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1. Introduction 
 
The Geometry Description Markup Language (GDML) is a specialized XML-based 
language designed as an application-independent persistent format for describing the 
geometries of detectors (or parts of them) for physics experiments. It serves to 
implement “geometry trees” which correspond to the hierarchy of volumes a detector 
geometry can be composed of, and to allow to identify the position of individual solids, as 
well as to describe the materials they are made of.  Being pure XML, GDML can be 
universally used and in particular, it can be considered as the format for interchanging 
geometries among different applications. 
 
GDML consists of two elements, an XML definition part containing the set of rules and 
the list of the legal elements to be used in constructing any GDML document, and the 
GDML generating and processing code implemented in the client tools. The structure of 
the GDML document is defined through a set of XML Schema Definition (XSD) files, 
which we call the GDMLSchema. Any GDML geometry file must be valid with respect to 
the GDMLSchema. The GDML file itself, can be either written by hand (in case GDML is 
used as the primary geometry source) or generated automatically (in case GDML is used 
as an exchange or persistency format) out of the application specific “in-memory” 
geometry tree using one of the GDML “writers” called by the user application. The GDML 
reader is responsible for parsing the GDML file and creating the in-memory 
representation of the geometry tree specific for the user application. 
 
This manual will focus on the Geant4 binding to GDML, which, starting from release 9.2 
of the simulation toolkit, it is now integrated in Geant4. The Root binding for GDML is 
integrated within the Root framework; the user should refer to the general Root manual 
for any information on importing and/or exporting GDML files to/from the Root geometry 
model. The description of the GDMLSchema in Section 3, however, is application-
independent and therefore is relevant for both Geant4 and Root users.  
GDML Schema is distributed with GDML Geant4 binding. 
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2. Getting started 

2.1 Installation of GDML in Geant4 
 
Building the GDML module in Geant4 is optional; by default, the GDML plug-in is not 
built along with the rest of the Geant4 libraries. In order to build the Geant4 module for 
GDML, one needs to have: 

• The XercesC parser pre-installed 
• The GEANT4_USE_GDML variable set to ON at the CMake configuration stage 

 
With this setting, the GDML module in Geant4 will be built using the standard build 
procedure applicable for Geant4. 
  

2.2 Running simple examples 
 
The Geant4 binding for GDML comes with three examples, which demonstrate the 
reading and writing out of different geometry configurations from/to GDML files. The 
examples also show how user can extend GDML and how to export ST-Viewer CAD 
Geometry.  The directories containing these examples can be found in the Geant4 
distribution in the $G4INSTALL/examples/extended/persistency/gdml directory. NOTE: in 
case of using dynamic libraries, one needs to set the LD_LIBRARY_PATH variable to 
point to all the necessary libraries (CLHEP, Geant4, and XercesC) before running the 
examples. Please refer to the examples README files for more information. 
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3. GDMLSchema 

3.1 General structure 
 
The GDML schema is a set of XSD files which define the structure of the GDML 
document and its legal elements.  The general structure of the GDML file can be seen 
below (with some parts replaced by ‘...’ for brevity).  
 
<?xml version="1.0" encoding="UTF-8"?> 
<gdml xsi:noNamespaceSchemaLocation="schema/gdml.xsd"> 
 <define> 
  … 
  <position name="TrackerinWorldpos" unit="mm" x="0" y="0" z="100"/> 
 </define> 
 <materials> 
  … 
  <element name="Nitrogen" formula="N"  Z="7.">   
  <atom value="14.01"/>   

</element> 
  <material formula=" " name="Air" > 
   <D value="1.290" unit="mg/cm3"/> 
      <fraction n="0.7" ref="Nitrogen" /> 
      <fraction n="0.3" ref="Oxygen" /> 
    </material> 
 </materials> 
 <solids> 
  … 
  <box lunit="mm" name="Tracker" x="50" y="50" z="50"/> 
 </solids> 
 <structure> 
  … 
  <volume name="World" > 
   <materialref ref="Air" /> 
      <solidref ref="world" /> 
      <physvol> 
       <volumeref ref="Tracker" /> 
       <positionref ref="TrackerinWorldpos"/> 
       <rotationref ref="TrackerinWorldrot"/> 
      </physvol> 
  </volume> 
 </structure> 
 <setup name="Default" version="1.0" > 
   <world ref="World" /> 
  </setup> 
</gdml> 
 

 
One can distinguish there five parts, each holding specific type of data. 
 
The <define> ... </define> block contains numerical values of different constants, 
positions, rotations and scales that will be used later on in the geometry construction. 
 
The <materials> ...</materials> block contains definitions of all the materials used in 
the given geometry. The supported forms are simple materials, which are made from one 
element as well as mixtures. Mixtures can be composed on the basis of fraction of mass 
or atom count. 
 
The <solids> ... </solids> block is the collection of all solid definitions which are used 
in the given geometry description. The presently supported solids are described in 
Section 3.4. Composite solids made using Boolean operation (union, subtraction, 
intersection) are also supported. 
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The <structure> ... </structure> block contains the actual implementation of the 
geometry tree together with the assignment of solids and materials. The hierarchy of 
volumes is defined by specifying the daughter volumes (physvol) positioned inside a 
volume; placed volumes can be provided of a copy-number through the copynumber 
attribute tag. Constructions like assembly volumes, reflections, replicas and divisions are 
possible. A more detailed discussion of the ‘structure’ block can be found in Section 3.5. 
 
Finally, the <setup> ... </setup> block serves to specify the top volume of the geometry 
tree. It is possible to define several "setups" within one file, allowing testing different 
subparts (or different configurations included in the same file) of the geometry tree 
without changing the GDML file. 
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3.1.1 Splitting GDML file using ENTITY 

 
Any GDML file can be split into several files, which are combined together during the 
parsing by using the ENTITY statement. The files included in such a way are not 
standalone GDML files, they simply contain parts of the GDML description and in general 
are meaningful only when put all together. 
 
In order to use such a mechanism, one has to first declare the given ENTITY  (just after 
the <xml ... > tag) 
 
<!DOCTYPE gdml [  
<!ENTITY materials SYSTEM “materials.xml”> 
]> 
 

where materials.xml is the name of the file to be included and materials is the 
ENTITY name that we have assigned to it. The entity can be then used anywhere inside 
the GDML description. 
 
<gdml ....> 
.... 
&materials; 
.... 
<gdml> 

 
The &materials line is then replaced during parsing by the contents of materials.xml 
file. 

3.1.2 Multiple GDML files 

 
It is also possible to define the geometry in the form of several standalone GDML files, 
each one representing a module of the setup we want to describe. Each GDML file 
would contain only the materials, the solids and the volumes the module is made of. For 
example, if one wants to describe a detector, instead of creating a single 
detector.gdml file with thousands of volumes and materials, one could create smaller 
modules called tracker.gdml, calorimeter.gdml, beampipe.gdml, etc, and a small 
main detector.gdml file combining those modules. This approach makes it easier to 
read and write the geometries and to apply changes. Explanations and details on how 
GDML modules are defined and put together are given in the Section 3.5. 
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3.2 Definitions 

3.2.1 Constants 
Constants are defined in the beginning of the GDML file (in the define section). Once 
defined, they can be used anywhere inside the file.  A constant can be defined as in the 
following example: 
 

<constant name=“length” value=“6.25”/> 

3.2.2 Quantities 
Quantities are constants with units, they are defined in the beginning of the GDML file (in 
the define section). Once defined, they can be referenced where quantity is expected 
with the same type.  Example: 
 

<quantity name=“W_Density” type=“density” value=“1” unit=“g/cm3” 
/> 

 

3.2.3 Variables 
 
 
Variables are defined in the beginning of the GDML file (in the define section). Once 
defined, they can be used anywhere inside the file. Their value will be evaluated each 
time they are used and it can change if they are used as loop variables (see section 
3.5.1). A variable can be defined as in the following example: 
 

<variable name=“x” value=“6”/> 

 
This simple code defines a variable with an initial value of 6. Of course previously 
defined variables may be used in variable definitions, as in the following example: 
 

<variable name=“x” value=“6”/> 
<variable name=“y” value=“x/2”/> 

 
In this case variable y is set with an initial value of 3. You can now use your variable 
wherever you like, for example in a box definition: 
 

<box name=“my_box” x=“x” y=“y” z=“x+y”/> 

 
 

3.2.4 Positions 
Positions are usually defined in the beginning of the GDML file (in the define section). 
Once defined, they can be referenced in place where positions are expected.  A position 
can be defined as in the following examples: 
 

<position name=“box_position” x=“25.0” y=“50.0” z=“75.0” 
unit=“cm”/> 

 
 



 

Page 11 of 50 

<constant name=“size” value=“25.0”/> 
<position name=“position” x=“2.0*size” y=“size” z=“75.0” 
unit=“m”/> 

 

3.2.5 Rotations 
Rotations are usually defined in the beginning of the GDML file (in the define section). 
Once defined, they can be referenced in place where rotations are expected.  Positive 
rotations are expected to be right-handed. A rotation can be defined as in the following 
example: 
 

<rotation name=“RotateZ” z==“30” unit=“deg”/> 

 
 
 

3.2.6 Scales 
Scales are usually defined in the beginning of the GDML file (in the define section). Once 
defined, they can be referenced in place where scales are expected.  Scale can be used 
to implement reflection and has no units. A scale can be defined as in the following 
example: 
 

