

Uppsala Commitment to ESS and FREIA Planning

Roger Ruber for the FREIA team Dept. of Physics and Astronomy Uppsala University

Accelerator Physics at Uppsala University

Concentrating on RF and instrumentation ...

- Cyclotron (since 1948)
- CELSIUS ring (1984 2006)
- CTF3 / CLIC
 - Two-beam Test Stand & RF breakdown issues
 - FP6-EuroTeV, FP7-EuCARD
 - NorduCLIC
- FEL
 - FLASH Optical Replica Synthesizer,
 - XFEL Laser Heater
 - Stockholm-Uppsala FEL Centrum
- ESS
 - RF systems

- Lund, Sweden, next to MAX-IV
 - 17 member states
- 5 MW pulsed neutron source
 - 14 Hz rep. rate, 4% duty factor
 - >95% reliability for user time
- Cost estimates (2008 prices)
 - 1,5 G€ / 10 years
 - 50% by Sweden, Denmark, Norway
- Time frame:
 - 2019 first neutrons
 - 2019 2025 consolidation and operation
 - 2025 2040 operation
- High intensity allows studies of
 - complex materials, weak signals, time dependent phenomena

ESS Time Line for Construction

ESS RF Systems

- single pass linear proton accelerator
 - 5 MW p⁺: 50 mA, 2.5 GeV, 14 Hz, 2.86 ms
 - < 1 W/m losses</p>
 - 95% user beam time reliability
- ~200 RF systems (352 + 704 MHz)
 - NC or SC accelerating cavity
 - RF source, amplifiers, distribution, controls
- auxillary systems
 - cryogenics, water and air cooling

Low Level RF Signal Generation

• Validation technical design and performance

- validation under close-to-realistic conditions
- ensure reliability & contingency
- ease of installation & maintenance

Optimization technical design

 improve cost, energy and resource effectiveness for construction & operation

• Acceptance testing of series components

- RF system: power source, amplifiers, distribution and controls
- complete cryomodules with multiple cavities & components

Training of staff

- participate in testing to prepare for operation

• 2009

- ESS has need for R&D and test stand,
 - but small staff, no buildings, existing test stands occupied
- start discussion with UU on 704 MHz RF development
- proposal for ESS dedicated test facility at UU

• 2011

- Spring:
 - ESS-UU contract on 704 MHz RF R&D
 - ESS changes to 14 Hz rep rate, 2.89 ms beam pulse
- Fall:
 - ESS changes pulse modulator strategy ' delays UU test stand

• 2012

- UU starts work on 352 MHz RF for spoke resonators
 - spoke resonators require new power source development
 - spoke resonators have never been used in an accelerator
- maintain compatibility with 704 MHz development

1) Contribution to the Technical Design Report (WP8)

- design concept 352 MHz spoke source
- design concept RF distribution

2) Contribution to the construction planning effort (WP19)

- survey test stand infrastructure and requirements
- study of upgrade scenarios RF systems for ESS power upgrade

3) Development 352 MHz RF power amplifier for spokes (WP19)

- 1st prototype, soak test with water load and SRF spoke resonator, incl. LLRF

4) RF system test prototype spoke cryomodule (WP19)

- high power test with 2nd RF power amplifier and LLRF

5) Acceptance testing spoke cryomodules (under discussion)

- for all final cryomodules before installation

6) Development klystron pulse modulator (under discussion)

- full soak test incl. klystron and RF system, if available with SRF cavity

Where do we fit in ...

ESS T	est Stand Matrix		f	Р	Pupg	cryo	prototype		_		series			
							low power		high power		low power		high power	
			[MHz]	[kW]	[kW]		where	when	where	when	where	when	where	when
PO	Structures													
	ion source						LNS		LNS				on site	
	LEBT buncher		352	10			LNS ?		LNS ?				on site	
	RFQ		352	1000			CEA		CEA				on site	
	MEBT						ESS-B?		ESS-B?				on site	
	DTL		352	2100		1000	LNL		CERN				on site	
	spoke resonators		352	400	800	У	IPNO		UU				UU ?	
	medium beta elliptical		704	500	1000	У	CEA ?		CEA ?		DESY ?		DESY ?	
	high beta elliptical		704	900	1800	У	CEA		CEA ?		DESY ?		DESY ?	
P1	Couplers													
	spoke resonators		352	800	1600		IPNO		CEA		??		??	
	medium beta elliptical		704	650	1300		CEA ?		CEA ?		??		??	
	high beta elliptical		704	1200	2500	12421	CEA		CEA ?		??		??	
P2	RF System													
	modulator	1x 3 MW klystron		5600				()						
	modulator	2x 1.5 MW klystron		5600										
	NC linac	1 mod. + 1 kl. + RFQ/DTL	352	2800										
	spoke	1 source (tbd) + 1 spoke	352	400			() (UU					
	elliptical	1 mod. + 2 kl. + 2 cavities	704	1300					UU ?					
P3	Cryomodule												\mathbf{O}	
	spoke	2 cavities	352	2x P2		У	IPNO		IPNO/UU				UU ?	
	SPL prototype	4 cavities	704	1x 1500		У	CERN		CERN		222			
	ESS prototype	4 cavities	704	555		У	CEA ?							
	low beta elliptical	6 cavities	704	6xP2 or 1x5000		y	0	1000		000	DESY ?		DESY ?	
	high beta elliptical	8 cavities	704	8xP2 or 2x5000		У	(7 45 3		5 11 2	000	DESY ?		DESY ?	
						93 - C								

