

flair for FLUKA geometry editor

Vasilis.Vlachoudis@cern.ch

FLUKA Meeting 09.07.2010

What's new in Version 0.8.3 [1/2]

- Multiple frames fully customizable
- FLUGG support
- Input Editor improvements with most important
 - Tip help for every item value (short description + default) bodies (definition) in the region
 - Indentation of cards (towards integration of #include)
 - Accelerated display
 - Multiple editing, by selecting a range of similar cards
 - Expansion of parenthesis
- Customized file dialog to easier searching, deleting, renaming files as well creation of new folders
- MCNP exporting to macro bodies + importing (basic)

What's new in Version 0.8.3 [2/2]

- Improved Customize dialog and Gnuplot definitions
- Multiple selection for rules editing in "Data merge"
- Improvements in the plotting:
 - Use of styles for full customization of plots
 - Rebinning of USRBINs
 - Gnuplot reference in the manual
- Integration of the Geometry Editor

) Geometry Editor

- Working on 2D cross sections of the geometry
- Creating and editing bodies/regions in a graphical way
- Most of the objects are 2D extruded in the 3rd dimension
- Pros
 - Fast display of complex geometries
 - Visual selection and editing of zones
 - Use real curve of bodies with no conversion to vertices/edges
 - Interactive debugging with information of problematic body regions and zones
 - No use of any additional hardware (plain X11 libraries)

Cons

- No interactive 3D display
- Blind in 3rd dimension [could be compensated with raytracing]
- Difficult to orientate in an unknown geometry

• All bodies are converted to a set (up to 6) quadratic equations: $c_x x^2 + c_y y^2 + c_z z^2 + c_x xy + c_x z + c_y y + c_z z + c \le 0$ RCC \rightarrow 3 quadratic equations $1. x^2 + y^2 - R^2 \le 0$ $2. -z - 0 \le 0$ $3. z - h \le 0$ Sign defines the location + = outside, **0** = on surface, - = inside Then it is transformed to the direction of the H-vector

• Quadratic can be represented in 4x4 matrix format

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}^{T} \begin{bmatrix} C_{x} & C_{xy}/2 & C_{xz}/2 & C_{x}/2 \\ C_{xy}/2 & C_{y} & C_{yz}/2 & C_{y}/2 \\ C_{xz}/2 & C_{yz}/2 & C_{z} & C_{z}/2 \\ C_{x}/2 & C_{y}/2 & C_{z}/2 & C \end{bmatrix} \begin{bmatrix} \dot{x} \\ y \\ z \\ 1 \end{bmatrix} = 0 \quad \text{or } \mathbf{X}^{\mathsf{T}} \mathbf{Q}^{\mathsf{T}} \mathbf{X} = \mathbf{0}$$

 Any transformation of the system X = R'X' will modify the quadratic as

 $X^{T} \cdot R^{T} \cdot Q \cdot R \cdot X = 0$ with $Q' = R^{T} \cdot Q \cdot R$

the new equation of the quadratic

- The quadratic equations/matrices are rotated/translated to the viewport location and then are converted to conic section assuming z'=0
 Rotation Translation
 - $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$
- The conics can be represented in matrix format as:

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}^{T} \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

- Similarly to the quadratics the conics can be transformed (rotated/translated) using matrix operations.
- Under these operations the following quantities are invariant

$$\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$$

I=a+b

J=ab-h²

Vasilis.Vlachoudis@cern.ch

WW-THRESH WW-THRESH * THRESH	try Request input by a	on Pair production test		Julio		
Conics	Types	mvv/cm Input: Namoo = Ana	Contraction of the second			
Conic	Form	Parametric	Δ	J	Δ/Ι	ca-g ² + bc-f ²
Real Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$x=c_{1} + c_{2}cost + c_{3}sint$ $y=c_{4} + c_{5}cost + c_{6}sint$	≠0	+	-	
Virtual Ellipse	-//-		≠0	+	+	
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$x=c_1 + c_2 sect + c_3 tant$ $y=c_4 + c_5 sect + c_6 tant$	≠0	-		
Parabola	$y^2 = 4ax$	$x=c_1 + c_2 t + c_3 t^2$ $y=c_4 + c_5 t + c_6 t^2$	≠0	0		
Real intersecting lines	$(I_1x+m_1y+n_1).$ $(I_2x+m_2y+n_2)=0$	$x=c_{1} + c_{2}t$ $y=c_{4} + c_{5}t$ x2	0	-		
Conjugate complex intersecting lines	-//-		0	+		
Real distinct parallel lines	-//-	$x=c_{1} + c_{2}t$ $y=c_{4} + c_{5}t$ x2	0	0		-
Conjugate complex parallel lines	-//-		0	0		+
Coincident lines	I ₁ x+m ₁ y+n ₁ =0	$ \begin{aligned} \mathbf{x} = \mathbf{c}_1 + \mathbf{c}_2 \mathbf{t} \\ \mathbf{y} = \mathbf{c}_4 + \mathbf{c}_5 \mathbf{t} \end{aligned} $	0	0		0

Intersection of Conics

Intersect all body conics that are visible in the current viewport with each other. There are two ways of calculating the intersection of conics

Using a pencil of conics

- Given two conics C1 and C2
- Consider the pencil of conics $\lambda C1 + \mu C2$
- Identify the homogeneous parameters (λ,μ) which corresponds to the degenerate conic of the pencil (lines). det(λ C1 + μ C2) = 0

a 3rd degree equation.

- Decompose the degenerate conic
 C0 into two lines
- Intersect each line with one of the initial conics

Direct substitution

- Solve the 2nd degree equation of conic C1 for y
- Substitute in the C2 => generate a 4th degree equation on x
- Solve the quartic equation
- Find the y coordinates for every x solution for C1 and C2
- Find the common (x,y) points

Drawing conics

- Having calculated all intersections of all conics, and with the window borders, Calculate the parametric t corresponding to every intersection
- Sort the the intersections according to t
- Inspect segment on actual geometry if it belongs to zero, one, two or more regions.
 - If it belongs to only one region then ignore
 - If it belongs to two different regions then plot as normal
 - If it belongs to zero or more than two regions then plot as error

Plotting engine

- Language: "simple" C++ (as portable as possible)
- No use of ANY external library
- Drawing directly in a bitmap array
- All graphic operations with home source code
- Fully re-entrant and threaded
- Modestly robust in numerical precision.
 Accuracy of operations eps: 10⁻⁸ up to 10⁹
- Heavily optimized

Interface (integrated into flair)

- High level interface is written in python with tk
- Low level interface with C++, tcl/tk and x11 libraries

Status & Future

Plotting engine

- Geometry engine operates reasonably
- Quite robust for debugging geometries
- Could be further optimized while scanning regions for errors
- To be added a 3D ray tracing for vacuum/low density regions
- Exporting to various formats (dxf, eps, png)

Interface

- A lot of work for a user friendly interface
- Will allow editing of regions by simply drawing/selecting the zones. Then the program will construct the logical operations

Maybe first release in autumn 2010