<scale name=“my_reflection” x=“-1” y=“-1” z=“1”/> 

 
 
 

3.2.7 Matrices 
 
A matrix definition allows you to store values in matrix format. The definition of a matrix is 
very simple: <matrix name=“name” coldim=“number of columns” values=“space-
separated values” />. A simple example follows: 
 

<matrix name=“m” coldim=“3” values=“0.4 9 126 8.5 7 21 34.6 7 9” 
/> 

 
Or you could also write it like this (visually clearer): 
 

<matrix name=“m” coldim=“3” values=“ 0.4  9  126 
                                     8.5  7   21 
                                    34.6  7    9” /> 

 
The elements of a matrix can be accessed anywhere after the definition of the matrix 
itself, just variables. To access them you have to use the following syntax: 
 

matrix_name[row_number, column_number] 

 
For example: 
 

m[3,1] 
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will be evaluated to 34.6. You can also put variables inside the square brackets, like this: 
 

m[y,y] 

 
So if y=3 this will be evaluated to 9. Just be sure that the values of the variables don’t 
exceed the matrix dimensions, otherwise you will get an error when processing the file. 
A matrix with coldim=“1” is a vector and its elements may be accessed using only one 
index as in the following example: 
 

<matrix name=“m” coldim=“1” values=“4 9 12 6 7 9” /> 

 
So, 
 

m[4] 

 
will be evaluated to 6. Matrices can of course be used inside loops (there is where they 
are actually most useful). We will see how to do this in section 3.5.1. 
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3.3 Materials 

3.3.1 Isotopes 
 
Isotopes can be defined using the construct  
 
<isotope name=its_name Z=atomic_number N=num_of_nucleons>.  
 
The following shows an example: 
 
 
 
 
 
 

3.3.2  Elements 
 
Elements can be defined using fractions of isotopes as follows: 
 
 
 
 
 

<isotope name="U235" Z="92" N="235"> 
 <atom type="A" value="235.01"> 
</isotope> 
<isotope name="U238" Z="92" N="238"> 
 <atom type="A" value="235.03"> 
</isotope> 
 

<element name="enriched_uranium" > 
   <fraction ref="U235" n="0.9" /> 
   <fraction ref="U238" n="0.1" /> 
 </element> 
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3.3.3 Materials 

Materials can be defined in three ways. The material can be defined directly from an 
element, created from previously defined elements or materials on number of atoms, and 
finally created as a fractional mixture of previously defined elements or materials. 
Optionally, you can specify the pressure (P) and the temperature (T). If you intend to 
utilise your GDML file with Geant4 only, you can also use directly the predefined Geant4 
NIST database materials (see Section 3.5). 
 
 
 

 

 

 

 

 
 
 
 

<material name="Water" formula="H2O"> 
   <D value="1.0" /> 
   <composite n="2" ref="Hydrogen" /> 
   <composite n="1" ref="Oxygen" /> 
  </material> 

 

<material name="Al" Z="13.0" > 
   <D value="2.70" /> 
   <atom value="26.98" /> 
  </material> 

 

<material formula="air" name="Air" > 
   <D value="0.0012899999999999999" /> 
   <fraction n="0.7" ref="Nitrogen" /> 
   <fraction n="0.3" ref="Oxygen" /> 
  </material> 
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3.4 Solids 

3.4.1 Box 
 
The GDML box is formed using the three standard dimensions: x, y and z. The box 
therefore has 4 attributes, the other being name which is standard for any SolidType 
element and corresponds to the name the solid can be referenced by. 
 
The following example illustrates the construction of a box made from the above 
dimensions: 

 

3.4.2 Cone Segment 
 
The GDML Cone Segment is formed using 7 dimensions.   
 
rmin1    inner radius at base of cone 
rmax1  outer radius at base of cone 
rmin2  inner radius at top of cone 
rmax2  outer radius at top of cone 
z  height of cone segment 
startphi  start angle of the segment 
deltaphi  angle of the segment 
 
The cone segment therefore has 8 attributes, the other being name which is standard for 
any SolidType element and corresponds to the name the solid can be referenced by. 
 
The following example illustrates the construction of a cone segment made from the 
above dimensions: 

 

3.4.3 Ellipsoid 
 
The GDML Ellipsoid is formed using 3 dimensions. 
 
ax x semi axis 
by y semi axis 
cz z semi axis 
 
There are 2 optional dimensions that can cut the ellipsoid. zcut1 will remove the 
specified value from the lower z axis effectively cutting a part of  the bottom of  the shape 
off. zcut2 performs the same action but acts on the upper part of the z axis. 
 
The ellipsoid therefore has 4 attributes, the other being name which is standard for any 
SolidType element and corresponds to the name the solid can be referenced by. 
 

<box name = "thebox" x= "30" y= "30" z= "30" lunit= "mm" /> 

  

<cone name = "thecone" rmin1="10" rmax1="15" rmin2="15" rmax2="25" z="30" 
startphi="1" deltaphi="4" aunit="rad"  lunit= "mm" /> 
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The following example illustrates the construction of a ellipsoid made from the above 
dimensions: 

 

3.4.4 Elliptical Tube 
 
The GDML Elliptical Tube is formed using 3 dimensions: 
 
dx x semi axis 
dy y semi axis 
dz z semi axis 
 
The elliptical tube therefore has 4 attributes, the other being name which is standard for 
any SolidType element and corresponds to the name the solid can be referenced by. 
 
The following example illustrates the construction of an elliptical tube made from the 
above dimensions: 

 

3.4.5 Elliptical Cone 
NB: supported only by Geant4 

 
The GDML Elliptical Cone is formed using 3 dimensions and one possible upper cut in Z: 
 
dx ratio of the X semi axis of the elliptical section at Z=0 to zmax 
dy ratio of the Y semi axis of the elliptical section at Z=0 to zmax 
zmax Z coordinate of the apex 
zcut upper cut in Z 
 
The elliptical cone therefore has 5 attributes, the other being name which is standard for 
any SolidType element and corresponds to the name the solid can be referenced by. 
 
The following example illustrates the construction of an elliptical cone made from the 
above dimensions: 

 

3.4.6 Orb 
 
The GDML Orb is formed using only 1 dimension: 
 
r  radius 
 
The orb is a simplified GDML Sphere with only the radius specified. The orb therefore 
has 2 attributes, the other being name which is standard for any SolidType element and 
corresponds to the name the solid can be referenced by. 
 

<ellipsoid name = "theellipsoid" ax="10" by="15" cz="20" zcut2="4" lunit= "mm"/> 

  

<eltube name = "theeltube" dx="10" dy="15" dz="20"  lunit= "mm" /> 

  

<elcone name = "theelcone" dx="1" dy="1.5" zmax="2" zcut="1.5"  lunit= "mm" /> 
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The following example illustrates the construction of an orb made from the above 
dimensions: 

 

3.4.7 Paraboloid 
 
The GDML Paraboloid is formed using 3 dimensions: 
 
rlo radius at -z 
rhi radius at +z 
dz z length 
 
The paraboloid therefore has 4 attributes, the other being name which is standard for 
any SolidType element and corresponds to the name the solid can be referenced by. 
 
The following example illustrates the construction of a paraboloid made from the above 
dimensions: 

 

3.4.8 Parallelepiped 
 
The GDML Parallelepiped is formed using 6 dimensions: 
 
x   length of x 
y   length of y 
z   length of z 
alpha   angle between x and z planes 
theta   polar angle of the line joining the centres of the faces at –z & +z in z 
phi   azimuthal angle of the line joining the centres of faces at –z & +z in z 
 
The Parallelepiped therefore has 7 attributes, the other being name which is standard for 
any SolidType element and corresponds to the name the solid can be referenced by. 
 
The following example illustrates the construction of a parallelepiped made from the 
above dimensions: 

 

3.4.9 Polycone 
 
The GDML Polycone can be described in two ways : 
       as Polycone using zplanes with rmin and rmax and 
       as Generic Polycone using vertices with (r,z) coordinates. 
 
The GDML Polycone is described using the following information: 
 
startphi start angle of the segment – if not given 0.0 is defaulted 

<orb name = "theorb" r="10"  lunit= "mm"/> 

  

<paraboloid name = "theparab" rlo="10" rhi="15" dz="20" aunit="rad"  lunit= "mm" /> 

  

<para name = "thepara" x="10" y="10" z="10" alpha="1" theta="1" phi="1" aunit="rad"    
lunit= "mm"/> 
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deltaphi angle of the segment 
zplane  see below 
 
The zplane element is required to be used at least once. You can use it as many times 
as you like.  The zplane is formed using the 3 attributes shown above: 
 
rmin  inner radius of cone at this point – if not given 0.0 is defaulted. 
rmax  outer radius of cone at this point 
z  z coordinate of the plane  
 
The Polycone therefore has a minimum of 7 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a polycone made from the above 
dimensions: 

 

3.4.10 Generic Polycone 
 
The GDML Generic Polycone is described using the following information: 
 
startphi start angle of the segment – if not given 0.0 is defaulted 
deltaphi angle of the segment 
rzpoint  see below 
 
The rzpoint element is required to be used at least three times. You can use it as many 
times as you like.  The rzpoint is formed using the 2 attributes shown above: 
 
r  r- coordinate of this point  
z  z-coordinate of this point 
 
The Generic Polycone therefore has a minimum of 7 attributes, the other being name 
which is standard for any SolidType element and corresponds to the name the solid can 
be referenced by. 
 
