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Abstract

We discuss the phase and energy margins for beam stability in linear proton
accelerators.

1 Introduction

The beam stability in high power proton linacs such as the ESS [1] or the SPL [2]
is of paramount importance, because even small losses will cause a high dose
to the exposed areas and will make hands-on maintenance impossible. S. Peggs
conjectured that some of the losses might be due to the loss of transverse stability
if the phases of the linac are set to incorrect values. In this case the energy profile
of the beam might not be compatible with the strength of the quadrupoles which
are responsible for the transverse containment of the beam. In this report we
will construct a simple model to investigate this field and use it to investigate the
beam stability.

We start by considering a simple model linac that is sketched in Fig. 1 where
the beam travels from right to left. We assume that the acceleration only happens
in localized structures identified by the thick vertical bars in the figure. In each
cavity the particle receives a maximum acceleration ∆γ = gi cos(φi − ψi), where
γ is the energy of the proton in units of its rest mass, psii is the phase of the
cavity number i and φi = ωτi is the arrival phase of the particle at cavity i.
Note that the cavity is characterized by its energy gain g and phase ψ whereas a
beam particle is characterized by γ and φ = ωτ. For convenience we assume that
we know the beam phase φi just upstream of cavity i and the beam energy just
after the cavity. The initial energy and phase of the beam are denoted by γ0 and
φ0 = φ1. The distance between the cavities is assumed to have a length L which
is the same all along the linac. In this distance between the point-like cavities we
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Figure 1: The schematic layout of the model linac used in this report.

have a single quadrupole doublet that is responsible for transversely focusing the
beam. The resulting beta functions are shown in Fig. 2. In this example the focal
length of the quadrupoles is f = 2 m resulting in a phase advance of 97.2 degree,
which we use for the remainder of this report unless otherwise noted. We chose
to use a rather strongly focusing lattice, because that should be more susceptible
instabilities if the beam energy should be not matched to the lattice.

2 Simulation model

The simulation of such a simple system is quite straightforward. We first need to
successively calculate the energy and phase of the beam at every cavity. Knowing
the arrival phase φi yields the energy gain ∆γi = γi−γi−1 = gi cos(φi−ψi) which in
turn yields the energy γi after the cavity. Knowing the energy yields the velocity

of the particle βi = vi/c =
√

1− 1/γ2
i which in turn determines the arrival time at

the next cavity ti+1 = L/vi which, multiplied by the cavity frequency ω yields the

arrival phase φi+1 = ωL/c
√

1− 1/γ2
i . In this way the map of φi, γi to φi+1, γi+1

can be constructed. Explicitely it can be written as

φi+1 = φi +
ωL/c√
1− 1/γ2

i

(1)

γi+1 = γi + gi cos(φi − ψi)

and is easily coded in Matlab [3].
Finding the cavity phase ψi that yield the maximum energy gain is achieved

by requiring that the cavity phase ψi is equal to the arrival phase of the beam
φi. In that case the argument of the cosine is zero, resulting in the maximum
gain ∆γ = gi which also means that the beam is accelerated on-crest of the RF.
Normally one chooses to operate the linac at a different phase, because of phase
stability. In that case we adjust all phases to whatever off-crest phase is desired.
The following excerpt of Matlab code exemplifies this

psi(1)=-dpsi;
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Figure 2: The horizontal and vertical beta functions between the cavities. The
focal length of the thin lens quadrupoles is assumed to be f = 2 m giving a phase
advance of 97.2 degree.

gamma(1)=gstart+g(1)*cos(phi(1)-psi(1));

for k=2:ncell

phi(k)=phi(k-1)+(omega*L/c)/sqrt(1-1/gamma(k-1)^2);

phi(k)=rem(phi(k),2*pi);

psi(k)=phi(k)-dpsi;

gamma(k)=gamma(k-1)+g(k)*cos(phi(k)-psi(k));

end

where dpsi is the desired phase offset.
Once the energy profile γi is known along the linac we can calculate how it

varies if for example the initial energy of the beam γ0 or the arrival phase φ0 are
varied. We will discuss this further below.

The transverse stability of the beam can be investigated by calculating the
transfer matrix of a section between cavities and see how it varies with the energy.
We observe that the transfer matrix R of the doublet cell is given by

R =

(
1 l
0 1

) (
1 0

−1/f 1

) (
1 l2
0 1

) (
1 0

1/f 1

) (
1 l
0 1

)
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Figure 3: The energy profile along the linac with initial arrival phase errors of 0,
1, 2, and 3 degree (above) and 0, -1, -2, and -3 degree (below).

