

#### flair v2 status

Vasilis.Vlachoudis@cern.ch

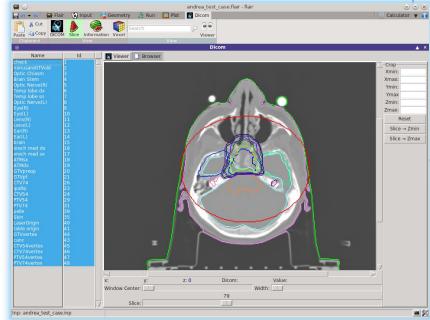


Flair V2 was released on May 2014 and used for the first time in the 15<sup>th</sup> Beginners FLUKA course in Thessaloniki Greece.

Currently few resistant to changes persons still use V1

- Major user interface relooking
- Major code restructuring: resulted in less lines with more functionality :) and hopefully more robust
- Many changes towards python v3
- More intuitive actions and behaviour from the program (e.g. USR-1D less options providing the same functionality, renaming, copy&paste in geometry editor...)
- Run-->Data, user customizable commands to process the data
- Keyboard bindings for accessing the ribbon
- Volume calculations (still in development)
- Copy&Paste of plots from project to project

- DXF library to import 2D DXF drawings, converting to connected paths
- Matplotlib bindings (started)


**7**[cont]

- Strict order checking of \$start\_transform, translat, expand
- Run job submission and monitoring decoupled from GUI (GA)
- Several optimization
  - Directory caching for faster accessing folders with a lot of files
  - Scanning for current event is done manually
- install.sh for easier update to the svn version
- Manual.py can export the manual in .html format
- More robust threadpool for parallel processing

- Than Scoring 2 [cont2]
  - Import from GDML improved (PolyCones and material importing)
  - Export to OpenSCAD format
  - Lock & Freeze buttons on geometry
  - FOV in the 3D plots
  - OpenGL bindings in the geometry editor for possibly using it as hardware accelerated viewer
  - VOXEL 3D tracking improved (x3) by simplifying the inner loop using only additions and comparisons
  - Auto correcting overlapping regions in 2D
  - Multiple bugs fixes



- .flair format change to accommodate multiple DICOM
- Rewritten DICOM using the numpy, with a remarkable performance improvement in the DICOM processing.
- Tree based dicom browser
- Reading and Plotting of RTSTRUCT
- Inclusion of the RSTRUCT inside the VOXEL file, using a mapping dictionary to describe all structures per each voxel.
- Offline DVH histogram calculations
- Added magnetic field flag in the VOXEL generation



#### Genetic algorithms

Genetic algorithms optimization python library

For the moment not accessible through the graphical interface

In the field of artificial intelligence, a genetic algorithm (GA) is a search that mimics the process of natural selection. It is commonly used to optimize problems using techniques inspired by natural evolution

#### Description:

 Each individual is described by a chromosome = a list of alleles (genes)

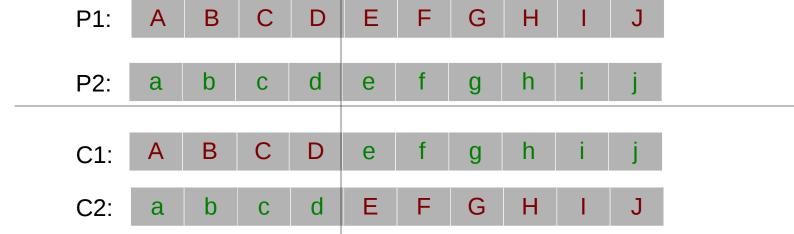


In flair is a list of **#define** variables, where each one contains an *int*, *float*, or *list of choices* (e.g. materials)

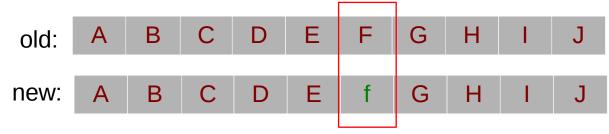
 Population = a group of individual Initially the population is built randomly

## Genetic algorithms (cont)

• Fitting function: the value to minimize/maximize, a user supplied function that calculates a single value for each individual