The following example illustrates the construction of a generic polycone made from the 
above dimensions: 
 

 
 
 

<polycone name = "thepolycone" startphi="1" deltaphi="4" aunit="rad"  lunit= "mm"> 
      <zplane rmin="1" rmax="9" z="10" /> 
      <zplane rmin="3" rmax="5" z="12" /> 
</polycone> 
 

  

<genericPolycone name = "thepolycone" startphi="1" deltaphi="4" aunit="rad" 
 lunit= "mm"> 
      <rzpoint r="1" z="5" /> 
      <rzpoint r="3" z="10" /> 
      <rzpoint r="1" z="12" /> 
</genericPolycone> 
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3.4.11 Polyhedron 
The GDML Polychedron (Polyhedra) can be described in two ways : 
       as Polyhedra using zplanes with rmin and rmax and 
       as Generic Polyhedra using vertices with (r,z) coordinates. 
 
The GDML Polyhedron (Polyhedra) is described using the following information: 
 
startphi start angle of the segment 
deltaphi angle of the segment 
numsides number of sides  
zplane   see below 
 
The zplane element is required to be used at least once. You can use it as many times 
as you like. The zplane is formed using the 3 attributes shown above: 
 
rmin  inner radius of cone at this point – if not given 0.0 is defaulted. 
rmax  outer radius of cone at this point 
z  z coordinate of the plane 
 
The Polyhedra therefore has a minimum of 6 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a polyhedra made from the above 
dimensions: 

 

3.4.12 Generic Polyhedron 
The GDML Generic Polyhedra is described using the following information: 
 
startphi start angle of the segment 
deltaphi angle of the segment 
numsides number of sides  
rzpoint   see below 
 
The rzpoint element is required to be used at least three times. You can use it as many 
times as you like. The rzpoint is formed using the 2 attributes shown above: 
 
r  r- coordinate of this point  
z  z-coordinate of this point 
 
 
 
The Generic Polyhedra therefore has a minimum of 6 attributes, the other being name 
which is standard for any SolidType element and corresponds to the name the solid can 
be referenced by. 
 
The following example illustrates the construction of a polyhedra made from the above 
dimensions: 

<polyhedra name= "thepolyhedra" startphi="1" deltaphi="4" numsides="10" aunit="rad"   
 lunit= "mm"> 
      <zplane rmin="1" rmax="9" z="10" /> 
      <zplane rmin="3" rmax="5" z="12" /> 
</polyhedra> 

  



 

Page 20 of 50 

 

 
 
 

3.4.13 Sphere 
 
The GDML Sphere is formed using 6 dimensions: 
 
rmin   inner radius – if not given 0.0 is defaulted  
rmax   outer radius 
startphi  starting angle of the segment – if not given 0.0 is defaulted 
deltaphi  delta angle of the segment 
starttheta  starting angle of the segment – if not given 0.0 is defaulted 
deltatheta  delta angle of the segment 
 
The Sphere therefore has a minimum of 7 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a sphere made from the above 
dimensions: 

 

3.4.14 Torus Segment 
 
The GDML Torus Segment is formed using 5 dimensions: 
 
rmin   inside radius of segment 
rmax   outside radius of segment 
rtor   swept radius of torus 
startphi  starting phi position angle of segment 
deltaphi  delta angle of segment 
 
The Torus segment therefore has a minimum of 6 attributes, the other being name which 
is standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a torus segment made from the 
above dimensions: 

 

3.4.15 Trapezoid – x & y varying along z 
 

<sphere name = "thesphere" rmin="1" rmax="4" deltaphi="1" deltatheta="1" aunit="rad"   
lunit= "mm"/> 

  

<torus name = "thetorus" rmin="1" rmax="4"  rtor="2" deltaphi="3" startphi="1" aunit="rad" 
lunit= "mm"/> 

  

<genericPolyhedra name= "thepolyhedra" startphi="1" deltaphi="4" numsides="10" 
 aunit="rad"  lunit= "mm"> 
      <rzpoint r="1" z="10" /> 
      <rzpoint r="3" z="12" /> 
      <rzpoint r="1" z="12" /> 
</genericPolyhedra> 
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The GDML Trapezoid is formed using 5 dimensions: 
 
x1  x length at -z 
x2  x length at +z 
y1  y length at -z 
y2  y length at +z 
z  z length 
 
The Trapezoid therefore has a minimum of 6 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a Trapezoid made from the above 
dimensions: 

 

3.4.16 General Trapezoid 
 
The GDML General Trapezoid is formed using 11 dimensions: 
 
z  length along z axis 
theta  polar angle to faces joining at -/+z 
phi  azimuthal angle of line joining centre of –z face to centre of +z face 
y1  length along y at the face -z 
x1  length along x at side y = -y1 of the face at -z 
x2  length along x at side y = +y1 of the face at -z 
alpha1 angle with respect to the y axis from the centre of side at y = -y1 to centre 

of  y = +y1 of the face at -z 
y2  length along y at the face +z 
x3  length along x at side y = -y1 of the face at +z 
x4  length along x at side y = +y1 of the face at +z 
alpha2 angle with respect to the y axis from the centre of side at y = -y2 to centre 

of  y = +y2 of the face at +z 
 
The General Trapezoid therefore has a minimum of 12 attributes, the other being name 
which is standard for any SolidType element and corresponds to the name the solid can 
be referenced by. 
 
The following example illustrates the construction of a General Trapezoid made from the 
above dimensions: 

3.4.17 Tube with Hyperbolic Profile 
 
The GDML Tube with Hyperbolic Profile is formed using 5 dimensions: 
 
rmin   inside radius of tube 
rmax   outside radius of tube 
inst   inner stereo 
outst   outer stereo  
z   z length 

<trd name = "thetrd" x1="9" x2="8"  y1="6" y2="5" z="10"  lunit= "mm"/> 

  

<trap name = "thetrap" z="10" theta="1"  phi="2" y1="15" x1="10"  x2="10" alpha1="1"  
y2="15" x3="10" x4="10"  alpha2="1" aunit="rad"  lunit= "mm"/> 
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The Hyperbolic Tube therefore has a minimum of 6 attributes, the other being name 
which is standard for any SolidType element and corresponds to the name the solid can 
be referenced by. 
 
The following example illustrates the construction of a hyperbolic tube made from the 
above dimensions: 

 

3.4.18 Cut Tube  
 

The GDML Cut Tube is formed using 11 dimensions: 
 
z  length along z axis 
rmin  inner radius – if not given 0.0 is defaulted 
rmax  outer radius 
startphi starting phi angle of segment – if not given 0.0 is defaulted 
deltaphi delta phi of angle 
lowX  normal at lower z plane 
lowY normal at lower z plane 
lowZ  normal at lower z plane 
highX  normal at upper z plane 
highY  normal at upper z plane 
highZ normal at upper z plane 
 
The cut Tube therefore has a minimum of 12 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of a cut Tube made from the above 
dimensions: 

 
 

3.4.19 Tube Segment 
 
The GDML Tube Segment is formed using 5 dimensions: 
 
rmin   inside radius of segment - if not given 0.0 is defaulted 
rmax   outside radius of segment 
z   z length of tube segment 
startphi  starting phi position angle of segment - if not given 0.0 is defaulted 
deltaphi  delta angle of segment 
 
The Tube segment therefore has a minimum of 6 attributes, the other being name which 
is standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 

<hype name = "thehype" rmin="1" rmax="2"  z="20" inst="3" outst="4"  lunit= "mm"/> 

  

<cutTube name = "thecuttube" z="20" rmin="1"  rmax="5" startphi="1" deltaphi="4"  lowX="15" 
lowY="15"  lowZ="15" highX="10" highY="10"  highZ="10"  aunit="rad"  lunit= "mm"/> 
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The following example illustrates the construction of a tube segment made from the 
above dimensions: 

 

3.4.20 Twisted Box 
NB: supported only by Geant4 

 
The GDML Twisted box is formed using the three standard dimensions: x, y and z and 
one added dimension: PhiTwist. The box therefore has 5 attributes, the other being 
name which is standard for any SolidType element and corresponds to the name the 
solid can be referenced by. 
 
The following example illustrates the construction of a box made from the above 
dimensions: 

 

3.4.21 Twisted Trapezoid 
NB: supported only by Geant4 

 
The GDML Twisted Trapezoid is formed using 6 dimensions: 
 
PhiTwist Twist Angle 
x1  x length at -z 
x2  x length at +z 
y1  y length at -z 
y2  y length at +z 
z  z length 
 
The Twisted Trapezoid therefore has a minimum of 7 attributes, the other being name 
which is standard for any SolidType element and corresponds to the name the solid can 
be referenced by. 
 