=

(
1 + l2/f − l2l/f

2 2l + l2 − l2l
2/f 2

−l2/f 2 1− l2/f − l2l/f
2

)
(2)

where l is the drift space from the cavity to the adjacent quad and l2 the distance
between the quadrupoles which have a default focal length f at the design energy
profile which is specified by the procedure elaborated before. If the beam energy
at the quadrupoles is different, say γ̄, we can simply scale the focal length by the
ratio of the momenta at the respective energies or, equivalently, by βγ =

√
γ2 − 1.

The single-particle transverse stability of the entire linac is then determined
by the trace of the product of all transfer matrices along the linac, evaluated at
the real beam energy, rather than the design energy. If the trace of the cumulative
transfer matrix is below or equal to 2 the beam is stable, if it exceeds 2 the beam
is unstable.

3 On-crest operation

We now use the model to explore simple configurations and their respective sta-
bility. We start by considering on-crest operation, where the arrival phase is
adjusted to coincide with the maximum acceleration gradient and therefore re-
sults in the highest final energy. Fig. 3 shows such the energy profile along the
length of the linac z for three different positive arrival phases φ0 = 0, 1, 2, 3 degree.
We observe that only the beam with the correct phase zero reaches the maximum
energy and the other three phases result in considerably lower final energies. We
also note that during the first few meters there is only a very small effect, but
once the energy is lower, it never really recovers and only meanders around the
energy where the problem first appears. When starting with negative phases φ0

the situation is slightly better, for a phase offset of up to 2 degrees no degradation
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Figure 4: The energy profile along the length of the linac with an initial phase
error of -2 degree (above) and +2degree (below).
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Figure 5: The energy at the end of the linac as a function of the initial phase
offset (left) and offset in kinetic energy (right).

of the final energy is visible on the bottom graph of Fig. 3, only for -3 degrees the
energy profile deteriorates.

In order to understand this asymmetry between positive and negative phases
we display both the energy and the phase difference of the beam phase and the
cavity phase φi−ψi in Fig. 4 for an initial phase offset of -2 degrees in the upper
graph and +2degrees in the lower graph. We see that the negative initial phase
offset leads to a much smoother phase variation with a magnitude of only a few
degrees, whereas the positive phase offset leads to much larger phase oscillations
leading to both acceleration and deceleration, which results in the meandering
energy profile.

The physics behind this observation is quite simple. If the initial arrival phase
is negative, the beam arrives too early and and also receives an energy gain that
is too low. Since it is too early the time to reach the next cavity down the line is
longer, which is also accomplished because the energy and consequently also the
velocity is lower. Both effects of too early and too little energy thus compensate
one another in the case of negative phase offset, but add in the case of positive
offset. Of course this is only true when operating on-crest, because one operates
at the phase giving the maximum energy gain.

In order to investigate the stability more quantitatively, we repeated the above
analysis and calculate the final energy while varying the incoming phase φ0 and
energy γ0 and display the result in Fig. 5. We see that the bandwidth is on the
order of two degree in phase, which is consistent with the previous observation
discussed in relation with Fig. 3. The energy bandwidth is less than 0.2 MeV
which is on the order of 10−3 of the starting energy which is assumed to be
200MeV. But this is a consequence of accelerating on-crest, a restriction, that
we will drop in the next section.

In Fig. 6 we display the figure of merit for transverse stability max(Tr(R(z)))
that we introduced near the end of section 2 as a function of the initial phase
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Figure 6: The maximum of Tr(R(z)) along the length of the linac as a function
of the arrival phase (left) and the arrival energy (right).

error φ0 and initial energy error ∆γ0. If the stability parameter is less or equal
to 2, the transverse motion is stable, which is the case for the same range as the
bandwidth determined from the maximum achievable energy, displayed in Fig. 5.
We conclude that, at least for on-crest operation, the bandwidth for the maximum
achievable energy coincides with that of transverse stability. Conversely, if the
initial phase and energy lie outside the energy bandwidth, also transverse stability
cannot be guaranteed, which is intuitively clear, because if the maximum energy
is not reached, the quadrupoles are mismatched to the beam energy, as discussed
in section 2.

Having discussed on-crest operation, we now proceed and drop this restriction
and consider off-crest operation. We start by determining the optimum phase in
the next section.

4 Off-crest operation

Now we drop the restriction to operate on-crest to achieve the maximum final
energy which has the consequence that just the final energy is lower. If all cavities
are tuned to the same off-crest phase ∆ψ the final energy is lower by a factor
η = cos(∆ψ), but we gain an improved stability margin. In Fig. 7 we show the
bandwidth of transverse stability, defined by max(Tr(R(z))) ≤ 2 as a function
of the off-crest phase ∆ψ and observe that the bandwidth (blue) increases with
more negative off-crest phase at the expense of the maximum achievable energy
(green). For the following calculations we will use a phase of ∆ψ = −10 degree,
because it will only cause an energy reduction of about 1.5% and still has an
energy bandwidth of more than 1MeV.

