

A Di-electron trigger at Level-0

Eduardo Rodrigues, CERN

- I. Motivations
- II. LO electron candidates
- III. A di-electron trigger at LO and alternatives
 - LODU algorithm with a di-electron trigger a la di-muon trigger
 - An alternative: an "overriding" electron trigger
 - Another alternative: double-threshold electron trigger
- IV. LO performance with the various scenarios
- V. Conclusions and final remarks

Motivations

Di-muon versus di-electron trigger:

- > di-muon trigger mainly focused on identifying J/Y -> $\mu\mu$ decays from a b-hadron
 - -> is a di-electron trigger for J/Ψ -> ee decays as useful?

Usage of di-electrons at L1 have been investigated:

- > refer to the note LHCb-2003-096 of Aras Papadelis (summer student)
 - -> can the situation be improved by improving the input to L1?

Investigations of "extreme" LODU algorithms:

> all "possible" scenarios of LODU algorithms should be assessed and studied

(here $E_T^{e^2}=0$ is possible)

Origin of L0 Electrons

Study with the $B_d \rightarrow J/\Psi(ee) K_s$ channel

o probabilities for the highest (LO-elec1), second-highest (LO-elec2) and third-highest (LO-elec3)

 E_{T} LO-electron candidate to come from the signal-B

	All events	L0-pass	Offline selected	L0-pass & offline selected
L0-elec1 from signal B	52 %	62	86	89
L0-elec2 from signal B	28	34	60	60
L0-elec3 from signal B	16	17	27	27
L0-elec1&2 from signal B	19	25	52	53
L0-elec1&3 from signal B	10	11	21	22
		4		-

-> <u>in ~ 50 % of the LO-pass offline selected events the 2 highest E_T electron candidates</u> come from the signal <u>B</u>

Eduardo Rodrigues

LHCb Collaboration Week, 26th February 2004

LODU with Di-electron Trigger

<u>.ODU Algorithm with a di-electron trigger</u>

LODU algorithm as in the Trigger TDR

ł

- di-electron trigger "à la di-muon trigger" ($E_T^{ee} = E_T^{e1} + E_T^{e2}$ with $E_T^{e2} = 0$ possible)
 - overrides the global event cuts
 (pile-up veto and
 veto and SPD multiplicity cuts)

each curve corresponds to considering separately the combination

LO trigger = sub-trigger

+ pile-up veto & multiplicity cuts

L0 E_t Distributions (I)

 \checkmark each curve corresponds to considering separately the combination

LO trigger = sub-trigger + pile-up veto & multiplicity Cuts

-> it shows how much one could in principle obtain independently from each trigger

<u>x. efficiency obtainable inclusively by each trigger!</u>

L0 E_t Distributions (II)

Max. efficiency obtainable inclusively by each trigger!

L0 optimization with Di-electron Trigger (I)

1. Optimizing each channel separately on the LO efficiency ...

Channels	L0 eff. Max. (%) TDR L0	L0 eff. Max. (%) with new di-elec. Trig.	
$B_{d} \rightarrow J/\Psi(ee) K_{s}$	69.7	85.0	
B _d -> Κ* γ	77.6	86.8	
B _d -> J/Ψ(μμ) K _s	93.0	93.2	
B _s -> J/Ψ(μμ) Φ(KK)	93.0	93.0	
B _d -> ππ	54.7	56.7	
B _s -> D _s K	48.2	48.2	

Max. eff. obtained with separate optimization of each channel

L0 optimization with Di-electron Trigger (II)

2. <u>Combined optimization of LO on the channels below ...</u>

Channels	L0 eff. (%) TDR settings	"Optimal trigger" L0 eff. (%)	Rel. Gain in eff. w.r.t TDR (%)	
$\rm B_{d}$ -> J/ Ψ (ee) $\rm K_{s}$	48.3	70.8	+ 46.6	
B _d -> Κ* γ	72.9	80.2	+ 10.0	
B_d -> J/ $\Psi(\mu\mu)$ K _s	89.3	89.6	+ 0.3	
B _s -> J/Ψ(μμ) Φ(KK)	89.7	89.8	+ 0.1	
B _d -> ππ	53.6	56.5	+ 5.4	
B _s -> D _s K	47.2	47.4	+ 0.4	

LO as in the TDR

L0 optimization with Di-electron Trigger (III)

LO settings for this new LODU algorithm with a di-electron trigger:

- muon thresholds kept fixed ...

