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1. Introduction 
 
The Geometry Description Markup Language (GDML) is a specialized XML-based language 
designed as an application-independent persistent format for describing the geometries of 
detectors associated with physics measurements. It serves to implement ``geometry trees'' 
which correspond to the hierarchy of volumes a detector geometry can be composed of, and 
to allow to identify the position of individual solids, as well as to describe the materials they 
are made of.  Being pure XML, GDML can be universally used, and in particular it can be 
considered as the format for interchanging geometries among different applications. 
 
GDML consists of two elements, an XML definition part containing the set of rules and the 
list of the legal elements to be used in constructing any GDML document, and the GDML 
generating and processing code. The structure of the GDML document is defined through a 
set of XML Schema Definition (XSD) files which we call the GDMLSchema. Any GDML 
geometry file must be valid with respect to the GDMLSchema. The GDML file itself, can be 
either written by hand (in case GDML is used as the primary geometry source) or generated 
automatically (in case GDML is used as an exchange or persistency format) out of the 
application specific ``in-memory'' geometry tree using one of the GDML ``writers'' called by 
the user application. The GDML reader is responsible for parsing the GDML file and creating 
the in-memory representation of the geometry tree specific for the user application. 
 
This manual will focus on the Geant4 binding for GDML. The ROOT binding for GDML is 
integrated within the ROOT framework and therefore the user should refer to the general 
ROOT manual for any information on importing and/or exporting GDML files to/from the 
ROOT geometry model. The description of the GDMLSchema in Section 3, however, is 
application-independent and therefore is relevant for both the Geant4 as well as the ROOT 
users. 
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2. Getting started 

2.1 Installation 
 
In order to install the Geant4 binding for GDML one needs to have: 

• Geant4 installed (together with the appropriate CLHEP) with all the header files 
copied to one directory (an option during the Geant4 installation procedure) 

• XercesC parser installed (presently GDML uses XercesC 2.7.0) 
 
The GDML source code can be checked out from the GDML2 CVS repository using the 
anonymous access mode or downloaded in the form of the tarfile from the GDML web page 
(http://gdml.web.cern.ch/GDML/gdml.html). 
 
Before the libraries can be built, you can either: 
 
1. Run GDMLSetup from the CPPGDML directory.  This will ask you various questions to 

set dependency paths, and enable/disable options, it will then configure the system with 
the parameters specified using configure script also in the CPPGDML directory. The 
setup will then run ‘make’ and compile and install the system.   After running this script 
you will have a fully installed GDML system.   

2. Manually configure, using your own script or from the shell. Please see ./configure –
help for the configure options.  Once you have configured you can call make etc. 

 
After taking option 1, you will have inside the CPPGDML directory, 2 scripts (MyConfigure.*).  
One is an sh shell script, the other is a csh shell script for your convenience.  This contains 
all the paths and options specified during the setup procedure.  You may manually edit the 
script you wish to use if you need to edit parameters you specified during setup. 
Alternatively you can run the entire setup procedure again.  Please refer to the information 
on the GDML web page as well as the README file in the CPPGDML directory for more 
information on the configuration procedure.  
 
The building of the libraries is done by make command issued in the CPPGDML directory. 

2.2 Running simple examples 
 
The Geant4 binding for GDML comes with two simple examples which demonstrate the 
writing out (g4N02gdml) and the reading in (g4gogdml) of GDML files. The directories 
containing these examples can be found in CPPGDML/Examples directory. The examples 
are built automatically during the general GDML building procedure. In case of using 
dynamic libraries, one needs to set the LD_LIBRARY_PATH variable to point to all the 
necessary libraries (CLHEP, Geant4, XercesC and CPPGDML) before running the 
examples. Please refer to the examples README files for more information. 
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3. GDMLSchema 

3.1 General structure 
 
The GDML schema is a set of XSD files which define the structure of the GDML document 
and its legal elements.  The general structure of the GDML file can be seen below (with 
some parts replaced by ‘...’ for brevity).  
 
<?xml version="1.0" encoding="UTF-8"?> 
<gdml xsi:noNamespaceSchemaLocation="GDMLSchema/gdml.xsd"> 
 <define> 
  … 
  <position name="TrackerinWorldpos" unit="mm" x="0" y="0" z="100"/> 
 </define> 
 <materials> 
  … 
  <element name="Nitrogen" formula="N"  Z="7.">   
  <atom value="14.01"/>   

</element> 
  <material formula=" " name="Air" > 
   <D value="1.290" unit="mg/cm3"/> 
      <fraction n="0.7" ref="Nitrogen" /> 
      <fraction n="0.3" ref="Oxygen" /> 
    </material> 
 </materials> 
 <solids> 
  … 
  <box lunit="mm" name="Tracker" x="50" y="50" z="50"/> 
 </solids> 
 <structure> 
  … 
  <volume name="World" > 
   <materialref ref="Air" /> 
      <solidref ref="world" /> 
      <physvol> 
       <volumeref ref="Tracker" /> 
       <positionref ref="TrackerinWorldpos"/> 
       <rotationref ref="TrackerinWorldrot"/> 
      </physvol> 
  </volume> 
 </structure> 
 <setup name="Default" version="1.0" > 
   <world ref="World" /> 
  </setup> 
</gdml> 
 

 
One can distinguish there five parts, each holding specific type of data. 
 
The <define> ... </define> block contains numerical values of different constants, 
positions, rotations and scales that will be used later on in the geometry construction. 
 
The <materials> ...</materials> block contains definitions of all the materials used in the 
given geometry. The supported forms are simple materials which are made from one 
element as well as mixtures. Mixtures can be composed on the basis of fraction of mass or 
atom count. 
 
The <solids> ... </solids> block is the collection of all solid definitions which are used in 
the given geometry description. The presently supported solids are described in Section 0. 
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Composite solids made using boolean operation (union, subtraction, intersection) are also 
supported. 
 
The <structure> ... </structure> block contains the actual implementation of the 
geometry tree together with the assignment of solids and materials. The hierarchy of 
volumes is defined by specifying the daughter volumes (physvol) positioned inside a volume. 
Constructions like assembly volumes, reflections, replicas and divisions are possible. A 
more detailed discussion of the ‘structure’ block can be found in Section 3.5. 
 
Finally, the <setup> ... </setup> block serves to specify the top volume of the geometry 
tree. It is possible to define several ``setups'' within one file, allowing to test different 
subparts (or different configurations included in the same file) of the geometry tree without 
changing the GDML file. 
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3.1.1 Splitting GDML file using ENTITY 
 
Any GDML file can be split into several files which are combined together during the parsing 
by using the ENTITY statement. The files included in such a way are not standalone GDML 
files, they simply contain parts of the GDML description and in general are meaningful only 
when put all together. 
 
In order to use such a mechanism, one has to first declare the given ENTITY  (just after the 
<xml ... > tag) 
 
<!DOCTYPE gdml [  
<!ENTITY materials SYSTEM “materials.xml”> 
]> 
 

where materials.xml is the name of the file to be included and materials is the ENTITY 
name that we have assigned to it. The entity can be then used anywhere inside the GDML 
description. 
 
<gdml ....> 
.... 
&materials; 
.... 
<gdml> 

 
The &materials line is then replaced during parsing by the contents of materials.xml file. 

3.1.2 Multiple GDML files 
 
It is also possible to define the geometry in the form of several standalone GDML files, each 
one representing a module of the setup we want to describe. Each GDML file would contain 
only the materials, the solids and the volumes the module is made of. For example, if one 
wants to describe a detector, instead of creating a single detector.gdml file with thousands 
of volumes and materials, one could create smaller modules called tracker.gdml, 
calorimeter.gdml, beampipe.gdml, etc, and a small main detector.gdml file combining 
those modules. This approach makes it easier to read and write the geometries and to apply 
changes. Explanations and details on how GDML modules are defined and put together are 
given in the Section 3.5. 