The following example illustrates the construction of a Twisted Trapezoid made from the 
above dimensions: 

 

3.4.22 Twisted General Trapezoid 
NB: supported only by Geant4 

 
The GDML Twisted General Trapezoid is formed using 11 dimensions: 
 
PhiTwist twist angle 
z  length along z axis 
Theta  polar angle to faces joining at -/+z 
Phi  azimuthal angle of line joining centre of –z face to centre of +z face 
y1  length along y at the face -z 
x1  length along x at side y = -y1 of the face at -z 

<tube name = "thetube" rmin="1" rmax="4"  z="20" deltaphi="3" startphi="1"  
aunit="rad"  lunit= "mm"/> 

  

<twistedbox name = "twistbox"  PhiTwist= "1" x= "30" y= "30" z= "30" aunit="rad"  
lunit= "mm"/> 

  

<twistedtrd name = "twisttrd"  PhiTwist="1" x1="9" x2="8"  y1="6" y2="5" z="10"  aunit="rad" 
lunit= "mm"/> 
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x2  length along x at side y = +y1 of the face at -z 
y2  length along y at the face +z 
x3  length along x at side y = -y1 of the face at +z 
x4  length along x at side y = +y1 of the face at +z 
Alph angle with respect to the y-axis from the centre of the side 
 
The Twisted General Trapezoid therefore has a minimum of 12 attributes, the other 
being name which is standard for any SolidType element and corresponds to the name 
the solid can be referenced by. 
 
The following example illustrates the construction of a General Twisted Trapezoid made 
from the above dimensions: 

 
 

3.4.23 Twisted Tube Segment 
NB: supported only by Geant4 

 
The GDML Twisted Tube Segment is formed using at least 4 dimensions, depending on 
the kind of construction chosen: 
 
endinnerrad  inside radius at end of segment (constructors 1,2) 
endouterrad  outside radius at end of segment (constructors 1,2) 
zlen   z length of tube segment (constructors 1,2) 
twistedangle  twist angle (constructors 1,2,3,4) 
phi   phi angle of segment (constructors 1,3) 
midinnerrad  inner radius at z=0 (constructors 3,4) 
midouterrad  outer radius at z=0 (constructors 3,4) 
nseg   number of segments in totalPhi (constructors 2,4) 
totphi   total angle of all segments (constructors 2,4) 
 
The Twisted Tube segment therefore has a minimum of 4 attributes, the other being 
name which is standard for any SolidType element and corresponds to the name the 
solid can be referenced by. 
 
The following example illustrates the construction of a twisted tube segment made from 
the above dimensions: 

 

3.4.24 Extruded Solid 

 
The GDML Extruded Solid (Xtru) is formed using 2 attributes: 
 

twoDimVertex  vertices of an unbound blueprint polygon 
section   z sections 

 
The twoDimVertex element is required to be used at least 3 times and the section 
element is required to be used at least twice. You can use both as many times as you 
like.  The twoDimVertex is formed using the 2 attributes shown below: 

<twistedtrap name = "twisttrap"  PhiTwist="1" z="10" Theta="1"  Phi="2" y1="15" 
x1="10"  x2="10" y2="15" x3="10" x4="10"  Alph="1" aunit="rad"  lunit= "mm"/> 

  

<twistedtubs name = "twisttube" endinnerrad="1" endouterrad="4"  zlen="20" phi="3" 
twistedangle="1" aunit="rad"   lunit= "mm"/> 
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x   x coordinate of the vertex 
y   y coordinate of the vertex 

 
The section is formed using the 5 attributes shown below: 
 

zOrder index of the section, must be between 0 and n-1 where n is 
the number of sections 

zPosition  distance from the plane z=0 
xOffset   x offset from centre point of original plane 
yOffset   y offset from centre point of original plane 
scalingFactor  proportion to original blueprint 

 
The Xtru therefore has a minimum of 17 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of an Xtru made from the above 
dimensions: 

 
 

3.4.25 Arbitrary Trapezoid (Arb8) 
 
The GDML Arb8 (arbitrary trapezoid with less than 8 vertices) is formed using 17 
dimensions. It’s made up of two quadrilaterals sitting on parallel planes. V1 to V4 define 
the vertices for the quadrilateral base situated at -dz, V5 to V8 define the vertices for the 
other quadrilateral situated at -dx.  
 
v1x  vertex 1 x position 
v1y  vertex 1 y position 
v2x  vertex 2 x position 
v2y  vertex 2 y position 
v3x  vertex 3 x position 
v3y  vertex 3 y position 
v4x  vertex 4 x position 
v4y  vertex 4 y position 
------------------------------------------- 
v5x  vertex 5 x position 
v5y  vertex 5 y position 
v6x vertex 6 x position 
v6y  vertex 6 y position 
v7x  vertex 7 x position 
v7y  vertex 7 y position 
v8x  vertex 8 x position 
v8y  vertex 8 y position 
 
dz  half z length 

<xtru name = "theXtru"  lunit= "mm" > 
      <twoDimVertex x="3" y="9" /> 
      <twoDimVertex x="1" y="5" /> 
      <twoDimVertex x="2" y="4" /> 
      <section zOrder="1" zPosition="2" xOffset="5" yOffset="3" scalingFactor="3" /> 
      <section zOrder="2" zPosition="5" xOffset="3" yOffset="5" scalingFactor="1" /> 
</xtru> 
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The Arb8 therefore has a minimum of 18 attributes, the other being name which is 
standard for any SolidType element and corresponds to the name the solid can be 
referenced by. 
 
The following example illustrates the construction of an Arb8 made from the above 
dimensions: 

 

3.4.26 Tessellated solid 
NB: supported only by Geant4 

 
The GDML tessellated solid can be made of any number of triangular and/or 
quadrangular facets forming a closed space.  Each facet is defined by specifying 
references to (names of) three (for the triangular one) or four (for the quadrangular one) 
vertices. The vertices are standard position elements and should be declared 
beforehand within the define section. If a referenced vertex is not defined, an error 
message is displayed. By looking from the outside of the tessellated solid, vertices are 
listed in the anti-clockwise order for each of the facets. There are two ways of defining 
vertices: ABSOLUTE (default), and RELATIVE. In the first case each vertex coordinates are 
considered to be absolute coordinates in the reference system of the solid. In the second 
case, only the first listed vertex has absolute coordinates, while the remaining ones are 
considered to be translations from the first one.  
The tessellated solid has only one attribute name, which is standard for any SolidType 
element and corresponds to the name the solid can be referenced by. The sub-elements 
of tessellated solid element are all of FacetType, in other words they are the triangular 
and/or quadrangular facets the solid is made of. 
The triangular (quadrangular) facet element contains three (four) attributes 
vertex1, vertex2, vertex3, (vertex4), being references to the vertices (defined 
beforehand) of the facet and an optional attribute type indicated whether the coordinates 
of the vertices are ABSOLUTE (default) or RELATIVE. 
 
The following example illustrates the construction of a simple tessellated solid made from 
a square base and six triangular walls. We first define the vertices 
 
<define> 
  <position name="v1" x="10" y="10" z="0" unit="m"/> 
  <position name="v2" x="-10" y="10" z="0" unit="m"/> 
  <position name="v3" x="-10" y="-10" z="0" unit="m"/> 
  <position name="v4" x="10" y="-10" z="0" unit="m"/>   
  <position name="v5" x="7" y="3" z="20" unit="m"/>  
  <position name="v6" x="-3" y="7" z="5" unit="m"/> 
</define> 

 
and then we build the tessellated solid out of them 
 
<tessellated name="pyramid"> 
     <triangular vertex1="v1" vertex2="v2" vertex3="v6" type="ABSOLUTE"/>  
     <triangular vertex1="v2" vertex2="v3" vertex3="v6" type="ABSOLUTE"/>  
     <triangular vertex1="v3" vertex2="v4" vertex3="v5" type="ABSOLUTE"/>  
     <triangular vertex1="v4" vertex2="v1" vertex3="v5" type="ABSOLUTE"/>  
     <triangular vertex1="v1" vertex2="v6" vertex3="v5" type="ABSOLUTE"/>  

<arb8 name = "thearb8"  v1x="1" v1y="1" v2x="2"  v2y="2" v3x="3" v3y="3"  v4x="4" 
v4y="4" v5x="10" v5y="10"   v6x="11" v6y="11"   v7x="12" v7y="12"   v8x="13" v8y="13"  
dz="20"  lunit= "mm"/> 
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     <triangular vertex1="v6" vertex2="v3" vertex3="v5" type="ABSOLUTE"/>  
     <quadrangular vertex1="v4" vertex2="v3" vertex3="v2" vertex4="v1" type="ABSOLUTE"/> 
</tessellated>  

 
Figure: graphical representation of the tessellated solid as described in the example. 

3.4.27 Tetrahedron 
NB: supported only by Geant4 

 
The tetrahedron solid in GDML is defined by specifying the coordinates of the four 
vertices. In order for the solid not to be degenerated, the four points must not lie on the 
same surface. 
The tet solid element contains the standard name attribute and four attributes being 
references to the vertices namely vertex1, vertex2, vertex3 and vertex4. These 
vertices are standard position elements which must be defined beforehand within the 
define part. 
The following example illustrates the construction of the tetrahedron.  
 