Facility for Research Instrumentation and Accelerator Development

- Cryogenic centre (kryocentrum):
 - liquid helium and liquid nitrogen production and distribution
 - horizontal test cryostat
- RF test stands (ESS RF development)
 - 352 MHz RF source prototyping for ESS spoke cavities
 - spoke cryomodule prototyping and acceptance testing at full power
- General infrastructure
 - small workshop with "clean" room (preparation vacuum chambers)
 - control room for operation cryo plants, RF systems and experiments
 - concrete bunkers for RF and neutron experiment stations

		2011 Q1	Q2	Q3	Q4	2012 Q1	Q2	Q3	Q4	2013 Q1	Q2	Q3	Q4	2014 Q1	Q2	Q3	Q4	2015 Q1	Q2	Q3	Q4
FREIA																					
Experiment hall	construction											01/07									
Cryogenics	design, tender & fabrication	1											31/12								
	operation																				
352 MHz Test Stand	design, tender & fabrication												31/12								
Crvomodule Stand	design, tender & fabrication																31/12				
	operation																				

- 1. space
 - new 1000 m² FREIA hall
- 2. electricity, air conditioning, water cooling
- 3. cryogenic cooling (LHe)
 - new 100 l/h liquefier
- 4. radiation protection shielding (neutrons, X-rays)
- 5. specific test equipment
 - cryostat
 - RF power
- 6. people
 - accelerator group
 - TSL
 - FREIA

Construction Progress

02-Jul-2012 Roger Ruber - ESS Commitment and FREIA Planning

		2011				2012				2013				2014				2015			
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Dependencies by E	SS AB to UU																				
Spoke resonators	prototype cavity												31/12								
	prototype cryomodule																31/12				
LLRF system	prototype for single load/cavity										30/06										
	prototype for cryomodule																31/12				

Deliveries by UU to ESS AB

WU 8.6	report, spoke source				15/10						
WU 8.9	report, RF distribution				15/10		 				
WU 19.3	report, test stand survey						31/12				
WU 19.4	report, RF system upgrade							30/06			
WU 19.5	report, spoke source proto								31/12		
WU 19.6	report, spoke cryomodule										31/12
											-

FREIA Planning

		2011				2012				2013				2014				2015			
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
FREIA																					
Experiment hall	construction											01/07									
Cryogenics	design, tender & fabrication												31/12								
	operation																				
352 MHz Test Stand	design, tender & fabrication												31/12								
	operation																				
Cryomodule Stand	design, tender & fabrication																31/12				
	operation																				

Project 1: Contribution to Technical Design Report

WP 8	RF Systems										
WU 8.6	352 MHz power source										
WU 8.9	RF distribution										

Project 2: Contribution to Construction Planning Effort

WP 19	Test Stands											
WU 19.1	Management											
WU 19.3	Test stand survey							_				
WU 19.4	RF systems for power upgrade											

Project 3: Development of a Prototype RF System for Spoke Resonators

	/											
WU 19.5												
Power source (proto)	identify requirements											
	design & tender					 						
	fabrication											
RF distribution	identify requirements											
	design & tender											
	fabrication											
LLRF prototype	arrival at UU from ESS AB					01/04	 					
Test with water load	installation & test											
Spoke prototype	arrival at UU from ESS AB							07/01				
	installation & test											
	test report to ESS AB									31/12		

Project 4: High Power Test of a Prototype Spoke Cryomodule

WU 19.6												
Power source (2nd)	design & tender											
	fabrication							-				
RF distribution	design & tender											
	fabrication											
Cryomodule prototype	arrival at UU from ESS AB									01/10		
	installation & test											
	test report to ESS AB											31/12