L0 Bandwidth Division Update

Eduardo Rodrigues, CERN

- Physics channels under study and set-up
- Pile-up veto and LO efficiencies
- Di-muon trigger and LO efficiencies
- Offline selection and LO efficiencies
- Status of the LO bandwidth division

Physics Channels and Set-up

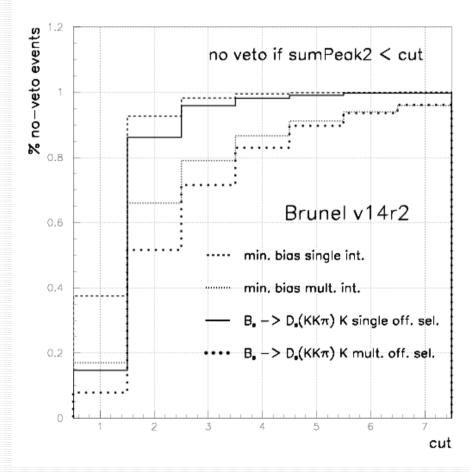
Physics channels studied:

$$B_s -> J/\Psi(\mu\mu) \phi (KK)$$
 $B_s -> J/\Psi(ee) \phi (KK)$ $B_d -> \pi \pi$ $B_d -> K K$ $B_s -> D_s(KK\pi) K$ $B_s -> D_s(KK\pi) \pi$

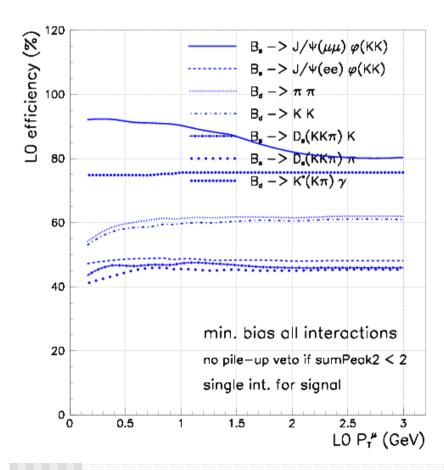
- ✓ only for true single interaction events for signal channels
- ✓ all minimum bias events

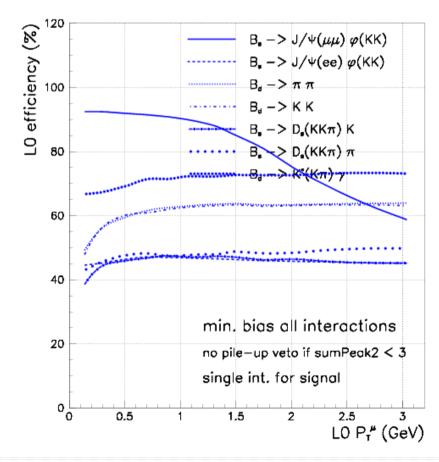
Procedure for the LO bandwidth division:

- keep always a fixed LO output rate of 1 MHz on minimum bias events For each physics channel ...
 - vary the parameter space of the different LO thresholds (1 per sub-trigger + veto)
 - find point(s) of highest LO efficiency (wrt offline selected events)
- determine point where the sum of the relative losses per channel is minimum overall


Pile-up Veto Scenarios

Pile-up veto helps selecting:

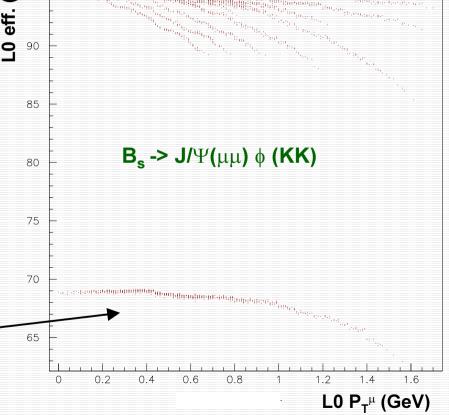

- preferentially single interaction events
- less complicated events


It was concluded (reminder):