In order to illustrate the bandwidth calculation we show the bandwidth scan
for ∆ψ = −10 degree in the top two plots in Fig. 8. Again we see that the

7



−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

1

2

Off−crest phase ∆ψ

E
ne

rg
y 

ba
nd

w
id

th
 [M

eV
]

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0
1600

1650

1700

M
ax

im
um

 E
ne

rg
y 

[M
eV

]

Figure 7: The energy bandwidth (blue) and the maximum achievable energy
(green) as a function of the off-crest phase.

bandwidth determined from the transverse stability parameter (above) coincides
with that of the maximum energy (below). In Fig. 9 we display the bandwidth
with respect to the initial phase φ0 for an off-crest phase of -10 degree. Here
the bandwidth extends from about -5 degree to about 20 degree for a total of
25.15 degree as is stated on the graph. Note, that the bandwidth of the transverse
stability (upper plot) and the final energy Emax (lower) coincide, leading to the
observation the “if the energy is right, transverse stability follows suit.”

5 Cavity Phase Tolerances

So far we have determined the bandwidth with respect to the tolerable variation
in the initial energy and phase offset of which the latter is equivalent to a phase
error of the first cavity. One might therefore ask how the phase bandwidth varies
for all the other cavities along the linac. Intuitively we expect that the phase
errors are less severe further down the linac, where the beam energy is higher
and an error in energy causes less velocity variation, which in turn would lead
to even larger phase errors downstream. We investigate this susceptibility of the
beam stability and final energy with respect to phase errors by first calculating
the proper phases that will give a constant off-crest phase at all cavities and then
change one cavity at a time by ±3 and ±10 degrees and calculate the bandwidth
with respect to the initial phase offset φ0, i.e. we produce a plot similar to the
one in Fig. 9, but with one cavity at a time de-phased and show the result in
Fig. 10.

In the left plot in Fig. 10 we observe that the positive phases lead to lower
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Figure 8: The maximum of Tr(R(z)) and the maximum achievable energy Emax

along the length of the linac as a function of the arrival energy when the linac
operates with -10 degree off-crest phase.
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Figure 9: Max(Tr(R(z))) and Emax along the length of the linac as a function of
the arrival phase when operating at ∆ψ = −10 degrees.
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Figure 10: The left plot shows the phase bandwidth of the linac if cavity number
k is detuned by +3degree (blue dots), -3 degree (solid blue), +10 degree (black
dots), and -10 degree (solid black). The bandwidth of the unperturbed linac is
given in Fig. 9 to be 25.15 degree. Furthermore, if the bandwidth is zero, the
linac is unstable. The right plot shows the corresponding energy bandwidth for
±10 degree approaching the unperturbed value of 1.225 MeV shown in Fig. 8.

bandwidth and are consequently disadvantageous. We also observe that the cav-
ities further downstream than half-way down the linac are less susceptible and
even a 10 degree error with either sign, does not cause a deterioration of the phase
bandwidth. The right plot in Fig. 10 shows the energy bandwidth corresponding
to what is shown in Fig. 8 for one cavity at a time detuned by ±10 degrees. Again,
we find that about half-way down the linac errors on the order of 10 degree do
not affect the bandwidth any more.

When running all the individual simulations leading to Fig. 10 we observed
that in some cases max(Tr(R(z))) was well-behaved and stayed below or equal to
2, while the maximum energy actually exhibited a dip in the maximum achievable
energy, which is shown in Fig. 11. At about -0.5MeV initial energy offset the
maximum reachable energy is considerably lower by more than 100MeV. If the
initial beam has a wide distribution in energies this will lead to a low energy
tail that extends to very low energies. One conclusion we can reach from this
observation is that the transverse stability is less susceptible to energy errors than
the final energy.

We investigate the dip closer by generating plots with the kinetic energy
T (z), the phase φ(z) and transverse stability Tr(R(z)). We also generate plots
of longitudinal phase space where we display the deviation of the kinetic energy
∆T = T − T0 against the phase φ. Here T is the kinetic energy and T0 that of
the design configuration. We choose a point to the right of the dip at ∆T =
−0.4 MeV, in the middle of the dip at ∆T = −0.55 MeV and to the left of the
dip at ∆T = −0.7 MeV. The resulting plots are shown in Fig. 12. Note that
the starting point atcavity 1 is identified by a red asterisk. We observe that
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Figure 11: The transverse stability bandwidth of the linac operating at -10 de-
grees off-crest when cavity 14 is tuned to 0 degrees which means it operates on-
crest. The stability bandwidth is determined from the Tr(R(z)) plot. Note that
the maximum achievable energy in the lower graph has a pronounced dip at an
energy offset of -0.5 MeV. This would cause part of the beam that has this offset
to develop a tail with very low energy.