Page 9 of 42 

3.2 Definitions 

3.2.1 Variables 
 
Variables are defined in the beginning of the GDML file (in the define section). Once defined, 
they can be used anywhere inside the file. Their value will be evaluated each time they are 
used and it can change if they are used as loop variables (see section 3.5.1). A variable can 
be defined as in the following example: 
 

<variable name=“x” value=“6”/> 

 
This simple code defines a variable with an initial value of 6. Of course previously defined 
variables may be used in variable definitions, as in the following example: 
 

<variable name=“x” value=“6”/> 
<variable name=“y” value=“x/2”/> 

 
In this case variable y is set with an initial value of 3. You can now use your variable 
wherever you like, for example in a box definition: 
 

<box name=“my_box” x=“x” y=“y” z=“x+y”/> 
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3.2.2 Matrices 
 
A matrix definition allows you to store values in matrix format. The definition of a matrix is 
very simple: <matrix name=“name” coldim=“number of columns” values=“space-
separated values” />. A simple example follows: 
 

<matrix name=“m” coldim=“3” values=“0.4 9 126 8.5 7 21 34.6 7 9” /> 
 
Or you could also write it like this (visually clearer): 
 

<matrix name=“m” coldim=“3” values=“ 0.4  9  126 
                                     8.5  7   21 
                                    34.6  7    9” /> 

 
The elements of a matrix can be accessed anywhere after the definition of the matrix itself, 
just variables. To access them you have to to use the following syntax: 
 

matrix_name[row_number, column_number] 

 
for example: 
 

m[3,1] 

 
will be evaluated to 34.6. You can also put variables inside the square brackets, like this: 
 

m[y,y] 

 
So if y=3 this will be evaluated to 9. Just be sure that the values of the variables don’t 
exceed the matrix dimensions, otherwise you will get an error when processing the file. 
A matrix with coldim=“1” is a vector and its elements may be accessed using only one index 
as in the following example: 
 

<matrix name=“m” coldim=“1” values=“4 9 12 6 7 9” /> 

 
So, 
 

m[4] 

 
will be evaluated to 6. Matrices can of course be used inside loops (there is where they are 
actually most useful). We will see how to do this in section 3.5.1. 
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3.3 Materials 

3.3.1 Isotopes 
 
Isotopes can be defined using a very simple contsruct. <isotope name=its_name 
Z=atomic_number N=num_of_nucleons> The following shows and example: 
 
 
 
 
 
 

3.3.2  Elements 
 
Elements can be defined using this very self explanatory construct: 
 
 
 
 
 
Instead of an atomic number being used on a child node of the element declaration, a 
fraction of an isotope can be used using <fraction ref=isotope_name n=fraction />. This 
is implemented as the following shows: 
 
 
 
 
 

<isotope name="U235" Z="92" N="235"> 
 <atom type="A" value="235.01"> 
</isotope> 
<isotope name="U238" Z="92" N="238"> 
 <atom type="A" value="235.03"> 
</isotope> 

<element Z="8" formula="O" name="Oxygen" > 
   <atom value="16" /> 
 </element> 

<element name="enriched_uranium" > 
   <fraction ref="U235" n="0.9" /> 
   <fraction ref="U238" n="0.1" /> 
 </element> 
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3.3.3 Materials 

Materials can be defined in three ways. The material can be defined directly from an 
element, created from previously defined elements or materials on number of atoms, and 
finally created as a fractional mixture of previously defined elements or materials. 
 
 
 

 

 

 

 

 
 
 
 
 

<material name="Water" formula="H2O"> 
   <D value="1.0" /> 
   <composite n="2" ref="Hydrogen" /> 
   <composite n="1" ref="Oxygen" /> 
  </material> 

<material name="Al" Z="13.0" > 
   <D value="2.70" /> 
   <atom value="26.98" /> 
  </material> 

<material formula="air" name="Air" > 
   <D value="0.0012899999999999999" /> 
   <fraction n="0.7" ref="Nitrogen" /> 
   <fraction n="0.3" ref="Oxygen" /> 
  </material> 
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3.4 Solids 

3.4.1 Box 
 
The GDML box is formed using the three standard dimensions: x, y and z. The box 
therefore has 4 attributes, the other being name which is standard for any SolidType 
element and corresponds to the name the solid can be referenced by. 
 
The following example illustrates the construction of a box made from the above dimensions: 

 

3.4.2 Cone Segment 
 
The GDML Cone Segment is formed using 7 dimensions.   
 
rmin1    inner radius at base of cone 
rmax1  outer radius at base of cone 
rmin2  inner radius at top of cone 
rmax2  outer radius at top of cone 
z  height of cone segment 
startphi  start angle of the segment 
deltaphi  angle of the segment 
 
The cone segment therefore has 8 attributes, the other being name which is standard for 
any SolidType element and corresponds to the name the solid can be referenced by. 
 
The following example illustrates the construction of a cone segment made from the above 
dimensions: 

 

3.4.3 Ellipsoid 
 
The GDML Ellipsoid is formed using 3 dimensions. 
 
ax x semi axis 
by y semi axis 
cz z semi axis 
 
There are 2 optional dimensions that can cut the ellipsoid. zcut1 will remove the specified 
value from the lower z axis effectively cutting a part of  the bottom of  the shape off. zcut2 
performs the same action but acts on the upper part of the z axis. 
 
The ellipsoid therefore has 4 attributes, the other being name which is standard for any 
SolidType element and corresponds to the name the solid can be referenced by. 
 

<box name = "thebox" x= "30" y= "30" z= "30" lunit= "mm" /> 

<cone name = "thecone" rmin1="10" rmax1="15" rmin2="15" rmax2="25" z="30" 
startphi="1" deltaphi="4" aunit="rad"  lunit= "mm" /> 
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The following example illustrates the construction of a ellipsoid made from the above 
dimensions: 

 

3.4.4 Elliptical Tube 
 
The GDML Elliptical Tube is formed using 3 dimensions: 
 
ax x semi axis 
by y semi axis 
cz z semi axis 
 
The elliptical tube therefore has 4 attributes, the other being name which is standard for any 
SolidType element and corresponds to the name the solid can be referenced by. 
 
The following example illustrates the construction of an elliptical tube made from the above 
dimensions: 

 

3.4.5 Orb 
 
The GDML Orb is formed using only 1 dimension: 
 
r  radius 
 
The orb is a simplified GDML Sphere with only the radius specified. The orb therefore has 2 
attributes, the other being name which is standard for any SolidType element and 
corresponds to the name the solid can be referenced by. 
 
The following example illustrates the construction of an orb made from the above 
dimensions: 

 

<ellipsoid name = "theellipsoid" ax="10" by="15" cz="20" zcut2="4" lunit= "mm"/> 

<eltube name = "theeltube" ax="10" by="15" cz="20"  lunit= "mm" /> 

<orb name = "theorb" r="10"  lunit= "mm"/> 
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3.4.6 Paraboloid 
NB: Currently not supported by Geant4 

 
The GDML Paraboloid is formed using 3 dimensions: 
 
rlo radius at -z 
rhi radius at +z 
dz z length 
 
The paraboloid therefore has 4 attributes, the other being name which is standard for any 
SolidType element and corresponds to the name the solid can be referenced by. 
 
