithm
- LO bandwidth division optimization
- III. Conclusions and proposal

Di-muon versus di-electron trigger:

- > di-muon trigger mainly focused on identifying $J/\Psi \rightarrow \mu\mu$ decays from a b-hadron
 - -> can we do similar for J/Ψ -> ee decays with a di-electron trigger at LO?
- Usage of di-electrons at L1 has been investigated:
 - > refer to the note of Aras Papadelis (summer student)
 - -> can the situation be improved by improving the input to L1?

Origin of L0 Electrons

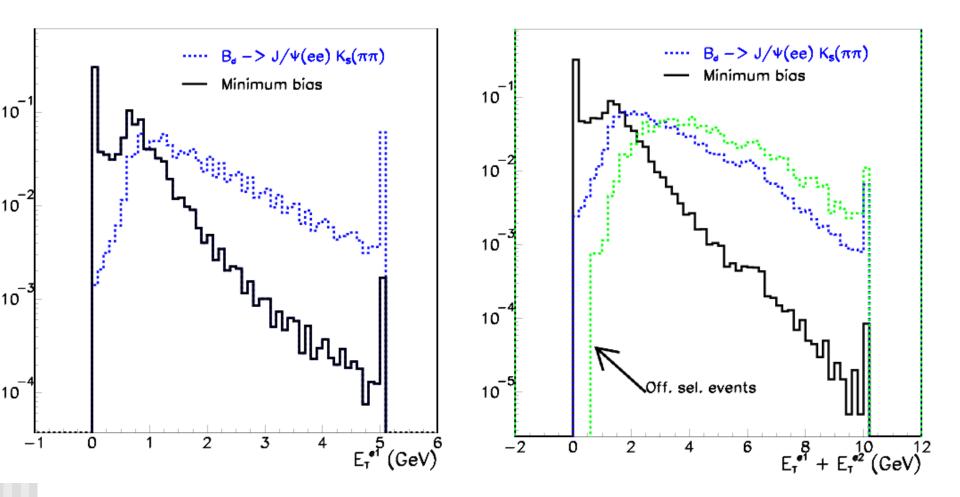
Study with the $B_d \rightarrow J/\Psi(ee) K_s$ channel

I had obtained ...

Channels	All events	L0-pass	Offline selected	L0-pass & offline selected
L0-elec1 from signal B	52 %	62	86	89
L0-elec2 from signal B	28	34	60	60
L0-elec3 from signal B	16	17	27	27
L0-elec1&2 from signal B	19	25	52	53
L0-elec1&3 from signal B	10	11	21	22

- ... in disagreement with Aras' results ... by factors ~ 2 ...
- o checked my results
- Aras only considers the B-origin of LO-electrons up to the grandmother (decay depth = 2)
 - -> this accounts for some differences (~10-20%) , but too small an effect ...
- -> probably a mistake somewhere in the calculation
- > table obove is correct (as far as I can tell...)

Eduardo Rodrigues


Trigger Meeting, 15th December 2003

Di-electron Distributions

- here $E_T^{e^2}=0$ is also possible (as in present di-muon trigge

Trigger Meeting, 15th December 2003

LODU with a Di-electron Trigger

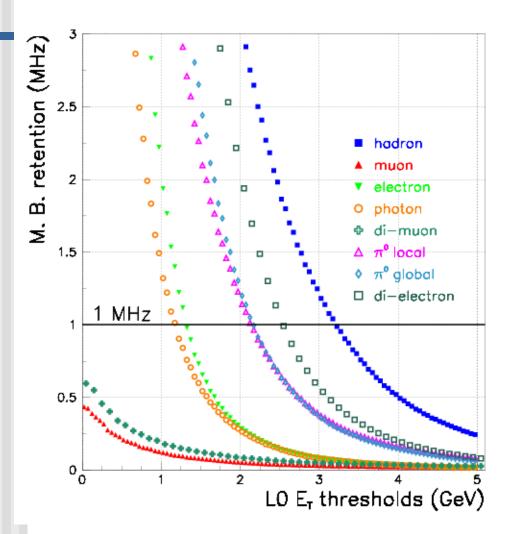
LODU Algorithm with a di-electron trigger