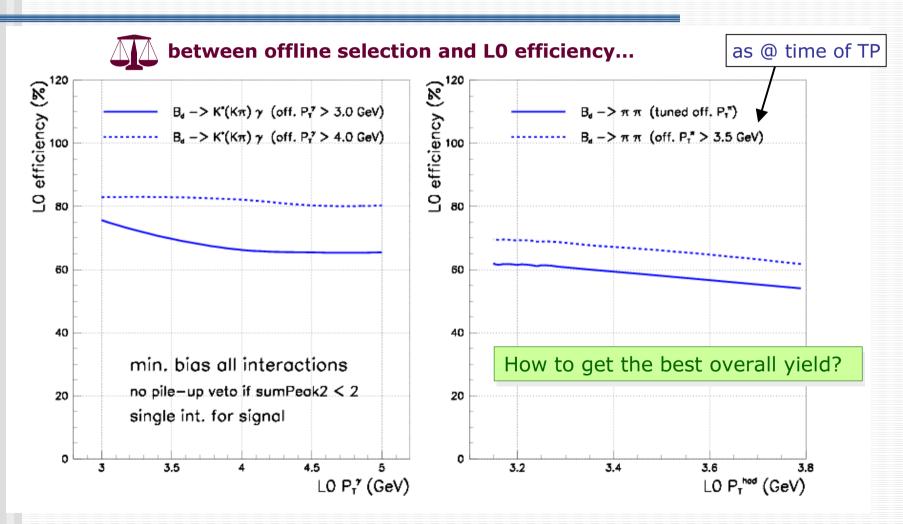
- pile-up veto helps increasing the L0
 efficiencies on (most) signal events
 (it allows to decrease the thresholds)
- cut at sumPeak2 of 2 is preferred by some hadronic channels
- cut at sumPeak2 of 3 is preferred by $J/\Psi \phi$ channels

L0 Efficiencies with no Pile-up Veto if sumPeak2 < 2,3

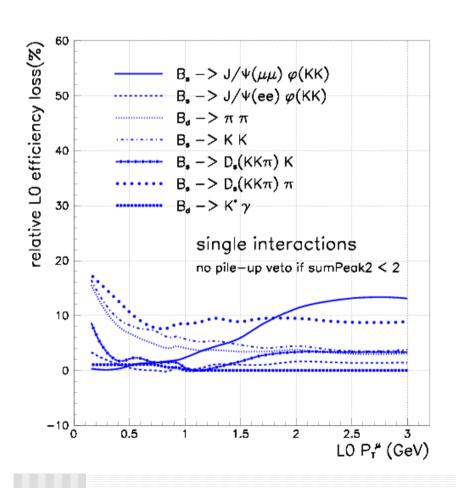
Di-muon Trigger and L0 Efficiencies

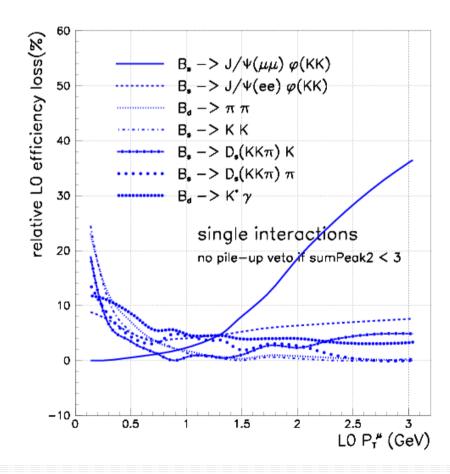

It was concluded (reminder):

- di-muon trigger has clear impact on the B_s -> $J/\Psi(\mu\mu)$ ϕ (KK) channel
- by decreasing the di-muon threshold one can use a harder pile-up veto (cut on sumPeak2 at 2), and recuperate some loss in efficiency (a softer cut at 3 is preferred for this channel but not by some hadronic channels)


No di-muon trigger!

Eduardo Rodrigues


Each point is a different bandwidth division 95 96 97 99 90



Offline Selection and L0 Efficiencies

Bandwidth Division – Status (I)

Bandwidth Division – Status (II)

Situation at present:

- Tuning was done on (true) single int. events ...
- cut on the 2nd pile-up veto peak chosen at 2

L0 trigger	E_T^{had}	$\mathbf{E_T}^{\mu}$	$\mathbf{E_T}^{\mathbf{e}}$	$\mathbf{E_T}^{\gamma}$	$\mathbf{E_{T}}^{\mu\mu}$	$\pi^0_{f global}$	$\pi^0_{ ext{local}}$
Thresholds (GeV)	3.23	0.92	2.85	3.0	2.5	4.1	4.6
L0 eff. (%)	ππ	KK	J /Ψ(μμ) φ	J /Ψ(ee) ф	D _s K	$\mathbf{D_s} \pi$	Κ * γ
true singles	65	60	91	49	47	46	76
all int.	55	51	89	42	41	-	66

... how will the situation change when looking at single events visible in the detector?

- → pile-up veto will tend to be "softer"?
- → and if one wants to select multiple interactions as well?

Outlook and Future Plans

- LO bandwidth division and tuning studies progress along with improvements on the B-physics selections
- LO efficiencies are now at the level of the TP (for most channels)
- BwD tuning done up-to-now on (true) single interaction events ...
 tuning on all signal events is under way ...
- Also starting to look at visible singles rather than true singles (in vue of the results on the annual yields to be presented to the LHCC)
- → Open questions to investigate:
 - 1) pile-up veto ⇔ visible singles / multiple interactions
 - 2) 75ns versus 25ns running \Leftrightarrow LO robustness / losses in efficiency
 - 3) "the question": what is the best LO scenario to maximize the total B-yield?