The following example illustrates the construction of an paraboloid made from the above 
dimensions: 

 

3.4.7 Parallelepiped 
 
The GDML Parallelepiped is formed using 6 dimensions: 
 
x   length of x 
y   length of y 
z   length of z 
alpha   angle between x and z planes 
theta   polar angle of the line joining the centres of the faces at –z & +z in z 
phi   azimuthal angle of the line joining the centres of faces at –z & +z in z 
 
The Parallelepiped therefore has 7 attributes, the other being name which is standard for 
any SolidType element and corresponds to the name the solid can be referenced by. 
 
The following example illustrates the construction of a parallelepiped made from the above 
dimensions: 

 

3.4.8 Polycone 
 
The GDML Polycone is described using the following information: 
 
startphi start angle of the segment – if not given 0.0 is defaulted 
deltaphi angle of the segment 
zplane  see below 
 

<paraboloid name = "theparab" rlo="10" rhi="15" dz="20" aunit="rad"  lunit= "mm" /> 

<para name = "thepara" x="10" y="10" z="10" alpha="1" theta="1" phi="1" aunit="rad"  
lunit= "mm"/> 
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The zplane element is required to be used at least once. You can use it as many times as 
you like.  The zplane is formed using the 3 attributes shown above: 
 
rmin  inner radius of cone at this point – if not given 0.0 is defaulted. 
rmax  outer radius of cone at this point 
z  z coordinate of the plane  
 
The Polycone therefore has a minimum of 7 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a polycone made from the above 
dimensions: 

 

3.4.9 Polyhedra 
 
The GDML Polyhedra is described using the following information: 
 
startphi start angle of the segment 
deltaphi angle of the segment 
numsides number of sides  
zplane   see below 
 
The zplane element is required to be used at least once. You can use it as many times as 
you like. The zplane is formed using the 3 attributes shown above: 
 
rmin  radius of inner tangent circle 
rmax  radius of outer tangent circle 
z  z coordinate of the plane 
 
The Polyhedra therefore has a minimum of 6 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a polyhedra made from the above 
dimensions: 

 

<polycone name = "thepolycone" startphi="1" deltaphi="4" aunit="rad"  lunit= "mm"> 
      <zplane rmin="1" rmax="9" z="10" /> 
      <zplane rmin="3" rmax="5" z="12" /> 
</polycone> 
 

<polyhedra name="thepolyhedra" startphi="0" deltaphi="360" numsides="8" 
aunit="degree"  lunit="mm"> 
      <zplane rmin="4" rmax="8" z="0" /> 
      <zplane rmin="4" rmax="8" z="10" /> 
</polyhedra> 
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3.4.10 Sphere 
 
The GDML Sphere is formed using 6 dimensions: 
 
rmin   inner radius – if not given 0.0 is defaulted  
rmax   outer radius 
startphi  starting angle of the segment – if not given 0.0 is defaulted 
deltaphi  delta angle of the segment 
starttheta  starting angle of the segment – if not given 0.0 is defaulted 
deltatheta  delta angle of the segment 
 
The Sphere therefore has a minimum of 7 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a sphere made from the above 
dimensions: 

 

3.4.11 Torus Segment 
 
The GDML Torus Segment is formed using 5 dimensions: 
 
rmin   inside radius of segment 
rmax   outside radius of segment 
rtor   swept radius of torus 
startphi  starting phi position angle of segment 
deltaphi  delta angle of segment 
 
The Torus segment therefore has a minimum of 6 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a torus segment made from the above 
dimensions: 

 
 

<sphere name = "thesphere" rmin="1" rmax="4" deltaphi="1" deltatheta="1" aunit="rad"  
lunit= "mm"/> 

<torus name = "thetorus" rmin="1" rmax="4"  rtor="2" deltaphi="3" startphi="1" aunit="rad" 
lunit= "mm"/> 
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3.4.12 Trapezoid – x & y varying along z 
 
The GDML Trapezoid is formed using 5 dimensions: 
 
x1  x length at -z 
x2  x length at +z 
y1  y length at -z 
y2  y length at +z 
z  z length 
 
The Trapezoid therefore has a minimum of 6 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a Trapezoid made from the above 
dimensions: 

 

3.4.13 General Trapezoid 
 
The GDML General Trapezoid is formed using 11 dimensions: 
 
z  length along z axis 
theta  polar angle to faces joining at -/+z 
phi  azimuthal angle of line joining centre of –z face to centre of +z face 
y1  length along y at the face -z 
x1  length along x at side y = -y1 of the face at -z 
x2  length along x at side y = +y1 of the face at -z 
alpha1 angle with respect to the y axis from the centre of side at y = -y1 to centre of  

y = +y1 of the face at -z 
y2  length along y at the face +z 
x3  length along x at side y = -y1 of the face at +z 
x4  length along x at side y = +y1 of the face at +z 
alpha2 angle with respect to the y axis from the centre of side at y = -y2 to centre of  

y = +y2 of the face at +z 
 
The General Trapezoid therefore has a minimum of 12 attributes, the other being name 
which is standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a General Trapezoid made from the 
above dimensions: 

<trd name = "thetrd" x1="9" x2="8"  y1="6" y2="5" z="10"  lunit= "mm"/> 

<trap name = "thetrap" z="10" theta="1"  phi="2" y1="15" x1="10"  x2="10" alpha1="1"  
y2="15" x3="10" x4="10"  alpha2="1" aunit="rad"  lunit= "mm"/> 
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3.4.14 Tube with Hyperbolic Profile 
 
The GDML Tube with Hyperbolic Profile is formed using 5 dimensions: 
 
rmin   inside radius of tube 
rmax   outside radius of tube 
inst   inner stereo 
outst   outer stereo  
z   z length 
 
The Hyperbolic Tube therefore has a minimum of 6 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a hyperbolic tube made from the above 
dimensions: 

 

3.4.15 Cut Tube  
NB: Currently not supported by Geant4 
 

The GDML Cut Tube is formed using 11 dimensions: 
 
z  length along z axis 
rmin  inner radius – if not given 0.0 is defaulted 
rmax  outer radius 
startphi starting phi angle of segment – if not given 0.0 is defaulted 
deltaphi delta phi of angle 
lowX  normal at lower z plane 
lowY normal at lower z plane 
lowZ  normal at lower z plane 
highX  normal at upper z plane 
highY  normal at upper z plane 
highZ normal at upper z plane 
 
The cut Tube therefore has a minimum of 12 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a cut Tube made from the above 
dimensions: 

 

<hype name = "thehype" rmin="1" rmax="2"  z="20" inst="3" outst="4"  lunit= "mm"/> 

<cutTube name = "thecuttube" z="20" rmin="1"  rmax="5" startphi="1" deltaphi="4"  lowX="15" 
lowY="15"  lowZ="15" highX="10" highY="10"  highZ="10"  aunit="rad"  lunit= "mm"/> 
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3.4.16 Tube Segment 
 
The GDML Tube Segment is formed using 5 dimensions: 
 
rmin   inside radius of segment - if not given 0.0 is defaulted 
rmax   outside radius of segment 
z   z length of tube segment 
startphi  starting phi position angle of segment - if not given 0.0 is defaulted 
deltaphi  delta angle of segment 
 
The Tube segment therefore has a minimum of 6 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a tube segment made from the above 
dimensions: 

 

3.4.17 Twisted Box 
 
The GDML Twisted box is formed using the three standard dimensions: x, y and z and one 
added dimension: PhiTwist. The box therefore has 5 attributes, the other being name which 
is standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a box made from the above dimensions: 

 

3.4.18 Twisted Trapezoid 
 
The GDML Twisted Trapezoid is formed using 6 dimensions: 
 