LODU algorithm as it is now

+

di-electron trigger "à la di-muon trigger"

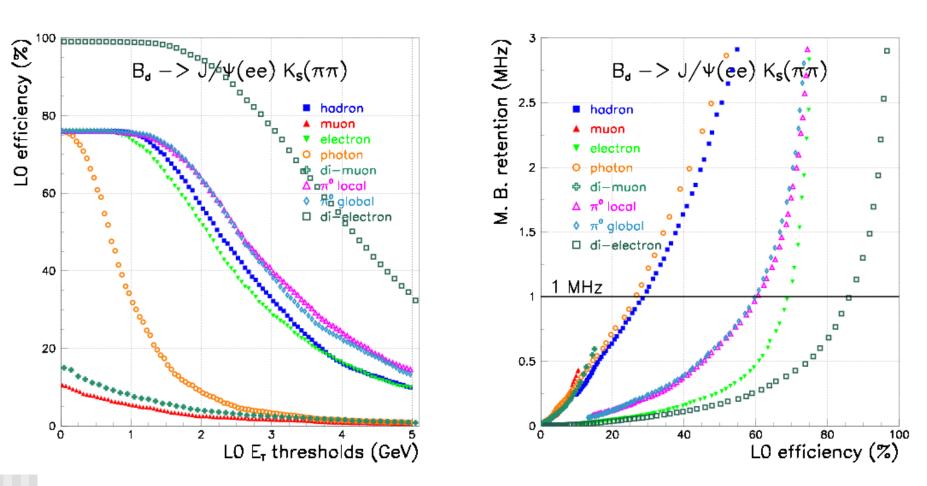
($E_T^{ee} = E_T^{e1} + E_T^{e2}$ with $E_T^{e2} = 0$ possible)


- overrides the global event cuts

-> what are the consequences on the LO bandwidth division ?

L0 Retention Rate

each curve corresponds to considering separately the combination LO trigger = sub-trigger + pile-up veto & multiplicity cuts


L0 E_t Distributions (I)

LO trigger = sub-trigger + pile-up veto & multiplicity Cuts

<u>x. efficiency obtainable inclusively by each trigger!</u>

L0 optimization with Di-electron Trigger

1. Optimizing each channel separately on the LO efficiency ...

Channels	L0 eff. (%) TDR settings	L0 eff. Max. (%) TDR L0	L0 eff. Max. (%) with new di-elec. Trig.		
$B_d \rightarrow J/\Psi(ee) K_s$	48.3	69.7	85.0		
B _d -> Κ* γ	72.9	77.6	86.8		
$B_d \rightarrow J/\Psi(\mu\mu) K_s$	89.3	93.0	93.2		
B _s -> J/Ψ(μμ) Φ(KK)	89.7	93.0	93.0		
B _d -> ππ	53.6	54.7	56.7		
B _s -> D _s K	46.5	48.2	48.2		

Max. eff. obtained with separate optimization of each channel

L0 optimization with Di-electron Trigger (II)

Inclusive efficiencies with new LO trigger and bandwidth optimization

Channels	HCAL	ECAL	Muons	
B_d -> J/ Ψ (ee) K_s	18.5	64.9	7.0	
B _d -> Κ* γ	30.0	75.2	7.5	
B_d -> J/ $\Psi(\mu\mu)$ K _s	16.1	13.0	87.0	
B _s -> J/Ψ(μμ) Φ(KK)	17.5	12.7	87.3	
B _d -> ππ	44.7	19.8	6.4	
B _s −> D _s K	35.3	16.2	8.5	

Bandwidth on minimum bias 593 events (kHz)	399	161
--	-----	-----

L0 optimization with Di-electron Trigger (III)

