

FREIA Laboratory Facility for Research Instrumentation

and Accelerator Development

Cryogenics and Cryostats

Meeting with RFR Solutions, Landskrona 24 September 2015

Roger Ruber

What & Whom?

Facility for Research Instrumentation and Accelerator Development

Overview of Activities

ESS Spoke Linac

$\Delta f_0 = (f_0)_2 = (f_0)_1 = -\kappa \kappa_{av}$

ESS neutrino Super-beam

Cryogenics

SRF Test Stand

Controls & Data Acquisition

High Power RF Amplifiers Solid-state & Vacuum Tube

THz-FEL

RF = Radio Frequency SRF = Superconducting RF FEL = Free Electron Laser

Superconductivity

1908: helium liquefaction

1911: discovery superconductivity in mercury (~4 K) by Kammerlingh-Onnes

1960s: practical superconductors (magnet grade) NbZr, Nb3Sn

1965: first SRF cavity (Pb-plated) at SLAC

1969: first large scale SC magnet CERN BEBC (800 MJ)

1970s: commercial NMR systems

1984: Tevatron: 1st accelerator with SC magnets: 520 GeV; 900 GeV in 1987

1990s: first large scale SRF: CEBAF & LEP

What is Superconductivity?

Operate below the critical surface

- critical current J_c
- critical temperature T_c
- magnetic field B_{c2}

For NbTi:

- $T_c(0) = 9.2 \text{ K}$; $B_{c2}(0) = 14.5 \text{ T}$
- Critical area boundary $T_c(B) = T_c(0) \{1-\{B/14.5\}\}0.59$ $B_{c2}(T) = B_{c2}(0) \{1-\{T/9.2\}1.7\}$
- Typical operation at 4.2 K and 5 T $T_c(5T) = 7.16$ K ; $B_{c2}(4.2K) = 10.7$ T

Similar relations exist for Nb3Sn.

Cryogenic plants

- Compress the fluid
- Cause the fluid to do work by making it expand against a piston or turbine while keeping it thermally isolated from the outside environment (Isentropic Expansion)
- Transfer heat from the fluid to a colder surface
- Cause the fluid to do "internal work" by expanding it through a valve while keeping it thermally isolated (Isenthalpic or Joule-Thomson Expansion)

Cooling below 4.2 K

• Once the (helium) fluid is a liquid, reduce the pressure above the fluid below atmospheric pressure thus reducing the saturation temperature

- Second liquid phase of helium (hence He II)
- Phase transition is second order (no latent heat)
 - but there is a discontinuity in the specific heat (λ transition)
 - $T_{\lambda,max} = 2.2 \text{ K}$
- Has unique thermal and fluid properties
 - High effective thermal conductivity
 - Zero viscosity under certain conditions

Advantages

- lower temperature, lower BCS losses
- no bulk boiling, reduced microphonics
- very efficient heat transfer

Disadvantages

costly

FREIR_

- Cryostat (coffee thermos)
- Reduce the heat transfer
 - Conduction
 - Heat transfer through solid material
 - use low conductive materials
 - reduce cross section, increase length
 - Convection
 - Heat transfer via a moving fluid
 - Natural or free convection motion caused by gravity (i.e. density changes)
 - use vacuum insulation
 - Forced motion caused by external force such as a pump
 - Radiation
 - Heat transferred by electromagnetic radiation/photons
 - use thermal radiation shield

Three main subsystems:

Helium liquefaction

- 150 l/h at 4.5K (LN2 pre-cooling)
- 2000 I LHe dewar/buffer, 3+1 outlets
- 100 m3 gasbag + recovery system
- cryostats connected in closed loop

Liquid nitrogen

• 20 m3 LN2 tank

HNOSS Horizontal Cryostat

HNOSS: Horizontal Nugget for Operation of Superconducting Systems

- Main Vacuum Vessel
 - 3240 x ø1200mm inner volume
 - "beam" axis at 1600mm
- Valve box (on top of main vessel)
 - Distribute cryogens
 - 4K and 2K pots, JT-valve, heat exchanger
 - 5K supercritical helium
- Interconnection box (ICB)
 - Distributes cryogens to HNOSS and CM
- Cryogenic transfer lines
 LN2 and LHe
- Cold gas heater for return flow
 - re-heating from 2K to 300K
- Control system

HNOSS - Horizontal Cryostat System

RE

Gersemi - Vertical Cryostat System

24-Sep-2015 Cryogenics and Cryostats | Roger Ruber | FREIA Laboratory

Gersemi - Details

Gersemi - Details

Cryogenic Operation - Vacuum

PREIP

Sub-cooled Helium Bath

ESS Spoke Cryomodule and Valve Box

2016 - 2019

24-Sep-2015 Cryogenics and Cryostats | Roger Ruber | FREIA Laboratory

LHC Crab Cavity Cryomodule

- Engineering
 - pressure vessel code (if applicable); vacuum forces
 - calculation pipe diameter, valve opening (K-value), heat exchanger
- Manufacturing
 - welding steel & aluminium
 - test with X-rays and/or colour test; thermal shock (LN2, then heat)
 - clean surfaces
 - no grease or welding residue left, ultra-sonic cleaning
- Assembly
 - helium leak testing, pressure testing
 - insulation sheets (MLI)
 - instrumentation (thermo-sensors & thermalization, feed-through)
 - magnetic shield