PhiTwist Twist Angle 
x1  x length at -z 
x2  x length at +z 
y1  y length at -z 
y2  y length at +z 
z  z length 
 
The Twisted Trapezoid therefore has a minimum of 7 attributes, the other being name which 
is standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 

<tube name = "thetube" rmin="1" rmax="4"  z="20" deltaphi="3" startphi="1"  
aunit="rad"  lunit= "mm"/> 

<twistedbox name = "twistbox"  PhiTwist= "1" x= "30" y= "30" z= "30" aunit="rad" 
lunit= "mm"/> 
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The following example illustrates the construction of a Twisted Trapezoid made from the 
above dimensions: 

 

3.4.19 Twisted General Trapezoid 
 
The GDML Twisted General Trapezoid is formed using 11 dimensions: 
 
PhiTwist twist angle 
z  length along z axis 
Theta  polar angle to faces joining at -/+z 
Phi  azimuthal angle of line joining centre of –z face to centre of +z face 
y1  length along y at the face -z 
x1  length along x at side y = -y1 of the face at -z 
x2  length along x at side y = +y1 of the face at -z 
y2  length along y at the face +z 
x3  length along x at side y = -y1 of the face at +z 
x4  length along x at side y = +y1 of the face at +z 
Alph angle with respect to the y axis from the centre of the side 
 
The Twisted General Trapezoid therefore has a minimum of 12 attributes, the other being 
name which is standard for any SolidType element and corresponds to the name the solid 
can be referenced by. 
 
The following example illustrates the construction of a General Twisted Trapezoid made 
from the above dimensions: 

 
 

3.4.20 Twisted Tube Segment 
 
The GDML Twisted Tube Segment is formed using 5 dimensions: 
 
endinnerrad  inside radius of segment 
endouterrad  outside radius of segment 
zlen   z length of tube segment 
twistedangle  twist angle 
phi   phi angle of segment 
 
The Twisted Tube segment therefore has a minimum of 6 attributes, the other being name 
which is standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a twisted tube segment made from the 
above dimensions: 

<twistedtrd name = "twisttrd"  PhiTwist="1" x1="9" x2="8"  y1="6" y2="5" z="10"  aunit="rad" 
lunit= "mm"/> 

<twistedtrap name = "twisttrap"  PhiTwist="1" z="10" Theta="1"  Phi="2" y1="15" 
x1="10"  x2="10" y2="15" x3="10" x4="10"  Alph="1" aunit="rad"  lunit= "mm"/> 
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3.4.21 Xtru 
 

The GDML Xtru is formed using 2 attributes: 
 

twoDimVertex  vertices of an unbound blueprint polygon 
section   z sections 

 
The twoDimVertex element is required to be used at least 3 times and the section element is 
required to be used at least twice. You can use both as many times as you like.  The 
twoDimVertex is formed using the 2 attributes shown below: 
 

x   x coordinate of the vertex 
y   y coordinate of the vertex 

 
The section is formed using the 5 attributes shown below: 
 

zOrder index of the section, must be between 0 and n-1 where n is the 
number of sections 

zPosition  distance from the plane z=0 
xOffset   x offset from centre point of original plane 
yOffset   y offset from centre point of original plane 
scalingFactor  proportion to original blueprint 

 
The Xtru therefore has a minimum of 17 attributes, the other being name which is standard 
for any SolidType element and corresponds to the name the solid can be referenced by. 
 
The following example illustrates the construction of an Xtru made from the above 
dimensions: 

 

<twistedtubs name = "twisttube" endinnerrad="1" endouterrad="4"  zlen="20" phi="3" 
twistedangle="1" aunit="rad"   lunit= "mm"/> 

<xtru name = "theXtru"  lunit= "mm" > 
      <twoDimVertex x="3" y="9" /> 
      <twoDimVertex x="1" y="5" /> 
      <twoDimVertex x="2" y="4" /> 
      <section zOrder="1" zPosition="2" xOffset="5" yOffset="3" scalingFactor="3" /> 
      <section zOrder="2" zPosition="5" xOffset="3" yOffset="5" scalingFactor="1" /> 
</xtru> 
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3.4.22 Arb8 
NB: Currently not supported by Geant4 

 
The GDML Arb8 (arbitrary trapezoid with less than 8 vertices) is formed using 17 
dimensions. It’s made up of two quadrilaterals sitting on parallel planes. V1 to V4 define the 
vertices for the base quadrilateral situated at -dz, V5 to V8 define the vertices for the other 
quadrilateral situated at -dx.  
 
v1x  vertex 1 x position 
v1y  vertex 1 y position 
v2x  vertex 2 x position 
v2y  vertex 2 y position 
v3x  vertex 3 x position 
v3y  vertex 3 y position 
v4x  vertex 4 x position 
v4y  vertex 4 y position 
------------------------------------------- 
v5x  vertex 5 x position 
v5y  vertex 5 y position 
v6x vertex 6 x position 
v6y  vertex 6 y position 
v7x  vertex 7 x position 
v7y  vertex 7 y position 
v8x  vertex 8 x position 
v8y  vertex 8 y position 
 
dz  half z length 
 
 
The Arb8 therefore has a minimum of 18 attributes, the other being name which is standard 
for any SolidType element and corresponds to the name the solid can be referenced by. 
 
The following example illustrates the construction of an Arb8 made from the above 
dimensions: 

 
 

<arb8 name = "thearb8"  v1x="1" v1y="1" v2x="2"  v2y="2" v3x="3" v3y="3"  v4x="4" 
v4y="4" v5x="10" v5y="10"   v6x="11" v6y="11"   v7x="12" v7y="12"   v8x="13" 
v8y="13"  dz="20"  lunit= "mm"/> 
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3.4.23 Tessellated solid 
NB: Currently not supported by ROOT 

 
The GDML tessellated solid can be made of any number of triangular and/or quadrangular 
facets forming a closed space.  Each facet is defined by specifying references to (names of) 
three (for the triangular one) or four (for the quadrangular one) vertices. The vertices are 
standard position elements and should be declared beforehand within the define section. 
If a referenced vertex is not defined, an error message is displayed. By looking from the 
outside of the tessellated solid, vertices are listed in the anti-clockwise order for each of the 
facets. There are two ways of defining vertices: ABSOLUTE (default), and RELATIVE. In the 
first case each vertex coordinates are considered to be absolute coordinates in the 
reference system of the solid. In the second case, only the first listed vertex has absolute 
coordinates, while the remaining ones are considered to be translations from the first one.  
The tessellated solid has only one attribute name which is standard for any SolidType 
element and corresponds to the name the solid can be referenced by. The subelements of 
tessellated solid element are all of FacetType, in other words they are the triangular 
and/or quadrangular facets the solid is made of. 
The triangular (quadrangular) facet element contains three (four) attributes vertex1, 
vertex2, vertex3, (vertex4), being references to the vertices (defined beforehand) of 
the facet and an optional attribute type indicated whether the coordinates of the vertices are 
ABSOLUTE (default) or RELATIVE. 
 