<define> 
 <position name="v1" x="10" y="10" z="0"/> 
 <position name="v2" x="-10" y="10" z="0"/> 
 <position name="v3" x="-10" y="-10" z="0"/> 
 <position name="v4" x="0" y="0" z="10"/> 
</define> 

 
<tet name="halfpyramid" vertex1="v1" vertex2="v2" vertex3="v3" vertex4="v4"/>   
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3.4.28 Using loops for solids 
 
Suppose you want to define a set of solids with the same shape but with dimensions 
varying according to a particular function. In this case loops are very useful, because the 
avoid repetition of solids definitions. For a more detailed discussion on loops please refer 
to Section 3.5.1. The following example shows you how to use a loop to define a set (10) 
of boxes with different dimensions. Without a loop you would write the following code: 
 

<box name=“box0” x=“1”  y=“5”   z=“20” /> 
<box name=“box1” x=“4”  y=“4.5” z=“18” /> 
<box name=“box2” x=“7”  y=“4”   z=“16” /> 
<box name=“box3” x=“10” y=“3.5” z=“14” /> 
<box name=“box4” x=“13” y=“3”   z=“12” /> 
<box name=“box5” x=“16” y=“2.5” z=“10” /> 
<box name=“box6” x=“19” y=“2”   z=“8” /> 
<box name=“box7” x=“22” y=“1.5” z=“6” /> 
<box name=“box8” x=“25” y=“1”   z=“4” /> 
<box name=“box9” x=“28” y=“0.5” z=“2” /> 

 
Using a loop you would only need four lines 
 

<variable name=“x” value=“0”/>  
 
declared in the “define” section and 
 

<loop for=“x” to=“9” step=“1”> 
 <box name=“box” x=“1+(x*3)” y=“5-(x/2)” z=“20-(2*x)” /> 
</loop> 

 

3.4.29 Boolean Solids 
 
The GDML Boolean Solids can be described using following Boolean operations: union, 
subtraction and intersection. As for Geant4 Boolean operations, the second solid is 
placed with given position and rotation in the system coordinates of the first solid. The 
following example illustrates the construction of Boolean solid using union operation: 
 

<box name=“box_first”  x=“1”  y=“5”   z=“20” /> 
<box name=“box_second” x=“4”  y=“4.5” z=“18” /> 
 
<union name= =“union” > 
<first  ref=“box_first” /> 
<second ref=“box_second”/> 
<positionref ref=“union_position” /> 
<rotationref ref=“union_rotation” /> 
</union> 

 
Another way to describe Union Solid is by using the MultiUnion construct, which offers 
possibility to make union of many solids. The following example illustrates the 
construction of a MultiUnion structure:  
 

<box name=“box_first”  x=“1”  y=“5”   z=“20” /> 
<box name=“box_second” x=“4”  y=“4.5” z=“18” /> 
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<multiUnion name= =“multiUnion” > 
  <multiUnionNode name-“node-1”> 
    <solid ref=“box_first” /> 
  </multiUnionNode> 
  <multiUnionNode name=”node-2”> 
    <solid ref=“box_second” /> 
    <positionref ref=“union_position” /> 
    <rotationref ref=“union_rotation” /> 
  </multiUnionNode> 
</multiUnion> 

 

3.4.30 Scaled Solids 
 
Any solid can be scaled along Cartesian axes by specifying a scale transformation where 
positive values for X, Y or Z should be specified, together with the shape, or reference to 
a shape to be scaled: 
 
 

<tube name=“my_tube” z=“100.0” rmax=“10.0” deltaphi=“360”/> 
 
<scaledSolid name=“ScaledTube” > 
  <solidref ref=“my_tube” /> 
  <scale name=“tube_scale” x=“1” y=“2” z=“1”/> 
</scaledSolid> 

 
 

3.5 Structure 
 
The structure section is where volumes in the geometry are defined. Volumes are 
referenced to solids and materials defined earlier to form the shape and composition of 
that volume.  This volume is then a logical volume.  Volumes can be placed within this 
logical volume; these volumes are called physical volumes. The physical volumes are 
required to have the reference to the logical volume which they are a placement of. They 
can be positioned and rotated how you wish within the logical volume. This can be done 
using explicit position and rotation defined within the physical volume block or using 
reference to position and rotation defined in the <defined> section. An example of the 
GDML code for this is below: 
 
<volume name="World"> 
   <materialref ref="Air"/> 
   <solidref ref="WorldBox"/> 
  
   <physvol> 
     <volumeref ref="vol0"/> 
     <positionref ref="center"/> 
     <rotationref ref="identity"/> 
   </physvol> 
</volume> 

If you intend to utilize your GDML file with Geant4 only, you can also use the predefined 
Geant4 NIST database materials to construct your physical volumes. In that case, the 
name of the referenced material has to correspond to the name in the Geant4 NIST 
database, like for instance “G4_Al” or “G4_WATER” (see Geant4 manual). That material 
should not be then defined in the <materials> section, it will be directly taken from the 
Geant4 NIST database during the initialization of the geometry in memory.  
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In addition to the standard logical volumes, one can also define assemblies, which are 
made of several physical volumes and do not include a ‘mother volume’ being an 
envelop for its physical volumes. An example of an assembly volume can be seen below: 
 
  <assembly name="AssemblyVol"> 
    <physvol> 
      <volumeref ref="TubeVol"/> 
      <position name="pos1" unit="m" x="0" y="0" z="0.5"/> 
      <rotationref ref="alignSurfX"/> 
    </physvol> 
    <physvol> 
      <volumeref ref="TubeVol"/> 
      <position name="pos2" unit="m" x="0" y="0" z="-0.5"/> 
      <rotationref ref="alignSurfY"/> 
    </physvol> 
  </assembly> 
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3.5.1 Loops 
 
Loops can be used to avoid tedious repetitions of definitions. To use a loop you need to 
define a variable first (section 3.2.1). Suppose you defined a variable x with 0 initial 
value: 
 

<variable name=“x” value=“0”/> 

 
then, you can use it inside a loop statement: 
 

<loop for=“x” to=“8” step=“2”> 
… 
</loop> 

 
The code within the loop tags will we executed 5 times in this case, because the variable 
x starting from the initial value of 0 (as in its definition) will be increased by 2 (according 
to the step value) for each loop until it reaches the value of 8 (as stated in the to 
attribute). 
Loops are very useful to access elements of matrices (see section 3.2.2); for example: 
 

<variable name=“i” value=“1”/> 
<matrix name=“m” coldim=“3” values=“ 0.4  9  126 
                                     8.5  7   21 
                                    34.6  7    9” /> 
<loop for=“i” to=“3” step=“1”> 
 … m[1,i] … 
</loop> 

 
We are able to access the three elements of the first row of the matrix, i.e. 0.4, 9 and 
126. Loops can be used when defining solids, logical volumes and physical volumes; 
let’s see how this is done in practice. Suppose we want to create the following structure: 
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We need to write the code for 5 boxes, 5 logical volumes that refer to the boxes and 5 
physical volumes that refer to the 5 logical volumes! The code would be the following: 
 
<solids> 
 <box name=“box1” x=“10” y=“5” z=“5” /> 
 <box name=“box2” x=“9” y=“4.5” z=“4” /> 
 <box name=“box3” x=“8” y=“4” z=“3.2” /> 
 <box name=“box4” x=“7” y=“3.5” z=“2.56” /> 
 <box name=“box5” x=“6” y=“3” z=“2.048” /> 
</solids> 
<structure> 
 <volume name=“volbox1”> 
  <solidref ref=“box1” /> 
  <materialref ref=“iron” /> 
 </volume> 
 <volume name=“volbox2”> 
  <solidref ref=“box2” /> 
  <materialref ref=“iron” /> 
 </volume> 
 <volume name=“volbox3”> 
  <solidref ref=“box3” /> 
  <materialref ref=“iron” /> 
 </volume> 
 <volume name=“volbox4”> 
  <solidref ref=“box4” /> 
  <materialref ref=“iron” /> 
 </volume> 
 <volume name=“volbox5”> 
  <solidref ref=“box5” /> 
  <materialref ref=“iron” /> 
 </volume> 
 <volume name=“world”> 
  ... 
  <physvol> 
   <volumeref ref=“volbox1” /> 
   <position x=“5” y=“0” z=“0” /> 
  </physvol> 
  <physvol> 
   <volumeref ref=“volbox2” /> 
   <position x=“5” y=“4.25” z=“0” /> 
  </physvol> 
  <physvol> 
   <volumeref ref=“volbox3” /> 
   <position x=“5” y=“8.0” z=“0” /> 
  </physvol> 
  <physvol> 
   <volumeref ref=“volbox4” /> 
   <position x=“5” y=“11.25” z=“0” /> 
  </physvol> 
  <physvol> 
   <volumeref ref=“volbox5” /> 
   <position x=“5” y=“14” z=“0” /> 
  </physvol> 
 </volume> 
</structure> 
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Of course this is always possible; but using the loop tags (and combining them properly 
with matrices), you would have the same result with fewer code lines and less 
complexity. Here’s the equivalent code using the loop and matrix tags: 
 
<define> 
 <matrix name=“m” coldim=“5” values=“0 4.25 8.0 11.25 14 
                                     5 4 3.2 2.56 2.048” /> 
 <variable name=“i” value=“0” /> 
 <variable name=“num” value=“5” /> 
</define> 
<solids> 
 ... 
 <loop for=“i” from=“1” to=“num” step=“1”> 
  <box name=“box[i+1]” x=“10-i” y=“5-i/2” z=“m[2,i]” /> 
 </loop> 
</solids> 
<structure> 
 <loop for=“i” from=“1” to=“num” step=“1”> 
  <volume name=“volbox[i+1]”> 
   <materialref ref=“iron” /> 
   <solidref ref=“box[i+1]” /> 
  </volume> 
 </loop> 
 <volume name=“world”> 
  ... 
  <loop for=“i” from=“1” to=“num” step=“1”> 
   <physvol> 
    <volumeref ref=“volbox[i+1]” /> 
    <position name=“pos” x=“5” y=“m[1,i]” z=“0”/> 
   </physvol> 
  </loop> 
 </volume> 
</structure> 

 
In this example we only “looped” 5 times, but just think if we needed to loop 100 times or 
more, the difference (in terms of code lines) between the two approaches would be 
enormous. 
Now two important rules you need to follow when using loops: 
 

1) Always use a properly initialized variable for each loop tag (in our example i and 
num for the three loops). 