2. <u>Combined optimization of LO on the channels below ...</u>

Channels	L0 eff. (%) TDR settings	"Optimal trigger" L0 eff. (%)	Rel. Gain in eff. w.r.t TDR (%)				
$B_d \rightarrow J/\Psi(ee) K_s$	48.3	70.8	+ 46.6				
B _d -> Κ* γ	72.9	80.2	+ 10.0				
B_d -> J/ $\Psi(\mu\mu)$ K _s	89.3	89.6	+ 0.3				
B _s -> J/Ψ(μμ) Φ(KK)	89.7	89.7 89.8					
B _d -> ππ	$_{a} \rightarrow \pi\pi$ 53.6		+ 5.4				
B _s -> D _s K 46.5		47.4	+ 1.9				
<u>LO as in the</u>	<u>e TDR !</u>	\sim					

L0 optimization with Di-electron Trigger (IV)

LO settings for this new LODU algorithm with a di-electron trigger:

L0 trigger	\mathbf{E}_{t}^{had}	E_T^{μ}	E _T e	$\mathbf{E}_{\mathbf{T}}^{\mathbf{\gamma}}$	$\mathbf{E}_{\mathbf{T}}^{\boldsymbol{\mu}\boldsymbol{\mu}}$	π^{0}_{local}	${\pi^0}_{ m global}$	E _t ee
TDR Thresholds (GeV)	3.6	1.1	2.8	2.6	1.3	4.5	4.0	
Optimized Thresholds (GeV)	3.8	1.1	3.1	3.0	1.3	4.8	4.8	3.6

<u>& Veto, SPD and Pile-up veto multiplicity cuts fixed at 3, 280 and 112, respectively</u>

"overrding Electron Trigger"

What about an alternative?

simply override the veto and multiplicity cuts with the electron trigger

- > all steps were redone ...
 - ... and after LO optimization ...
- performance for hadronic and muon channels as with the di-electron trigger as it should
- performance for $B_{\rm d}$ -> K* γ roughly the same (marginally better)
- performance for ${\tt B}_{\rm d}$ -> ${\tt J}/\Psi({\tt ee})$ ${\tt K}_{\rm s}$ worse by ~ 10% in relative efficiency

... but is it really what we want ? C.f. next slide ...

- di-electron trigger significantly improves the LO performance for electromagnetic channels and in particular enhances the efficiency on b -> J/Ψ + X -> (ee) + X decays
- LO bandwidth division optimization performed with this "new LODU"
 - significant improvement w.r.t TDR LO for electromagnetic channels while keeping all the other efficiencies (basically) unchanged
- as the physics selections are evolving so has the trigger to adjust
- trigger should be not only efficient but also "pur":
 - high efficiencies for offline selected events ...

and

 ...HCAL / ECAL / muon triggers most relevant for hadronic / electromagnetic / muon-like channels

Eduardo Rodrigues

<u>Modification Proposal for LO and LODU:</u> include a di-electron trigger at LO and in the LODU

- hardware: (thanks to O. Callot for some clarifications)
 - possible to use more that just the highest E_T electron (highest electron per Validation card)
 - selection of second highest E_T electron can be implemented in Selection Crate

(some affordable cost ...)

- need to discuss technical details with experts ...
- software:
 - need to implement changes in the LOCalo package (produces the LO calorimeter info)
 - need to extend the LODUReport (part of event model LOEvent)
 - need to modify the LODU algorithm and package accordingly

	L0 trigger	E _t had	E_T^{μ}	E _T ^e	$\mathbf{E}_{\mathbf{T}}^{\mathbf{\gamma}}$	$\mathbf{E}_{\mathbf{T}}^{\boldsymbol{\mu}\boldsymbol{\mu}}$	π^{0}_{local}	$\pi^0_{ m global}$	E _t ^{ee}
	Proposed Thresholds (GeV)	3.8	1.1	3.1	3.0	1.3	4.8	4.8	3.6
&	& Veto, SPD and Veto System multiplicity cuts fixed at 3, 280 and 112, respectively (as in TDR)								

LO-optimized thresholds for new LODU:

Eduardo Rodrigues

Trigger Meeting, 15th December 2003