The following example illustrates the construction of a simple tessellated solid made from a 
square base and six triangular walls. We first define the vertices 
 
<define> 
  <position name="v1" x="10" y="10" z="0" unit="m"/> 
  <position name="v2" x="-10" y="10" z="0" unit="m"/> 
  <position name="v3" x="-10" y="-10" z="0" unit="m"/> 
  <position name="v4" x="10" y="-10" z="0" unit="m"/>   
  <position name="v5" x="7" y="3" z="20" unit="m"/>  
  <position name="v6" x="-3" y="7" z="5" unit="m"/> 
</define> 

 
and then we build the tessellated solid out of them 
 
<tessellated name="pyramid"> 
     <triangular vertex1="v1" vertex2="v2" vertex3="v6" type="ABSOLUTE"/>  
     <triangular vertex1="v2" vertex2="v3" vertex3="v6" type="ABSOLUTE"/>  
     <triangular vertex1="v3" vertex2="v4" vertex3="v5" type="ABSOLUTE"/>  
     <triangular vertex1="v4" vertex2="v1" vertex3="v5" type="ABSOLUTE"/>  
     <triangular vertex1="v1" vertex2="v6" vertex3="v5" type="ABSOLUTE"/>  
     <triangular vertex1="v6" vertex2="v3" vertex3="v5" type="ABSOLUTE"/>  
     <quadrangular vertex1="v4" vertex2="v3" vertex3="v2" vertex4="v1" type="ABSOLUTE"/> 
</tessellated>  
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Figure: graphical representation of the tessellated solid as described in the example. 

3.4.24 Tetrahedra 
The tetrahedron solid in GDML is defined by specifying the coordinates of the four vertices. 
In order for the solid not to be degenerated, the four points must not lie on the same surface. 
The tet solid element contains the standard name attribute and four attributes being 
references to the vertices namely vertex1, vertex2, vertex3 and vertex4. These 
vertices are standard position elements which must be defined beforehand within the 
define part. 
The following example illustrates the construction of the tetrahedron.  
 
<define> 
 <position name="v1" x="10" y="10" z="0"/> 
 <position name="v2" x="-10" y="10" z="0"/> 
 <position name="v3" x="-10" y="-10" z="0"/> 
 <position name="v4" x="0" y="0" z="10"/> 
</define> 

 
<tet name="halfpyramid" vertex1="v1" vertex2="v2" vertex3="v3" vertex4="v4"/>   
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3.4.25 Using loops for solids 
 
Suppose you want to define a set of solids with the same shape but with dimensions varying 
according to a particular function. In this case loops are very useful, because the avoid 
repetition of solids definitions. For a more detailed discussion on loops please refer to 
Section 3.5.1. The following example shows you how to use a loop to define a set (10) of 
boxes with different dimensions. Without a loop you would write the following code: 
 

<box name=“box0” x=“1”  y=“5”   z=“20” /> 
<box name=“box1” x=“4”  y=“4.5” z=“18” /> 
<box name=“box2” x=“7”  y=“4”   z=“16” /> 
<box name=“box3” x=“10” y=“3.5” z=“14” /> 
<box name=“box4” x=“13” y=“3”   z=“12” /> 
<box name=“box5” x=“16” y=“2.5” z=“10” /> 
<box name=“box6” x=“19” y=“2”   z=“8” /> 
<box name=“box7” x=“22” y=“1.5” z=“6” /> 
<box name=“box8” x=“25” y=“1”   z=“4” /> 
<box name=“box9” x=“28” y=“0.5” z=“2” /> 

 
Using a loop you would only need four lines 
 

<variable name=“x” value=“0”/>  
 
declared in the “define” section and 
 

<loop for=“x” to=“9” step=“1”> 
 <box name=“box” x=“1+(x*3)” y=“5-(x/2)” z=“20-(2*x)” /> 
</loop> 

 

3.5 Structure 
 
The structure section is where volumes in the geometry are defined. Volumes are 
referenced to solids and materials defined earlier to form the shape and composition of that 
volume.  This volume is then a logical volume.  Volumes can be placed within this logical 
volume, these volumes are called physical volumes. These ‘physvols’ can be positioned and 
rotated how you wish within the logical volume. An example of the GDML for this is below: 
 
<volume name="World"> 
   <materialref ref="Air"/> 
   <solidref ref="WorldBox"/> 
  
   <physvol> 
     <volumeref ref="vol0"/> 
     <positionref ref="center"/> 
     <rotationref ref="identity"/> 
   </physvol> 
</volume> 
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3.5.1 Loops 
 
Loops are a means of avoiding tedious repetitions of solids and volumes definitions. To use 
a loop you need to define a variable first (section 3.2.1). Suppose you defined a variable x 
with an initial value of 0, like this: 
 

<variable name=“x” value=“0”/> 

 
then you can use it inside a loop statement as in the following example: 
 

<loop for=“x” to=“8” step=“2”> 
… 
</loop> 

 
The code within the loop tags will we executed 5 times in this case, because the variable x 
starting from the initial value of 0 (as in its definition) will be increased by 2 (according to the 
step value) for each loop until it reaches the value of 8 (as stated in the to attribute). 
Loops are very useful to access elements of matrices (see section 3.2.2). Consider the 
following definitions: 
 

<variable name=“i” value=“1”/> 
<matrix name=“m” coldim=“3” values=“ 0.4  9  126 
                                     8.5  7   21 
                                    34.6  7    9” /> 

 
Variable i can be used as an index inside a loop to access a certain subset of the elements 
of the matrix. For example we can write the following: 
 

<loop for=“i” to=“3” step=“1”> 
 … m[1,i] … 
</loop> 

 
With that code we will be able to access the three elements of the first row of the matrix, i.e. 
0.4, 9 and 126. Loops are used when defining solids, logical volumes and physical 
volumes, let’s see how this is done in practice starting from an example. 
Suppose we want to create the following structure: 
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We need to write the code for 5 boxes, 5 logical volumes that refer to the boxes and 5 
physical volumes that refer to the 5 logical volumes! The code would be the following: 
 
<solids> 
 <box name=“box1” x=“10” y=“5” z=“5” /> 
 <box name=“box2” x=“9” y=“4.5” z=“4” /> 
 <box name=“box3” x=“8” y=“4” z=“3.2” /> 
 <box name=“box4” x=“7” y=“3.5” z=“2.56” /> 
 <box name=“box5” x=“6” y=“3” z=“2.048” /> 
</solids> 
<structure> 
 <volume name=“volbox1”> 
  <solidref ref=“box1” /> 
  <materialref ref=“iron” /> 
 </volume> 
 <volume name=“volbox2”> 
  <solidref ref=“box2” /> 
  <materialref ref=“iron” /> 
 </volume> 
 <volume name=“volbox3”> 
  <solidref ref=“box3” /> 
  <materialref ref=“iron” /> 
 </volume> 
 <volume name=“volbox4”> 
  <solidref ref=“box4” /> 
  <materialref ref=“iron” /> 
 </volume> 
 <volume name=“volbox5”> 
  <solidref ref=“box5” /> 
  <materialref ref=“iron” /> 
 </volume> 
 <volume name=“world”> 
  ... 
  <physvol> 
   <volumeref ref=“volbox1” /> 
   <position x=“5” y=“0” z=“40” /> 
  </physvol> 
  <physvol> 
   <volumeref ref=“volbox2” /> 
   <position x=“5” y=“2” z=“38” /> 
  </physvol> 
  <physvol> 
   <volumeref ref=“volbox3” /> 
   <position x=“5” y=“3.5” z=“36” /> 
  </physvol> 
  <physvol> 
   <volumeref ref=“volbox4” /> 
   <position x=“5” y=“3.9” z=“34” /> 
  </physvol> 
  <physvol> 
   <volumeref ref=“volbox5” /> 
   <position x=“5” y=“4.15” z=“32” /> 
  </physvol> 
 </volume> 
</structure> 
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Of course this is always possible; but using the loop tags (and combining them properly with 
matrices), you would have the same result with fewer code lines and less complexity. Here’s 
the equivalent code using the loop and matrix tags: 
 