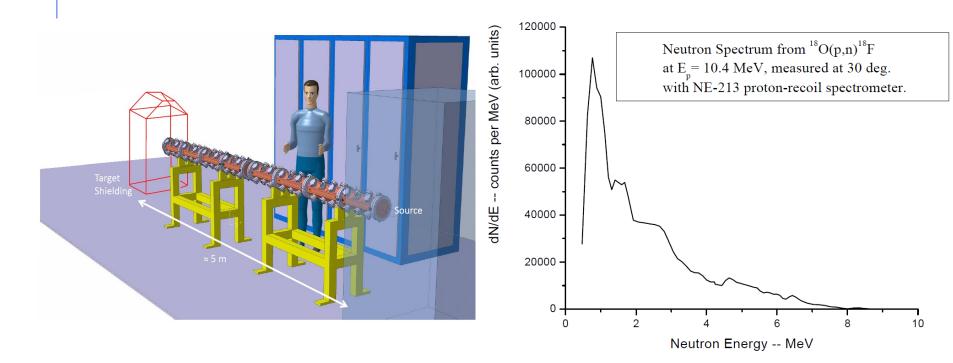

In flair the fitting function is the outcome of one or many estimators after a FLUKA run

This is the most complicated step:


- 1) To define a proper fitting function
- 2) To write the code to extract it
- 3) When to stop?
- On each step=generation, the whole population is evaluated (with the fitting function) and sorted
- A new generation (child) population is generated using the following operations: Selection, Cross Over, Mutation

### Genetic algorithms (cont)

- Selection: selecting randomly the fittest parents
- Cross over Cross over point (random) (or multiple)



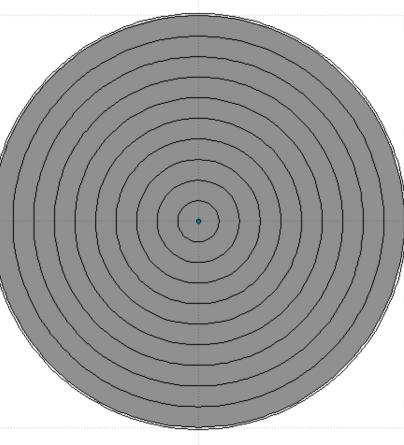

• Mutation (very low probability 0.2%)



#### Example: HF RFQ optimization

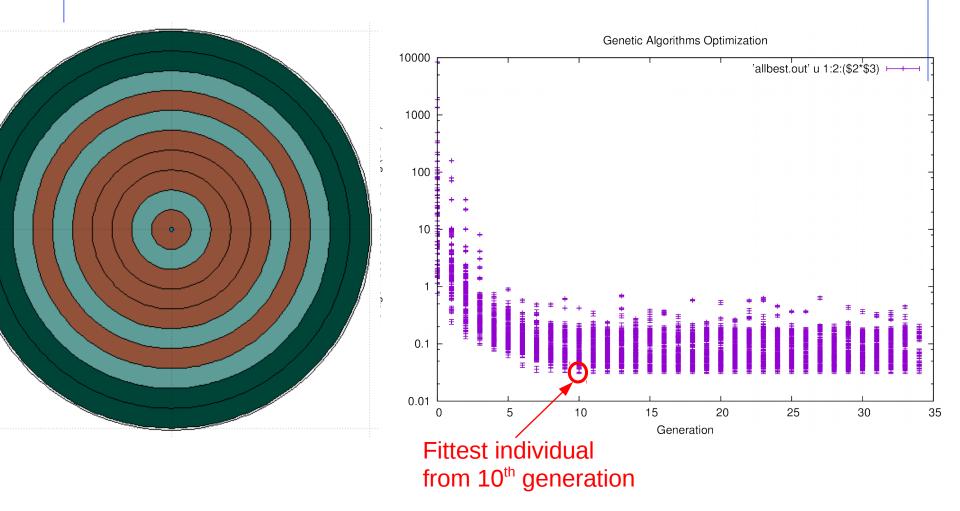
- Shielding calculations for the HF-RFQ from the neutrons out of the <sup>18</sup>O(p,n)<sup>18</sup>F
- For 20uA p the saturated value gives 1.26 10<sup>11</sup>n/s
- Goal to find the best configuration to minimize the outside dose




