flair for FLUKA geometry editor

Vasilis.Vlachoudis@cern.ch
FLUKA Meeting 09.07.2010

What's new in Version 0.8.3 ${ }^{[1 / 2]}$

- Multiple frames - fully customizable
- FLUGG support
- Input Editor improvements with most important
- Tip help for every item value (short description + default) bodies (definition) in the region
- Indentation of cards (towards integration of \#include)
- Accelerated display
- Multiple editing, by selecting a range of similar cards
- Expansion of parenthesis
- Customized file dialog to easier searching, deleting, renaming files as well creation of new folders
- MCNP exporting to macro bodies + importing (basic)

What's new in Version $0.8 .3^{[2 / 2]}$

- Improved Customize dialog and Gnuplot definitions
- Multiple selection for rules editing in "Data merge"
- Improvements in the plotting:
- Use of styles for full customization of plots
- Rebinning of USRBINs
- Gnuplot reference in the manual
- Integration of the Geometry Editor

2D Geometry Editor

- Working on 2D cross sections of the geometry
- Creating and editing bodies/regions in a graphical way
- Most of the objects are 2D extruded in the $3^{\text {rd }}$ dimension
- Pros
- Fast display of complex geometries
- Visual selection and editing of zones
- Use real curve of bodies with no conversion to vertices/edges
- Interactive debugging with information of problematic body regions and zones
- No use of any additional hardware (plain X11 libraries)
- Cons
- No interactive 3D display
- Blind in $3^{\text {rd }}$ dimension [could be compensated with raytracing]
- Difficult to orientate in an unknown geometry

How it works

All bodies are converted to a set (up to 6) quadratic equations:

$$
c_{x} x^{2}+c_{y} y^{2}+c_{z} z^{2}+c_{x y} x y+c_{x z} x z+c_{y z} y z+c_{x} x+c_{y} y+c_{z} z+c \leq 0
$$

RCC $\rightarrow 3$ quadratic equations

1. $x^{2}+y^{2}-R^{2} \leq 0$
2. $-z-0 \leq 0$
3. $\mathrm{z}-\mathrm{h} \leq 0$

Sign defines the location $\boldsymbol{+}=$ outside, $\mathbf{0}=$ on surface, $\boldsymbol{-}=$ inside Then it is transformed to the direction of the H -vector

- Quadratic can be represented in 4×4 matrix format

$$
\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]^{T}\left[\begin{array}{cccc}
C_{x} & C_{x y} / 2 & C_{x z} / 2 & C_{x} / 2 \\
C_{x y} / 2 & C_{y} & C_{y z} / 2 & C_{y} / 2 \\
C_{x z} / 2 & C_{y z} / 2 & C_{z} & C_{z} / 2 \\
C_{x} / 2 & C_{y} / 2 & C_{z} / 2 & C
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=0 \quad \text { or } \quad \mathbf{X}^{\top} \cdot \mathbf{Q} \mathbf{X}=\mathbf{0}
$$

- Any transformation of the system $X=R^{\prime} X^{\prime}$ will modify the quadratic as

$$
X^{\top} \cdot R^{\top} \cdot Q \cdot R \cdot X=0 \text { with } Q^{\prime}=R^{\top} \cdot Q^{\cdot R}
$$

the new equation of the quadratic

Conics

- The quadratic equations/matrices are rotated/translated to the viewport location and then are converted to conic section assuming $z^{\prime}=0$

Rotation Translation

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

The conics can be represented in matrix format as:

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]^{T}\left[\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=0
$$