<define> 
 <matrix name=“m” coldim=“5” values=“0 2 3.5 3.9 4.15 
                                     5 4 3.2 2.56 2.048” /> 
 <variable name=“x” value=“1” /> 
 <variable name=“x1” value=“0” /> 
 <variable name=“x2” value=“0” /> 
</define> 
<solids> 
 <loop for=“x” to=“5” step=“1”> 
  <box name=“box” x=“10-(x-1)” y=“5-(x-1)/2” z=“m[2,x]” /> 
 </loop> 
</solids> 
<structure> 
 <loop for=“x1” to=“4” step=“1”> 
  <volume name=“volbox”> 
   <solidref ref=“box” /> 
   <materialref ref=“iron” /> 
  </volume> 
 </loop> 
 <volume name=“world”> 
  ... 
  <loop for=“x2” to=“8” step=“2”> 
   <physvol> 
    <volumeref ref=“volbox” /> 
    <position x=“5” y=“m[1,x2/2+1]” z=“40-x2”/> 
   </physvol> 
  </loop> 
 </volume> 
</structure> 

 
In this example we only “looped” 5 times, but just think if we needed to loop 100 times or 
more, the difference (in terms of code lines) between the two approaches would be 
enormous. 
Now two important rules you need to follow when using loops: 
 

1) Always use a different (and properly initialized) variable for each loop tag (in our 
example x, x1, x2 for the three loops). 

2) When you use linked loop triples (loop triple = 3 loop tags, as we did in our example; 
linked in the sense that we looped over a solid, then we looped over a logical volume 
that referred to that solid, and finally we looped over a physical volume that referred 
to that logical volume) you always have to be sure that the number of steps is the 
same for every loop tag of that particular triple. In our example that number was 5: 
from 1 to 5 in the first loop, from 0 to 4 in the second loop, and from 0 to 8 (but with a 
step of 2) in the third loop. 

 

3.5.2 GDML Modules 
 
GDML modules are GDML files used in the definition of (complex) geometries. They allow 
an easier to understand view of big geometries as they split it into smaller (and therefore 
more readable) pieces. 
A GDML module is a normal GDML file and it is completely independent from all the other 
modules (also from its mother module): it contains all the information (definitions, materials, 
solids and volumes) it needs, to be fully defined. It defines a logical volume (which 
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corresponds to its world volume) which can be referenced by physical volumes of other 
modules (which are called mother modules). 
To include a GDML module (say child.gdml) in a mother module (say mother.gdml), in the 
structure section of the mother module you should add a physical volume which points to 
the child module, as in the following example: 
 
-Instead of having one file: 
 
// mother.gdml 
 
<volume name="child"> 
   <materialref ref="Alluminium"/> 
   <solidref ref="ChildBox"/>  
</volume> 
<volume name="mother"> 
   <materialref ref="Iron"/> 
   <solidref ref="MotherBox"/>  
   <physvol> 
     <volumeref ref="child"/> 
     <positionref ref="center"/> 
     <rotationref ref="identity"/> 
   </physvol> 
</volume> 
 

-You can define child logical volume in a different GDML file, so you will have two files: 
 
// mother.gdml 
 
<volume name="mother"> 
   <materialref ref="Iron"/> 
   <solidref ref="MotherBox"/>  
   <physvol> 
     <file name="child.gdml"/> 
     <positionref ref="center"/> 
     <rotationref ref="identity"/> 
   </physvol> 
</volume> 
 
 
// child.gdml 
 
<volume name="child"> 
   <materialref ref="Alluminium"/> 
   <solidref ref="ChildBox"/>  
</volume> 
 
 
So in the general case instead of writing: 
 
<volumeref ref="_logical_volume_"/> 

 
You will need to write: 
 
<file name="_logical_volume_.gdml"/> 

 
And then define _logical_volume_ inside _logical_volume_.gdml. 
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In the example given above, the mother module will only contain the material Iron and the 
solid MotherBox, while the child module will contain only the material Aluminium and the 
solid ChildBox, thus enhancing readability and modularity. 
 
Some advice: 
 
-While it is not useful to have a module for every single volume of the geometry, it is good to 
have one for each group of volumes that you would consider as a module in the real world 
(see par. “Multiple GDML files”). 
 
-Modules should have low coupling, i.e. they should be as independent as possible from 
other modules (this improves reusability dramatically). 
 
-Modules should have high cohesion, i.e. they should contain all (and only) the volumes that 
contribute to the geometry of the corresponding real world modules (this improves 
readability). 
 

3.5.3 Volume Auxiliary Information 

Volumes can have auxiliary information attached to them through the GDML. The auxiliary 
tags look like this: 
 
<auxiliary auxtype=”SensDet” auxvalue=”veloSD1”/> 

They have two attributes, ‘auxtype’ and ‘auxvalue’ which are meant to specify what kind of 
auxiliary information it is and what is its value. It is important to stress here that the GDML 
parser does not interpret in any way the auxiliary attributes. The auxiliary attributes are 
stored in memory and available to the user once the parsing is done. The auxiliary tags are 
placed within a volume like this: 
 
<volume name="main"> 
   <materialref ref="Iron"/> 
   <solidref ref="Box"/>  
   <physvol> 
     <volumeref ref="world"/> 
     <positionref ref="center"/> 
     <rotationref ref="identity"/> 
   </physvol> 
<auxiliary auxtype=”SensDet” auxvalue=”veloSD1”/> 
<auxiliary auxtype=”Color” auxvalue=”blue”/> 
</volume> 

In order to access the auxiliary information one has to use the GetAuxiliaryMap method 
of the GDMLProcessor. This method returns a map with the keys being the pointers to the 
volumes containing auxiliary information and the values being vectors of pairs (auxtype, 
auxvalue). 
 
A full example of how to retrieve this information once imported is contained within: 

$GDMLTOP/CPPGDML/Examples/g4gogdml/g4godml.cpp 
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3.6 Setup 
 
The top volume of the geometry needs to be specified.  This is done using the setup section.  
The following GDML is the generic and most common for the setup section.   
 
 
 
 
 
 
The only part you should need to change is the world ref name to the volume name of the 
top volume of your geometry. Only one setup is defined here, however it is possible define 
multiple geometry setups choosing different volumes as world volumes from all the already 
defined volumes 

<setup name="Test1" version="1.0"> 
  <world ref="World"/> 
 </setup> 
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3.7 GDML file example 
 

 

 

 

 

 

 

<?xml version="1.0" encoding="UTF-8" ?> 
 
<gdml xmlns:gdml="http://cern.ch/2001/Schemas/GDML"       
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
      xsi:noNamespaceSchemaLocation="GDMLSchema/gdml.xsd" > 
 
 
 <define> 
  <constant name="const1" value="100" /> 
  <position name="pos1" unit="mm" x="0" y="0" z="0" /> 
  <rotation name="rot1" unit="deg" x="const1" y="0" z="0" /> 
  <scale name=”scl1” x=”-1” y=”+1” z=”+1”/> 
 </define> 
 
 
 <materials> 
    <element Z="7" formula="N" name="Nitrogen" > 
      <atom value="14.01" /> 
    </element> 
    <element Z="8" formula="O" name="Oxygen" > 
      <atom value="16" /> 
    </element> 
 
    <material formula=" " name="Air" > 
      <D value="0.00128" /> 
      <fraction n="0.7" ref="Nitrogen" /> 
      <fraction n="0.3" ref="Oxygen" /> 
    </material> 
 </materials> 
 
 <solids> 
    <box aunit="radian" lunit="mm" name="world" x="10000" y="10000" z="10000" /> 
    <box aunit="radian" lunit="mm" name="det” x="2000" y="2000" z="2000" /> 
 </solids> 
 
 
 <structure> 
    <volume name="Detector" > 
      <materialref ref="Air" /> 
      <solidref ref="det" /> 
    </volume> 
    <volume name="World" > 
      <materialref ref="Air" /> 
      <solidref ref="world" /> 
      <physvol> 
        <volumeref ref="Detector" /> 
        <positionref ref="pos1" /> 
        <rotationref ref="rot1" /> 
        <scaleref ref=”scl1” />  
      </physvol> 
    </volume> 
 </structure> 
 

XML Declaration 

XML Schema Instance 
Namespace 

GDML Namespace 

GDML Schema Location 

Declaration of constants, 
positions, rotations, scalings, 
variables and matrices  

Definition of elements, 
materials, isotopes etc. Only 
materials can be referenced 
to volumes 

Simple material defined using 
fractions of elements defined 
higher up. 