#### HF RFQ Shielding

- Onion like, spherical geometry with #defined material per 10cm layer
- Fitting function: Minimum dose on an external thin layer

Vasilis.Vlachou


• Materials considered: PE, B-PE, Fe, Cu, W, Concrete,...

| ##define                              | BIAS         | :3                            |                         |
|---------------------------------------|--------------|-------------------------------|-------------------------|
| ##define                              | MAT1         | BERYLLIU                      |                         |
| ##define                              | MAT2         | POLYETHY                      |                         |
| ##define                              | MAT2<br>MAT3 | COPPER                        |                         |
| ##define                              | MAT3<br>MAT4 | COPPER                        |                         |
| ##define                              |              |                               |                         |
| · · · · · · · · · · · · · · · · · · · | MAT5         | COPPER                        |                         |
| ##define                              | MAT6         | POLYETHY                      |                         |
| ##define                              | MAT7         | COPPER                        |                         |
| #)#define                             | MAT8         | POLYETHY                      |                         |
| #)#define                             | MAT9         | POLY-BOR                      |                         |
| #)#define                             | MAT10        | POLYETHY                      |                         |
|                                       |              |                               | TITLE GEOEND :          |
|                                       |              |                               | MATERIAL #elif :        |
| ASSIGNMA                              |              | Mat: =MAT1 ▼<br>Mat(Decay): ▼ | Reg: SHIELD1 V          |
| @ 466161044                           |              | Mat(Decay):  Mat: =MAT2  Mat: | Step:                   |
| ASSIGNMA                              |              | Mat: =MATZ ▼<br>Mat(Decay): ▼ | Reg: SHIELD2 V<br>Step: |
|                                       |              | Mat(Decay): •<br>Mat: =MAT3 • | Reg: SHIELD3 V          |
| ASSIGNMA                              | •            | Mat(Decay):                   | Step:                   |
|                                       |              | Mat: =MAT4 ▼                  | Reg: SHIELD4 V          |
| WASSIGNINA                            | •            | Mat(Decay):                   | Step:                   |
|                                       |              | Mat: =MAT5 V                  | Reg: SHIELD5 V          |
|                                       |              | Mat(Decay): 🔻                 | Step:                   |
|                                       |              | Mat: =MAT6 V                  | Reg: SHIELD6 V          |
| •                                     |              | Mat(Decay): 🔻                 | Step:                   |
| CASSIGNMA                             |              | Mat: =MAT7 V                  | Reg: SHIELD7 V          |
| •                                     |              | Mat(Decay): 🔻                 | Step:                   |
| ASSIGNMA                              |              | Mat: =MAT8 V                  | Reg: SHIELD8 V          |
|                                       |              | Mat(Decay): 🔻                 | Step:                   |
| ASSIGNMA 🌑                            |              | Mat: =MAT9 V                  | Reg: SHIELD9 🔻          |
|                                       |              | Mat(Decay): 🔻                 | Step:                   |
| ASSIGNMA                              |              | Mat: =MAT10 V                 | Reg: SHIELD10 🔻         |
|                                       |              | Mat(Decay): 🔻                 | Step:                   |



# RFQ: Results

Running 40 generations of 60 individuals = 2400 FLUKA runs





- Medical RTPLAN, RTSTRUCT...
- GA integration in the interface
- MatPlotLib integration
- Geometrical optimization of CSG using multiple 2D slices
- Input validator (to remove completely the auto arranging of cards during saving)
- Fitting CAD geometries with quadratic primitives
- Spline addition as flair object, for calculating doses along a path or movie creation
- Plotting of USRDUMP in geometry editor
- Plots graph wizard



- Medical RTPLAN, RTSTRUCT...
- GA dialog integration
- MatPlotLib integration
- Geometrical optimization of CSG using multiple 2D slices
- Input validator (to remove completely the auto arranging of cards during saving)
- Fitting CAD geometries with quadratic primitives
- Spline addition as flair object, for calculating doses along a path or movie creation
- Plotting of USRDUMP in geometry editor
- Plots graph wizard