

Studies of Generator-level Selection

Eduardo Rodrigues, CERN

I. Proposal

II. Procedure

III. Example distributions and acceptance curves

IV. Conclusions and final remarks

Present Monte Carlo generation in LHCb:

- (pre-)selection cut @ Pythia level for B-signal events:
 - 400 mrad cut on true direction of B-meson of interest
 - -> geometrical acceptance $\epsilon_{\rm 400mrad}$ ~ 35 %

Proposal investigated:

- Can we do better in a more adequate/efficient way by rejecting as early as possible events that will not pass the selection though the whole reconstruction and analysis chain?
- apply to all event generation some (e.g. multiplicity, P, P_T) cuts

@ Pythia level and in offline analyses ...

- -> how could it be implemented?
- -> what and where can we then gain?

Eduardo Rodrigues

LHCb Collaboration Week, 26th November 2003

B-signal (offline selected) events:

- apply Pythia cuts -> small loss on offline selected events (a few 10 % acceptable?)
- apply cuts on offline tracks -> small loss on offline selected events
- > requirement: loss when applying Pythia after track cuts = 0%

Minimum bias events:

- \blacksquare σ_{tot} = 102.4 mb $\,$, $\,\sigma_{b\text{-}bbar}$ = 500 μb
 - $\rightarrow \sigma_{tot} / (\sigma_{b-bbar} \times \epsilon_{400mrad}) \approx 600$
- if reduction in M.B. acceptance by ≈ 600

-> amount of events to simulate less than what we would now get for the b-background

- > gain in CPU time + storage space
- > gain in knowledge <-> possibility to study non-b background & improvement in B/S?

<u>b bbar-inclusive events:</u>

need to cross-check that loss when applying Pythia after track cuts = 0%

→ all analyses would have to apply theses cuts ...

Limited at prese
by statistics

Example Distributions (I)

Distributions for MC particles in the LHCb acceptance

(1.8 < η **< 4.9)**

Veek, 26th November 2003

Example Distributions (II)

Distributions for MC particles in the LHCb acceptance (1.8 < η < 4.9)

Example Distributions (III)

Distributions for MC particles in the LHCb acceptance (1.8 < η < 4.9)

Acceptance curves (I)

Acceptance curves (II)

Conclusions and Final Remarks

- main idea exposed and several cuts studied
 - needs further investigation
 - need to cross-check feasibility with other B-signal decays
 - (large multiplicity decays, decays with mainly neutrals)
 - need to investigate influence on bb-inclusive events
- distributions were shown for the MC information
 - -> similar for the distributions of offline tracks (those with momentum info & hits in VELO)
- comments / suggestions welcome ...