All solids to be used inside 
the geometry defined here 

All volumes declared in the 
structure section. 
 
World volume is declared 

Physical Volumes placed 
inside a Logical Volume with 
a specified position, rotation 
and scale 

The top volume of the 
geometry is specified 
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4. CPPGDML 

4.1 GDML Reading 

4.1.1 Importing GDML files into GEANT4 Geometry 
 
GDML files can be directly imported into GEANT4 geometry, using the CPPGDML libraries 
in your GEANT4 application. Generally you will want to put the following lines into your 
DetectorCostruction class:  
- In the class constructor (as far as the initializations are concerned – step 2)  
- In the Construct method (steps 3 and 4) 
 
This can be done in four steps: 
 
1)Include the necessary header files 
 

#include “saxana/SAXProcessor.h” 
#include “saxana/ProcessingConfigurator.h” 
#include “G4Processor/GDMLProcessor.h” 

 
2)Declare and initialize properly the objects needed by the parser 
 

SAXProcessor sxp; 
ProcessingConfigurator config; 
GDMLProcessor* proc = GDMLProcessor::GetInstance(); 

 
sxp.Initialize(); 
config.SetURI(“source_file.gdml”); 
config.SetSetupName(“Default”); 
sxp.Configure(&config); 

 
source_file.gdml will be your GDML source file, in case of multiple GDML files (modules) 
you should put the main GDML file there (the main mother module). 
 
3)Run the parser 
 

proc->SetDuplicationWarning(config.URI()); //optional 
sxp.Run(); 

 
The first line is optional and will turn the duplication warning flag on. So that when solids 
with the same name are found in different modules, a warning message is generated. 
Usually this happens when the same logical volume is defined by different GDML modules. 
This is not a problem, but it may suggest that the input GDML modules have a low cohesion, 
therefore it maybe useful to review the way you have organized your geometry. 
 
4)Get the World volume 
 

G4VphysicalVolume* W; //world volume 
W = (G4VphysicalVolume*)proc->GetWorldVolume(); 
W->GetLogicalVolume()->SetVisAttributes(G4VisAttributes::Invisible); 

 



Page 37 of 42 

The third line is optional, but commonly used, because you generally don’t want to be able 
to see the world volume (usually the world volume is nothing but a box made of air or 
vacuum). 
 

4.2 GDML Writing 

4.2.1 Exporting GEANT4 Geometry 
 
GEANT4 geometry can be exported into GDML files. To do so you should do the following: 
 
1)Include the G4 writer header file 
 

#include “G4Writer/G4GDMLWriter.h” 

 
2)Get the world volume from the geometry 

 
G4VphysicalVolume* g4wv = G4TransportationManager:: 
GetTransportationManager()->GetNavigatorForTracking() 
->GetWorldVolume(); 

 
3)Instantiate the G4GDMLWriter 
 

G4GDMLWriter g4writer(“/path/to/gdml.xsd”, “/path/to/output.gdml”); 

 
The first parameter is the GDML Schema path, it is very important to set this right, otherwise 
you will get error messages while reading the file back to GEANT4. The second parameter 
is the path to the file you want to export the geometry into. 
Then there is an optional third parameter which is an integer and its default value is 0. This 
parameter tells how you would like the names of volumes (as well as of solids and materials) 
to be formatted in your output GDML file. Here an explanation of the three possible values: 
 
0 (default) – The names will be concatenated with their logical address in hexadecimal 
format. This is to avoid name duplication in the GDML output, in fact GEANT4 allows 
different volumes (as well as materials and solids) with the same name. When you will read 
the GDML output file back into GEANT4 the address part will be stripped off and you will 
have the original names. This is almost always safe. 
 
1 – The names will be concatenated with their logical address in long format. When you will 
read the GDML output file back into GEANT4 the address part will NOT be stripped off and 
you will have the original names plus their old logical address in long format. This is always 
safe but it is a bit ugly to have names with long numbers inside GEANT4. 
 
2 – The names will NOT be concatenated with anything. So the names in the output file will 
correspond exactly to the ones you have in GEANT4. This is the prettiest format although 
you have to be REALLY sure that you don’t have name duplication inside GEANT4, 
otherwise this will generate a GDML output with duplicated names, which will be unreadable 
by any parser of course. 
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4) Call the dump method 
 
There are three ways of doing this: 
 
a) g4writer.DumpGeometryInfo(g4wv); 
 Dumps all the geometry in a single GDML output file. 
 
b) g4writer.DumpGeometryInfo(g4wv, levels); 
 Dumps the geometry modularizing the output. The second parameter is a 
vector<int> containing the numbers of the geometry levels you want to modularize. So if 
you want to create modules for all the volumes of the first and the third level you should set 
the levels variable like this: 
vector<int> levels; 
levels.push_back(1); 
levels.push_back(3); 
and then call the dump method: 
g4writer.DumpGeometryInfo(g4wv, levels); 
 
c) g4writer.DumpGeometryInfo(g4wv, names); 
 Dumps the geometry modularizing the output. The second parameter is a 
vector<string> containing the names of the volumes you want to modularize. So if you 
want to create modules for a volume called “door” and a volume called “window” you should 
set the names variable like this: 
vector<string> names; 
names.push_back(“door”); 
names.push_back(“window”); 
and then call the dump method: 
g4writer.DumpGeometryInfo(g4wv, names); 

4.2.2 Exporting ST-Viewer CAD Geometry 
ST-Viewer is an interactive tool for viewing 3D CAD information. ST-Viewer includes 
functions to display and relate product identification information, assembly structure 
information and 3D geometry information. ST-Viewer implements the ISO STEP standard for 
product model data. ST-Viewer works with a very large range of CAD, CAM, CAE and PDM 
systems. A list of systems that have been tested with the ST-Viewer can be found at the 
www.steptools.com.  
 
ST-Viewer uses intermediate files to store CAD geometry and structure information. These 
files (with .geom and .tree extensions respectively) use an internal non-standard format that 
can be parsed and translated into GDML format using the libraries provided by the GDML 
processor (CPPGDML). 
 
The geometry of the solids is defined by means of triangular facets, i.e. every solid in 
he .geom files is a tessellated solid made of only triangular facets. Therefore the GDML 
output will be a collection of tessellated solids where each solid has its own set of facets 
which are in turn defined by a set of three vertices. The vertices are named vectors of three 
values (x,y and z coordinates) and are defined in the beginning of the GDML file. The facets 
within a tessellated solid contain references to the names (not the values) of  the three 
vertices they are made of (for more information on how a tessellated solid is defined in 
GDML please refer to the GDML Solids Schema : solids.xsd). 
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Of course multiple facets may share a common vertex, therefore in their definition there will 
be a reference to the same vertex name. Again, the actual values of the vertices’ vectors are 
stored in the first part (the one enclosed by the <define> and </define> tags) of the 
GDML file. 
 