- Similarly to the quadratics the conics can be transformed (rotated/translated) using matrix operations.
- Under these operations the following quantities are invariant

$$
\Delta=\left|\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right|
$$

$$
\mathrm{J}=\mathrm{ab}-\mathrm{h}^{2}
$$

Conics Types

Conic	Form	Parametric	Δ	J	Δ / I	$\begin{aligned} & c a-g^{2}+ \\ & b c-f^{2} \end{aligned}$
Real Ellipse	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$\begin{aligned} & x=c_{1}+c_{2} \cos t+c_{3} \sin t \\ & y=c_{4}+c_{5} \cos t+c_{6} \sin t \end{aligned}$	$\neq 0$	+	-	
Virtual Ellipse	-/I-		$\neq 0$	+	+	
Hyperbola	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$\begin{aligned} & x=c_{1}+c_{2} \sec t+c_{3} \tan t \\ & y=c_{4}+c_{5} \operatorname{sect}+c_{6} \tan t \end{aligned}$	$\neq 0$	-		
Parabola	$y^{2}=4 \mathrm{ax}$	$\begin{aligned} & x=c_{1}+c_{2} t+c_{3} t^{2} \\ & y=c_{4}+c_{5} t+c_{6} t^{2} \end{aligned}$	$\neq 0$	0		
Real intersecting lines	$\begin{gathered} \left(l_{1} x+m_{1} y+n_{1}\right) \\ \left(l_{2} x+m_{2} y+n_{2}\right)=0 \end{gathered}$	$\begin{aligned} & \mathrm{x}=\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{t} \\ & \mathrm{y}=\mathrm{c}_{4}+\mathrm{c}_{5} \mathrm{t} \end{aligned}$	0	-		
Conjugate complex intersecting lines	-//-		0	+		
Real distinct parallel lines	-//-	$\begin{aligned} & x=c_{1}+c_{2} t \\ & y=c_{4}+c_{5} t \end{aligned} \quad x 2$	0	0		-
Conjugate complex parallel lines	-//-		0	0		+
Coincident lines	$\mathrm{I}_{1} \mathrm{x}+\mathrm{m}_{1} \mathrm{y}+\mathrm{n}_{1}=0$	$\begin{aligned} & x=c_{1}+c_{2} t \\ & y=c_{4}+c_{5} t \end{aligned}$	0	0		0

Intersection of Conics

Intersect all body conics that are visible in the current viewport with each other. There are two ways of calculating the intersection of conics

Using a pencil of conics

- Given two conics C1 and C2
- Consider the pencil of conics $\lambda C 1+\mu \mathrm{C} 2$
- Identify the homogeneous parameters (λ, μ) which corresponds to the degenerate conic of the pencil (lines). $\operatorname{det}(\lambda C 1+\mu C 2)=0$
a $3^{\text {rd }}$ degree equation.
- Decompose the degenerate conic CO into two lines
- Intersect each line with one of the initial conics

Direct substitution

- Solve the $2^{\text {nd }}$ degree equation of conic C1 for y
- Substitute in the C2 => generate a $4^{\text {th }}$ degree equation on x
- Solve the quartic equation
- Find the y coordinates for every x solution for C1 and C2
- Find the common (x, y) points

Drawing conics

- Having calculated all intersections of all conics, and with the window borders,
Calculate the parametric t corresponding to every intersection
- Sort the the intersections according to t
- Inspect segment on actual geometry if it belongs to zero, one, two or more regions.
- If it belongs to only one region then ignore
- If it belongs to two different regions then plot as normal
- If it belongs to zero or more than two regions then plot as error

All segments

Analyzed

Region filled

Program

Plotting engine

- Language: "simple" C++ (as portable as possible)
- No use of ANY external library
- Drawing directly in a bitmap array
- All graphic operations with home source code
- Fully re-entrant and threaded
- Modestly robust in numerical precision. Accuracy of operations eps: 10^{-8} up to 10^{9}
- Heavily optimized

Interface (integrated into flair)

- High level interface is written in python with tk
- Low level interface with C++, tcl/tk and x11 libraries

Status \& Future

Plotting engine

- Geometry engine operates reasonably
- Quite robust for debugging geometries
- Could be further optimized while scanning regions for errors
- To be added a 3D ray tracing for vacuum/low density regions
- Exporting to various formats (dxf, eps, png)

Interface

- A lot of work for a user friendly interface
- Will allow editing of regions by simply drawing/selecting the zones. Then the program will construct the logical operations

Maybe first release in autumn 2010