2) When you use linked loop triples (loop triple = 3 loop tags, as we did in our 
example; linked in the sense that we looped over a solid, then we looped over a 
logical volume that referred to that solid, and finally we looped over a physical 
volume that referred to that logical volume) you always have to be sure that the 
number of steps is the same for every loop tag of that particular triple. In our 
example that number was 5: from 1 to 5. 

 

3.5.2 Replicated Volumes 
NB: supported only by Geant4 

 
Replicated volumes in GDML correspond to Geant4 Replicas. Replica volumes are 
created along the specific direction of one of Cartesian or Cylindrical Axis. The first 
replica is placed at the given position and rotated according to given rotation and others 
are placed using given distance. This repeated Volumes technique is available for 
volumes described by Geant4 CSG Solids. The following example illustrates the 
construction of replica volumes along X Axis. An example ‘replicated.gdml’ can be found 
in the $G4INSTALL/examples/extended/persistency/gdml/G01 girectory. 
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<solids > 
  … 
  <box name=“Mother_Cube” x=“800” y=“100” z=“100”/> 
  <box name=“Cube” x=“100” y=“100” z=“100”.> 
</solids> 
 
<structure> 
  … 
 <volume name=“lvCube”> 
  <solidref ref=“Cube” /> 
  <materialref ref=“ALU” /> 
 </volume> 
 
 <volume name=“lvReplica”> 
  <solidref ref=“Mother_Cube” /> 
  <materialref ref=“AIR” /> 
  <replicavol number=“8”> 
      <volumeref ref=“lvCube” /> 
      <replicate_along_axis> 
        <direction x=“1” /> 
        <width  value=“100”  unit=“mm” /> 
        <offset value=“0”    unit=“mm” /> 
      </replicate_along_axis> 
  </replicavol> 
 </volume> 
</structure> 
… 
 
  

3.5.3 Parameterised Volumes 
NB: supported only by Geant4 

 
Parameterised volumes in GDML correspond to the parameterised physical volumes in 
Geant4 with the difference that in GDML only parameterisation of dimension and 
placement is supported. 
Parameterisation of type of solid or its material is not supported by current 
implementation; however it can be implemented as possible extension to the GDML 
schema.   
Parameterised volumes are repeated volumes in the case in which the multiple copies of 
a volume can be different in size and position. 
Examples  of GDML files describing parameterised volumes are parameterized.gdml 
and pTube.gdml located in the example G01 distributed with Geant4. 
The following example illustrates the construction of parameterised volumes: 
 
 
<solids > 
  … 
  <box name=“tracker” x=“4800” y=“4800” z=“4800”/> 
  <box name=“chamber” x=“2000” y=“2000” z=“2000”.> 
</solids> 
 
<structure> 
  … 
<volume name=“Chamber”> 
  <solidref ref=“chamber” /> 
  <materialref ref=“XenonGas” /> 
 </volume> 
 
<volume name=“Tracker”> 
  <solidref ref=“tracker” /> 
  <materialref ref=“Air” /> 
 
  <paramvol ncopies=“2”> 
    <volumeref ref=“Chamber”/> 
       <parameterised_position_size> 
       <parameters number=“1”> 
         <position name=“positionCopy1”  x=“0” y=“0” z=“-1500”/> 
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         <box_dimensions x=“240” y=“240” z=“100”/> 
       </parameters> 
 
       <parameters number=“2”> 
         <position name=“positionCopy2”  x=“0” y=“0” z=“-700”/> 
         <box_dimensions x=“672” y=“672” z=“100”/> 
       </parameters> 
 
      </parameterised_position_size> 
  </paramvol> 
 </volume> 
… 
</structure> 
… 
 
 
For giving the dimensions of each parameterised solid in GDML a special syntax is used.  
 

3.5.3.1. Dimensions of Parameterised Box 
 
The GDML dimensions of a parameterised box have the following form with 3 standard 
dimensions: x, y and z. Example: 
 

 
 

3.5.3.2. Dimensions of Parameterised Tube 
 
The GDML dimensions of a parameterised tube are given using : 
 
InR   inside radius of segment  
OutR   outside radius of segment 
hz   z length of tube segment 
StartPhi  starting phi position angle of segment  
DeltaPhi  delta angle of segment 
 
 
  The following example illustrates its construction: 
 

 

3.5.3.3. Dimensions of Parameterised Cone 
 
The GDML dimensions of a parameterised cone are given using: 
 
rmin1   inside radius at base of cone  
rmax1   outside radius at base of cone 
rmin2   inside radius at top of cone  
rmax2   outside radius at top of cone 
z   z length of cone  
startphi  starting phi position of segment  
deltaphi  delta angle of segment 

<box_dimensions x="30" y="30" z="30" lunit= "mm"/> 

  

<tube_dimensions InR="30" OutR="60" hz="30" lunit= "mm"   
                 StartPhi="60" DeltaPhi="30" aunit= "deg"/> 
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  The following example illustrates its construction: 
 

 
 

3.5.3.4. Dimensions of Parameterised Orb 
 
The GDML dimensions of a parameterised orb have the following form with 1 standard 
dimension: r (radius). Example: 
  

 
 

3.5.3.5. Dimensions of Parameterised Sphere 
 
The GDML dimensions of a parameterised sphere are given using: 
 
rmin   inside radius   
rmax   outside radius 
startphi  starting phi position of segment  
deltaphi  delta angle of segment 
starttheta  starting theta position of segment  
deltatheta  delta theta angle of segment 
 
 
  The following example illustrates its construction: 
 

 

3.5.3.6. Dimensions of Parameterised Torus 
 
The GDML dimensions of a parameterised torus are given using: 
 
rmin   inside radius   
rmax   outside radius 
rtor                              swept radius of torus  
startphi  starting phi position of segment  
deltaphi  delta angle of segment 
 
 
  The following example illustrates its construction: 
 

 

<cone_dimensions rmin1="30" rmax1="60"  rmin2="20" rmax2="60"  z="30" lunit= "mm"   
                 startphi="60" deltaphi="30" aunit= "deg"/> 

  

<orb_dimensions r="30" lunit= "mm"/> 

  

<sphere_dimensions rmin="30" rmax="60" lunit= "mm"   starttheta="0" deltatheta="40" 
                 startphi="60" deltaphi="30" aunit= "deg"/> 

  

<torus_dimensions rmin="30" rmax="60"  rtor="160"  lunit= "mm"    
                 startphi="60" deltaphi="30" aunit= "deg"/> 
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3.5.3.7. Dimensions of Parameterised Hype 
  
The GDML dimensions of a parameterised hype are given using: 
 
rmin   inside radius   
rmax   outside radius 
z                                  length  
ihst              inner stereo 
outst                outer stereo 
 
 
  The following example illustrates its construction:  
 

 

3.5.3.8. Dimensions of Parameterised Parallelepiped 
 
The GDML dimensions of a parameterised parallelepiped are given using: 
 
x   length of x   
y   length of y 
z              length of z  
alpha              angle between x and z plane 
theta              polar angle of the line joining the centre of the faces –z&+z in z   
phi              azimuthal angle of the line joining the centre of the faces –z&+z in 
z   
 
 
  The following example illustrates its construction:  
 
 

 

3.5.3.9. Dimensions of Parameterised Trapezoid 
 
The GDML dimensions of a parameterised trapezoid are given using: 
 
x1     x length at - z    
x2   x length at +z 
y1              y length at - z 
y2              y length at +z 
z              z length 
 
  The following example illustrates its construction:  
 

 
 

<hype_dimensions rmin="30" rmax="60"  z="160"  lunit= "mm"    
                 inst="3" outst="4" /> 

  

<para_dimensions x="30" y="60" z= "60"   alpha="1" theta="1" 
                 phi="1" lunit="mm" aunit= "rad"/> 

  

<trd_dimensions x1="30" x2="60"  y1="20" y2="40"  z ="30" lunit= "mm"/> 
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3.5.3.10. Dimensions of Parameterised General Trapezoid 
 
The GDML dimensions of a parameterised general trapezoid are given using: 
 
x1     length along x at side y=-y1 of the face at - z    
x2   length along x at side y=+y1 of the face at - z 
x3     length along x at side y=-y1 of the face at + z    
x4   length along x at side y=+y1 of the face at + z 
alpha1              angle with respect to the y axis from the centre of side at y=-y1 
                                   to centre of y=+y1 of the face at -z 
alpha2              angle with respect to the y axis from the centre of side at y=-y2 
                                   to centre of y=+y2 of the face at -z 
theta              polar angle of the line joining the centre of the faces –z&+z in z   
phi              azimuthal angle of the line joining the centre of the faces –z&+z in 
z   
y1              y length at - z 
y2              y length at +z 
z              length along z axis 
 
  The following example illustrates its construction:  
 

 
 
 
 
 
 

3.5.3.11. Dimensions of Parametrised Polycone 
 
 
The GDML dimensions of a parameterised polycone are given using: 
 
startPhi     start angle of the segment 
openPhi   angle of the segment 
numRZ     number of zplanes forming polycone 
zplane      inner radius, outer radius and z coordinate of each plane 
 
 
The following example illustrates its construction:  

 
 