In order to use the parser in your own application you need to  
 
1) Include the STEPWriter header: 
 

#include "STEPWriter/STEPWriter.h" 
 
2) Instantiate a STEPWriter object (or a pointer to it): 
 

STEPWriter* sw = new STEPWriter(); 
 
3) Call the parse method: 
 

sw->parse("/path/to/file.geom", "/path/to/file.tree", false); 
 
This method takes three parameters: the first one is a string containing the path to 
the .geom file, the second one is a string containing the path to the .tree file and the third 
one is a boolean flag which should be set properly: 
 

a) Set it to false [recommended] if you don’t want common vertices to be repeated in 
the define section, i.e. facets sharing the same vertex will refer to the same vertex 
name defined at the beginning of the GDML file. In this case there will not be any two 
vertices with the same coordinates. 

b) Set it to true if you don’t care about repetition of vertices in the “define” section of 
the GDML file. Facets sharing the same vertex will refer to different vertices names. 
Therefore there will be vertices with the same coordinates and different names. 

 
Setting the flag to false will make the parsing process generally slower but the size of the 
output GDML file will be a lot smaller. Setting the flag to true will allow the parser to go 
faster (because it doesn’t need to look for existing vertices) but this will generally increase 
the size of the GDML output file (because of the repetitions of vertices with same 
coordinates). During a test, a input .geom file of 9.5 MB took 50 seconds to be parsed with 
the flag set to false and the result was a 10.5 MB GDML output file; the same input file took 
10 seconds to be parsed with the flag set to true and the result was a 33 MB GDML output 
file. 
 
4) Call the dump method: 
 

sw->dump("/path/to/file.gdml", "/path/to/gdml.xsd"); 
 
This method is responsible for writing the GDML output file. It takes two parameters: the first 
one is the path to the GDML output file and the second one is the path to the GDML 
Schema file. There are no constraints as far as the output file location is concerned, but you 
should set the GDML Schema location properly because a GDML output file with a wrong 
GDML Schema reference will cause errors when read by Geant4 or other programs. 
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The result of the last statement is a GDML file corresponding to the .geom and .tree files 
taken as input. 
 

5. User extensions to GDML 
 
GDML is defined in an XML schema. Inside the schema are all the definitions of the tags 
and the rules associated to those tags.  Seeing as all the tags are simply defined within the 
schema, there is the possibility to extend that schema as XML is a fully extendable markup 
language. This section will discuss how to add custom elements to GDML.  This could be 
useful if certain information was required to be contained in the GDML file for an application 
of GDML. The extension could be made to contain a new tag and values within whichever 
chosen part of the GDML the user requires. It may be the case that within the binding to 
GDML being used, there are methods already in place for information not supported by the 
GDML Schema, in which case the user extension facility will help implement that.  
 
An example of a user extension is implemented in CPPGDML/Examples/SimpleExtension.  
This example will be used as a point of reference throughout this section. 
 
The Schema 
 
The first step in extending GDML is to redefine the GDML schema. It needs to include the 
custom elements of the extension.  The extension is done in a separate schema file that 
imports the original schema as opposed to adding new parts to the old one.  The 
SimpleExtension's schema example is found in:  
 

SimpleExtensionSchema/SimpleExtension.xsd 
 
The original main GDML schema is imported from its local, relative location within your 
GDML directory.  The new schema file normally will need to contain two main parts:  
 

1. A ‘redefine’ element  
 

This element uses the extension schema to modify existing GDML elements by adding 
additional content. This is called by this line which gives the location of the schema to 
redefine: 
 

<xs:redefine schemaLocation="../../../GDMLSchema/gdml.xsd"> 
 
In most cases, the extension will be to define new objects like colour, to a volume etc. In this 
situation the redefine needs to add a ReferenceType to the base it needs to be added to: 
 
    <xs:extension base="VolumeType"> 
        <xs:sequence> 
     <xs:element minOccurs="0" maxOccurs="1" name="colourref" type="ReferenceType"/> 
        </xs:sequence> 
    </xs:extension>   
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2. New Elements 
 
The new schema will need to define the new ‘element’ that the ReferenceType will be 
referencing to. In the example of adding a colour reference to a volume, the element ‘colour’ 
will need to be defined. 
 
When elements are defined, attributes of that element are defined within it, but if tags within 
the element contain more than one attribute, a type needs to be defined, and then 
referenced to. This is observed in the Simple Example schema file. 
  
All the new elements cant be contained inside the <gdml> tag as they are not part of that 
schema, there needs to be a new container defined that contains the new elements AND the 
original <gdml>. This is shown below: 
 
  <xs:element name="gdmlEXTENSION"> 
    <xs:annotation> 
      <xs:documentation> 
 New container for new element and gdml. 
      </xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:sequence> 
 <xs:element ref="colours" minOccurs="0" maxOccurs="1"/> 
 <xs:element ref="gdml" minOccurs="1"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
 
This then means that a GDML file now takes the following structure based on the above: 
 
    <gdmlEXTENSION xmlns:gdml_simple_extension= "http://www.example.org"                      
                   xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"  
                   xs:noNamespaceSchemaLocation="NEW_SCHEMA_LOCATION.xsd"> 
        <colours> 
            <colour name="aColour" R="1.0" G="0.0" B="0.0"/> 
        </colours> 
 
        <gdml> 
          <structure> 
            <volume> 
                <materialref ref="someMaterial"/> 
                <solidref ref="someSolid"/>  
                <colourref ref="aColour"/>  <!—- new reference type -->  
            </volume> 
          </structure> 
        </gdml> 
    </gdmlEXTENSION>     

 
In any GDML file you wish to use your ‘extended schema’ in, you will need to change the 
Namespace GDML Schema Location to your extended schema file, not the original. The 
new schema location must be relative to the location of the GDML file in question.  This will 
then import your new additions as well as the original GDML schema. This is shown above. 
 
Processes & Subscribers 
 
Once the GDML schema has been extended as you need, the extension application needs 
to have the necessary processes and subscribers that will convert the GDML into C++ 
objects. Each element of the new schema has a Process that instantiates a simple SAX 
object. This contains string values for all the attributes of that element.  There is also a 
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corresponding Subscriber for that element that converts the generic object into objects of 
the binding your using.   
 
The extension application should have its own processor for registering its custom objects; 
the SimpleExtension example has a SimpleExtensionProcessor where pointers to each of 
the new ‘objects’ are held. 
 
These new objects (colour objects in this instance of the example) need to be associated to 
the objects formed from GDML that they referenced to. Therefore an extended subscriber 
for the said logical volume etc. needs to be created.  
 
In the example, the new objects need to be associated to a volume. The file 
volumeExtendedSubscriber.cpp processes the contents of volume and finds the new 
colorref tag in the volumes child nodes.  The new object is retrieved from the 
SimpleExtensionProcessor using the ref attribute and assigned to the Volume Object that 
was created by GDML's volumeSubscriber. 
 
All the processes and subscribers must be listed in a Library Load cpp file. This then lets the 
new processes and subscribers be registered with the GMDL parser.  The function 
SimpleExtensionLibLoad in the SimpleExtensionLibLoad.cpp file shows an example of 
this. 
 
The SimpleExtensionLibLoad function needs to be called after the SAXProcessor has been 
initialized.  In the instance of the Simple Example, this is done in 
DetectorConstruction.cpp.  This registers the custom handlers with the GDML 
processing engine. 
 
Try it.. 
 
To run the example application you need to source setup.csh in the CPPGDML/Examples 
directory. Then from the CPPGDML/Examples/SimpleExtension directory, you can run the 
example using this command: 
 

SimpleExtension [filename.gdml] 
 
The default file is test.gdml, which has a single colored box in the world volume. 
 
 