L0 trigger	\mathbf{E}_{t}^{had}	$\mathbf{E}_{\mathbf{T}}^{\mu}$	E _T ^e	$\mathbf{E}_{\mathbf{T}}^{\mathbf{\gamma}}$	\mathbf{E}^{T}^{hhr}	π^{0}_{local}	$\pi^0_{ m ~global}$	E _t ee
TDR Thresholds (GeV)	3.6	1.1	2.8	2.6	1.3	4.5	4.0	
Optimized Thresholds (GeV)	3.8	1.1	3.1	3.0	1.3	4.8	4.8	3.6

<u>& Veto, SPD and Pile-up veto multiplicity cuts fixed at 3, 280 and 112, respectively</u>

L0 optimization with Di-electron Trigger (IV)

Inclusive efficiencies with new LO trigger and bandwidth optimization

HCAL	ECAL	Muons	
18.5	64.9	7.0	
30.0	75.2	7.5	
16.1	13.0	87.0	
17.5	12.7	87.3	
44.7	19.8	6.4	
35.3	16.2	8.5	
593	399	161	
	HCAL 18.5 30.0 16.1 17.5 44.7 35.3 593	HCALECAL18.564.930.075.216.113.017.512.744.719.835.316.2	

~ 80 / 300 kHz for e / ee triggers

Effectively a "transfer" in bandwidth of ~ 100kHz hadron -> electromagnetic triggers w.r.t TDR

Eduardo Rodrigues

LHCb Collaboration Week, 26th February 2004

L0 optimization with "overriding Electron Trigger" (I)

What about an alternative?

simply override the veto and multiplicity cuts with the electron trigger

- > all steps were redone ...
 - ... and after LO optimization ...
- performance for hadronic and muon channels as with the di-electron trigger
- performance for ${\tt B}_d\,$ -> $\,K^*\,$ γ roughly the same (marginally better)
- performance for ${\tt B}_{\rm d}\,$ -> $\,{\tt J}/\Psi({\tt ee})\,$ ${\tt K}_{\rm s}$ worse by ~ 10% in relative efficiency

-> details follow ...

Combined optimization of LO on the channels below ...

Channels	L0 eff. (%) TDR settings	"Optimal trigger" L0 eff. (%)	Rel. Gain in eff. w.r.t TDR(%)	
B_d -> J/ Ψ (ee) K_s	48.3	66.3	+ 37.3	
B _d -> Κ* γ	72.9	81.8	+ 12.2	
$B_d \rightarrow J/\Psi(\mu\mu) K_s$	89.3	89.6	+ 0.3	
B _s -> J/Ψ(μμ) Φ(KK)	89.7	89.8	+ 0.1	
B _d -> ππ	53.6	56.3	+ 5.0	
B _s → D _s K	47.2	47.2 46.7		
<u>LO as in t</u> O retention on mini	"New LO"			
Bandwidth on minimum bias events (kHz)	Bandwidth on minimum biasHCAL: 553events (kHz)		Muons: 161	

LHCb Collaboration Week, 26th February 2004 ~ 260 kHz for e-trigger

Double-threshold Electron Trigger (I)

Combination of previous scenarios: a double-threshold electron trigger

- > a "standard" electron trigger with a low threshold
- > a higher electron-trigger threshold able to override the veto and multiplicity cuts
- -> all steps were redone ...
 - ... and after LO optimization ...

-> <u>scenario as performant as the overriding electron trigger</u> (differences of ~ 1%)

Double-threshold Electron Trigger (II)

LO settings for this new LODU algorithm with a double-threshold electron trigger:

L0 trigger	\mathbf{E}_{t}^{had}	$\mathbf{E}_{\mathbf{T}}^{\boldsymbol{\mu}}$	E _T e	Ε _T γ	$\mathbf{E}_{\mathbf{T}}^{\boldsymbol{\mu}\boldsymbol{\mu}}$	π^{0}_{local}	$\pi^0_{ m ~global}$
TDR Thresholds (GeV)	3.6	1.1	2.8	2.6	1.3	4.5	4.0
Optimized Thresholds (GeV)	3.8	1.1	2.2 / 3.2	2.8	1.3	4.9	3.7

<u>& Veto, SPD and Pile-up veto multiplicity cuts fixed at 3, 280 and 112, respectively</u>

LO retention rate on minimum bias events

	HCAL	ECAL	Muons	
Bandwidth on minimum bias events (kHz)	593	418	161	

~ 230 / 110 kHz for e-triggers with low/high threshold

- the second highest E_T LO-electron candidate contains useful information on $J/\Psi \rightarrow$ ee decays -> exploitable feature at LO
- possible improvement w.r.t TDR LO for electromagnetic channels while keeping all the other efficiencies (basically) unchanged
- a di-electron trigger significantly improves the LO performance for electromagnetic channels and in particular enhances the efficiency on b -> J/\P + X -> (ee) + X decays
 BUT
- info on 2^{nd} highest- E_{T} electron @ LO needs hardware changes in selection crate
- alternative scenarios allow an "almost equivalent" (~10% less) performance to be achieved that have the advantage of not requiring any changes to the LO hardware design

Conclusions and Final Remarks (II)

Strikingly different "correlations: a cut E_T^{e2} > 0.5 GeV seems useful ...

> hint that a true di-electron trigger - E_T^{e1} , E_T^{e2} > 0 - might help,

closely following the offline selection ...

- -> study under way and close to conclusion
- double-threshold triggers (hadron/electrom./muons) could/should be further investigated to address other channels
 - separate events between vetoed/non-vetoed by global event cuts?
- (further) details of these studies in the (being finalised) note LHCb-2004-002