3.5.3.12. Dimensions of Parametrised Polyhedron 
 
The GDML dimensions of a parameterised polyhedron (polyhedra) are given using: 

<trap_dimensions x1="30" x2="60"  y1="20" y2="40"  x3="30" x4="60" z ="30" lunit= "mm" 
                 alpha1="30" alpha2="30"  phi="30" theta="60" aunit="deg" /> 

  

<polycone_dimensions startPhi="30" openPhi="60"  numRZ="2" lunit= "mm" aunit="deg"   
 <zplane rmin="0"  rmax="2"  z="10"  /> 
 <zplane rmin="0"  rmax="4"  z="20"  /> 
 polycone_dimensions/> 
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startPhi     start angle of the segment 
openPhi   angle of the segment 
numRZ     number of zplanes forming polycone 
numSide     number of sides 
zplane      inner radius, outer radius and z coordinate of each plane 
 
 
The following example illustrates its construction:  

 
 

3.5.3.13. Dimensions of Parametrised Ellipsoid 
 
The GDML dimensions of a parameterised general tellipsoid are given using: 
 
ax     length of semi-axis in x direction   
by   length of semi-axis in y direction 
cz     length of semi-axis in z direction 
zcut1     lower cut plane level at  -z (solid lies above this plane) 
zcut2   upper cut plane level at +z (solid lies below this plane) 
 
The following example illustrates its construction:  

 

3.5.4 GDML Modules 
 
GDML modules are GDML files used in the definition of (complex) geometries. They 
allow an easier to understand view of big geometries as they split it into smaller (and 
therefore more readable) pieces. 
A GDML module is a normal GDML file and it is completely independent from all the 
other modules (also from its mother module): it contains all the information (definitions, 
materials, solids and volumes) it needs, to be fully defined. It defines a logical volume 
(which corresponds to its world volume), which can be referenced by physical volumes of 
other modules (which are called mother modules). 
To include a GDML module (say child.gdml) in a mother module (say mother.gdml), in 
the structure section of the mother module you should add a physical volume which 
points to the child module, as in the following example: 
 
- Instead of having one file: 
 
// mother.gdml 
 
<volume name="child"> 
   <materialref ref="Alluminium"/> 
   <solidref ref="ChildBox"/>  
</volume> 
<volume name="mother"> 

<ellipsoid_dimensions ax="30" by="60"  cz="20" zcut1="-30"  zcut2="30"  lunit= "mm"/> 

  

<polycone_dimensions startPhi="30" openPhi="60"  numRZ="2" numSide="3" 
 lunit= "mm" aunit="deg"   
 <zplane rmin="0"  rmax="2"  z="10"  /> 
 <zplane rmin="0"  rmax="4"  z="20"  /> 
 polycone_dimensions/> 
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   <materialref ref="Iron"/> 
   <solidref ref="MotherBox"/>  
   <physvol> 
     <volumeref ref="child"/> 
     <positionref ref="center"/> 
     <rotationref ref="identity"/> 
   </physvol> 
</volume> 
 
- You can define child logical volume in a different GDML file, so you will have two files: 
 
// mother.gdml 
 
<volume name="mother"> 
   <materialref ref="Iron"/> 
   <solidref ref="MotherBox"/>  
   <physvol> 
     <file name="child.gdml"/> 
     <positionref ref="center"/> 
     <rotationref ref="identity"/> 
   </physvol> 
</volume> 
 
 
// child.gdml 
 
<volume name="child"> 
   <materialref ref="Alluminium"/> 
   <solidref ref="ChildBox"/>  
</volume> 
 
 
So in the general case instead of writing: 
 
<volumeref ref="_logical_volume_"/> 

 
You will need to write: 
 
<file name="_logical_volume_.gdml"/> 

 
And then define _logical_volume_ inside _logical_volume_.gdml. 
 
In the example given above, the mother module will only contain the material Iron and 
the solid MotherBox, while the child module will contain only the material Aluminium and 
the solid ChildBox, thus enhancing readability and modularity. 
 
Some advises: 
 
- While it is not useful to have a module for every single volume of the geometry, it is 
good to have one for each group of volumes that you would consider as a module in the 
real world (see par. “Multiple GDML files”). 
 
- Modules should have low coupling, i.e. they should be as independent as possible from 
other modules (this improves reusability dramatically). 
 
- Modules should have high cohesion, i.e. they should contain all (and only) the volumes 
that contribute to the geometry of the corresponding real world modules (this improves 
readability). 
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3.5.5 Volume Auxiliary Information 

Volumes can have auxiliary information attached to them through GDML. 

The auxiliary tags look like this: 
 
<auxiliary auxtype=”SensDet” auxvalue=”veloSD1”/> 

They have two attributes, auxtype and auxvalue, which are meant to specify what kind 
of auxiliary information it is and what is its value. An additional, optional attribute 
auxunit is also possible since version 3.1.2 of the schema; the new schema also 
allows for inserting recursive auxiliary tags as part of a single auxiliary information block. 
It is important to stress here that the GDML parser does not interpret in any way the 
auxiliary attributes. The auxiliary attributes are stored in memory and available to the 
user once the parsing is done. The auxiliary tags are placed within a volume like this: 
 
<volume name="main"> 
   <materialref ref="Iron"/> 
   <solidref ref="Box"/>  
   <physvol> 
     <volumeref ref="world"/> 
     <positionref ref="center"/> 
     <rotationref ref="identity"/> 
   </physvol> 
<auxiliary auxtype=”SensDet” auxvalue=”veloSD1”/> 
<auxiliary auxtype=”Color” auxvalue=”blue”/> 
</volume> 

 
In Geant4, an additional GDML file example is auxiliary.gdml located in example G01 
provided in the Geant4 distribution; the same example also provides a snippet of code in 
its main() program showing how to retrieve the auxiliary information. Example G04 
instead shows how to define a sensitive detector associated to a logical volume, using 
the Auxiliary Information field. 
 
 

3.5.6 Auxiliary User Information 
 
Since version 3.1.2 of the schema, it is possible to specify an -optional- auxiliary block 
<userinfo> ... </userinfo>, after the <structure> ... </structure> block, where a 
generic list of auxiliary tags can be included to describe specific features of a model, 
which are then properly treated by the client code. Here is an example on how to 
represent geometrical regions with energy cuts associated to logical volumes in Geant4: 
 
 
<userinfo> 
  <auxiliary auxtype=”Region” auxvalue=”DefaultRegionForTheWorld”> 
    <auxiliary auxtype=”volume” auxvalue=”World”/> 
    <auxiliary auxtype=”gamcut” auxunit=”mm” auxvalue=”0.7”/> 
    <auxiliary auxtype=”ecut” auxunit=”mm” auxvalue=”0.7”/> 
    <auxiliary auxtype=”poscut” auxunit=”mm” auxvalue=”0.7”/> 
    <auxiliary auxtype=”pcut” auxunit=”mm” auxvalue=”0.7”/> 
  </auxiliary> 
  <auxiliary auxtype=”Region” auxvalue=”CalorA”> 
    <auxiliary auxtype=”volume” auxvalue=”CalorA”/> 
    <auxiliary auxtype=”gamcut” auxunit=”mm” auxvalue=”0.2”/> 
    <auxiliary auxtype=”ecut” auxunit=”mm” auxvalue=”0.2”/> 
    <auxiliary auxtype=”poscut” auxunit=”mm” auxvalue=”0.2”/> 
    <auxiliary auxtype=”pcut” auxunit=”mm” auxvalue=”0.2”/> 
  </auxiliary> 
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  <auxiliary auxtype=”Region” auxvalue=”CalorB”> 
      : 
  </auxiliary> 
      : 
</userinfo> 
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3.6 Setup 
 
The top volume of the geometry needs to be specified.  This is done using the setup 
section.  The following GDML is the generic and most common for the setup section.   
 
 
 
 
 
 
The only part you should need to change is the world ref name to the volume name of 
the top volume of your geometry. Only one setup is defined here, however it is possible 
define multiple geometry setups choosing different volumes as world volumes from all 
the already defined volumes. 

<setup name="Test1" version="1.0"> 
  <world ref="World"/> 
 </setup> 
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GDML file example 
 

 

 

 

 

 

 

<?xml version="1.0" encoding="UTF-8" ?> 

 
<gdml xmlns:gdml="http://cern.ch/2001/Schemas/GDML"       
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
      xsi:noNamespaceSchemaLocation="schema/gdml.xsd" > 

 
 
 <define> 
  <constant name="const1" value="100" /> 
  <position name="pos1" unit="mm" x="0" y="0" z="0" /> 
  <rotation name="rot1" unit="deg" x="const1" y="0" z="0" /> 
  <scale name=”scl1” x=”-1” y=”+1” z=”+1”/> 
 </define> 

 
 
 <materials> 
    <element Z="7" formula="N" name="Nitrogen" > 
      <atom value="14.01" /> 
    </element> 
    <element Z="8" formula="O" name="Oxygen" > 
      <atom value="16" /> 
    </element> 

 
    <material formula=" " name="Air" > 
      <D value="0.00128" /> 
      <fraction n="0.7" ref="Nitrogen" /> 
      <fraction n="0.3" ref="Oxygen" /> 
    </material> 
 </materials> 

 
 <solids> 
    <box aunit="radian" lunit="mm" name="world" x="10000" y="10000" z="10000" /> 
    <box aunit="radian" lunit="mm" name="det” x="2000" y="2000" z="2000" /> 
 </solids> 

 
 
 <structure> 
    <volume name="Detector" > 
      <materialref ref="Air" /> 
      <solidref ref="det" /> 
    </volume> 
    <volume name="World" > 
      <materialref ref="Air" /> 
      <solidref ref="world" /> 
      <physvol> 
        <volumeref ref="Detector" /> 
        <positionref ref="pos1" /> 
        <rotationref ref="rot1" /> 
        <scaleref ref=”scl1” />  
      </physvol> 
    </volume> 
 </structure> 

 
 <setup name="Default" version="1.0" > 
  <world ref="World" /> 
 </setup> 

 

XML Declaration 

XML Schema Instance 
Namespace 

GDML Namespace 

GDML Schema Location 

Declaration of constants, 
positions, rotations, scalings, 
variables and matrices  

Definition of elements, 
materials, isotopes etc. Only 
materials can be referenced 
to volumes 

Simple material defined using 
fractions of elements defined 
higher up. 