the phase space of the center row which describes a configuration inside the dip,
differs from the top and bottom row which describe configurations outside the
dip by showing synchrotron oscillations with an amplitude of a few MeV, whereas
the center in-dip phase space is unbounded and the particle swirls down towards
lower energies. This is also visible on the upper subplot of the left plot in the
center row, that displays the energy along the linac, which deviates from a linear
increase near z = 250 m. We also see that the corresponding phase starts to
oscillate. It looks like the qualitative difference comes from the particle ’jumping
out of the bucket’.

6 Random Phase Errors

In order to determine the accuracy to which the phases along the linac have to be
set we introduced uniformly distributed random phase errors to the phases of the
cavities and calculated the energy and phase bandwidth for ten seeds each. The
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Figure 12: Investigating the dip by showing the energy, phases and Tr(R(z))
(left) and the phase space (right) corresponding to Fig. 11 with initial energy
offset of -0.4MeV (top row), -0.55 MeV (middle row), and -0.7 MeV (bottom
row).
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Figure 13: The variation of the energy bandwidth (left) and phase bandwidth
(right) as a function of uniformly distributed random phase errors of the cavities.

applied phases errors are distributed in the interval [−∆φ/2,∆φ/2] where ∆φ is
varied between 0 and 10 degree. The average and rms spread of the bandwith
values over the ten seeds are depicted in Fig. 13 as a function of ∆φ. We find that
the energy bandwidth shown on the left has a distinct drop accompanied by a
significant increase in the spread as shown by the error bar after ∆φ = 6 degrees.
This would imply that the phases of the linac should be set within a practical
error window of about 5 or 6 degrees. The corresponding phase bandwidth which
is shown on the right in Fig. 13 does not show this as succinctly, but still therealso
is a significant drop in the phase bandwidth between 6 and 7 degree phase errors,
such that we interpret this as corroborating evidence for the phase window of 5
to 6 degree.

7 Transverse phase advance

In all of the previous investigations we used a focal length of f = 2 m in the
doublet cells between the cavities resulting in phase advance of 97 degree per
cell. Now we will vary the focal length between f = 1.5 m which yields a phase
advance of 180 degree and f = 20 m which yields a phase advance of 8.6 degree
per cell.

In order to assess the transverse stability we calculate both the energy and
phase bandwidth, such as is shown in Fig. 8 and 9 and see how the beandwidth
varies with the focal length used in the doublet lattice. It turned out,however,
that the bandwidth almost did not change at all. For all of the 15 different tested
values the reported energy bandwidth was 1.225MeV and the phase bandwidth
25.15 degree. There was one exception at f = 3 m which corresponds to a trans-
verse phase advance of 60 degee per cell for which the bandwidth was considerbly
smaller. If the focal length, on he other han, was chosen to be slighly different
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Figure 14: The energy bandwidth with a lattice where the focal length is chosen
to be f = 15 m resulting in a weak transverse phase advance of 11.5 degree. Note
that c, compared to Fig. 8 Tr(R) does not grow as quickly adjacent to the borders
of stability at ±0.4 MeV.

from 3m the bandwidth was unaffected. This behaviour is probably due to the
fact that even the unperturbed lattice is close to the stability limit Tr(R3) = 2
and a small change in the energy can tip the system over the stability thershold.
The same observation is also true for the 180 degree case with f = 1.5 m. It
appears that it is advisable to stay away from all to rational phase advances, just
as in circular machines.

In Fig. 14 we show the energy bandwidth plot for a focal length of f = 15 m.
We observe that the weak phase advance causes Tr(R) in the upper plot to differ
only weakly adjacent to the limit of stability at ±0.4 MeV compared to Fig. 8
where the quadrupoles are much stronger. There the limit of transverse stability
is much sharper.

We interpret the insensitivity of the bandwidths with respect to the focal
length, or equivalently, the phase advance as an indication that the transverse
stability is not the primary cause of beam loss. On the other hand, it is obvious
that a significant energy mismatch will cause a loss of transverse stability as a
secondary effect.
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8 Conclusions

We investigated the stability of a proton linac using a very simple model shown
in Fig. 1 and characterized it in terms of bandwidth of the maximum achiev-
able energy and the transverse stability parameter. We found that the energy
bandwidth and the transverse stability bandwidth are closely correlated as is
witnessed by Figs. 8 and 9. In the course of the investigation we also confirmed
increased beam stability and bandwidth at the expense of achievable maximum
energy by moving the beam off-crest. We established that random phase errors
on the order of about 5 degree are managable.
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