All solids to be used inside 
the geometry defined here 

All volumes declared in the 
structure section. 
 
World volume is declared 

Physical Volumes placed 
inside a Logical Volume with 
a specified position, rotation 
and scale 

The top volume of the 
geometry is specified 
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4. Importing and exporting GDML files 
4.1 GDML Reading 

4.1.1 Importing GDML files into Geant4 Geometry 
 
GDML files can be directly imported into Geant4 geometry, using the GDML plug-in 
facility in your Geant4 application. Generally, you will want to put the following lines into 
your DetectorCostruction class:  
- In the class constructor (as far as the initializations are concerned – step 2)  
- In the Construct method (steps 3 and 4) 
 
This can be done in four steps: 
 
1) Include the necessary header files 
 

#include “G4GDMLParser.hh” 

 
2) Declare and initialize properly the parser 
 

G4GDMLParser parser; 

 
source_file.gdml will be your GDML source file, in case of multiple GDML files 
(modules) you should put the main GDML file there (the main mother module). 
 
3) Run the parser 
 

parser.Read("source_file.gdml"); 

 
If solids or other entities with the same name are found in different modules, a warning 
message is generated. Usually this happens when different GDML modules define the 
same logical volume. This is not a problem, but it may suggest that the input GDML 
modules have a low cohesion, therefore it maybe useful to review the way you have 
organized your geometry. All names for solids, volumes and other entities are by default 
stripped of possible hexadecimal suffixes (see Section 4.2.1); it is possible to disable the 
name stripping by calling SetStripFlag(false)available from the parser, before 
reading. 
By default, when the parser reads a GDML file, comparison with the GDML Schema 
(from GDML Schema Location) is made. It is possible to switch off this comparison by 
setting to ‘false’ second optional parameter in the Read: 
 

parser.Read("source_file.gdml", false); 

 
 
4) Get the World volume 
 

G4VphysicalVolume* W = parser.GetWorldVolume(); //world volume 
W->GetLogicalVolume()->SetVisAttributes(G4VisAttributes::Invisible); 

 
The second line is optional, but commonly used, because you generally don’t want to be 
able to see the World volume. 
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4.2 GDML Writing 

4.2.1 Exporting Geant4 Geometry 
 
Geant4 geometry can be exported into GDML files. To do so you should do the following: 
 
1) Include the Geant4 header file of the parser 
 

#include “G4GDMLParser.hh” 

 
2) Get the world volume from the geometry 

 
G4VphysicalVolume* W = G4TransportationManager:: 
GetTransportationManager()->GetNavigatorForTracking() 
->GetWorldVolume(); 

 
3) Instantiate the parser and write to file 
 

G4GDMLParser parser; 
parser.Write(“output.gdml”, W, true, "path_to_GDML_schema"); 

 
The last parameter is optional and refers to the GDML Schema path, it is very important 
to set this right in order to allow for comparison with the Schema while reading the file 
back to Geant4; the path can either be an absolute directory path relative to the system 
(schema location local to that system) or an URL to the Schema. By default the schema 
location points to the latest version of the GDML schema located in the GDML web site. 
  
There exists also an optional third parameter, which is a Boolean value set by default to 
TRUE. This parameter tells how you would like the names of volumes (as well as of 
solids, materials and all entities) to be formatted in your output GDML file: 
 
true (default) – The names will be concatenated with their logical address in 
hexadecimal format. This is to avoid name duplication in the GDML output; in fact 
Geant4 allows different volumes (as well as materials and solids) with the same name. 
When you will read the GDML output file back into Geant4 the address part will be 
stripped off and you will have the original names. This is almost always safe. 
 
false – The names will NOT be concatenated with anything. So the names in the output 
file will correspond exactly to the ones you have in Geant4. This is the prettiest format 
although you have to be REALLY sure that you don’t have name duplication inside 
Geant4, otherwise this will generate a GDML output with duplicated names, which will be 
unreadable by any parser of course. 
 
 
 
 
4) Methods for dumping the geometry 
 
There are three ways of doing this: 
 
a) parser.Write("output.gdml", W); 
 Dumps all the geometry in a single GDML output file. 
 
b) parser.AddModule(physvol); 
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 Dumps the geometry modularizing the output. The generated module will include 
the geometry tree starting from the physical-volume pointer physvol.  
 
c) parser.AddModule(depth); 
 Dumps the geometry modularizing the output. The parameter in input is an 
integer indicating the depth in the geometry levels from where you wish to start 
modularization. Any new sub-tree at that depth level will become a module stored in a 
different GDML file; the main tree binding all modules will include the geometry from the 
world volume down to that specified level and will be stored in a separate GDML file. 
 

4.2.2 Exporting ST-Viewer CAD Geometry 
 
ST-Viewer is an interactive tool for viewing 3D CAD information. ST-Viewer includes 
functions to display and relate product identification information, assembly structure 
information and 3D geometry information. ST-Viewer implements the ISO STEP 
standard for product model data. ST-Viewer works with a very large range of CAD, CAM, 
CAE and PDM systems. A list of systems that have been tested with the ST-Viewer can 
be found at: http://www.steptools.com.  
 
ST-Viewer uses intermediate files to store CAD geometry and structure information. 
These files (with .geom and .tree extensions respectively) use an internal format that can 
be parsed and translated into GDML format using the functionalities provided by the 
Geant4 GDML plug-in. 
 
The geometry of the solids is defined by means of triangular facets, i.e. every solid in the 
.geom files is a tessellated solid made of only triangular facets. Therefore the GDML 
output will be a collection of tessellated solids where each solid has its own set of facets 
that are in turn defined by a set of three vertices. The vertices are named vectors of 
three values (x,y and z coordinates) and are defined in the beginning of the GDML file. 
The facets within a tessellated solid contain references to the names (not the values) of 
the three vertices they are made of (for more information on how a tessellated solid is 
defined in GDML please refer to the GDML Solids Schema : solids.xsd). 
 
Of course multiple facets may share a common vertex, therefore in their definition there 
will be a reference to the same vertex name. Again, the actual values of the vertices’ 
vectors are stored in the first part (the one enclosed by the <define> and </define> 
tags) of the GDML file. 
 
In order to use the parser in your own application you need to  
 
1) Include the Geant4 parser header: 
 

#include "G4GDMLParser.hh" 
 
2) Instantiate a Geant4 parser object: 
 

G4GDMLParser parser; 
 
3) Call the parse method: 
 

G4LogicalVolume* STW = parser.ParseST("filename", med_mat, 
geo_mat); 
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This method takes three parameters: the first one is a string which specifies the name 
without file extension for the .geom and .tree files (assumed to have the same names 
and be located in the current directory). It returns a pointer of a generated mother 
volume with 'med_mat' material pointer associated, including the imported tessellated 
geometry with 'geom_mat' material pointer associated. 
Common vertices will not be repeated in the define section, i.e. facets sharing the same 
vertex will refer to the same vertex name defined at the beginning of the GDML file. In 
this case there will not be any two vertices with the same coordinates. 
 
During a test, a input .geom file of 9.5 MB could be saved in a GDML output file of 10.5 
MB; the same input file would have become a 33 MB GDML output file, with repetition of 
common vertices. 
 
4) Call the dump method: 
 

parser.Write("output.gdml", STW_phys); 
 
The same method of the parser for writing the GDML output file can be used, by passing 
the placed physical volume pointer of such geometry.  
The result is a GDML file corresponding to the .geom and .tree files previously taken as 
input. 
 

5. User extensions to GDML using Geant4 
 
The GDML syntax is defined in an XML schema. Inside the schema are all the definitions 
of the tags and the rules associated to those tags.  The GDML schema can be extended, 
as XML is a fully extendable mark-up language. This section will discuss how to add 
custom elements to GDML.  This could be useful if certain information is required to be 
contained in the GDML file for an application of GDML. The extension can be defined as 
such to contain a new tag and values within whichever chosen part of the GDML file. It 
may be the case that within the binding to GDML being used, there are methods already 
in place for information not supported by the GDML schema, in which case the user 
extension facility will help implementing that.  
 
An example of a user extension is implemented in Geant4 and can be found in the 
directory geant4/examples/persistency/gdml/G03.  This example will be used as a 
point of reference throughout this section. 
 
The Schema 
 
The first step in extending GDML is to redefine the GDML schema. It needs to include 
the custom elements of the extension.  The extension is done in a separate schema file 
that imports the original schema as opposed to adding new parts to the old one.  The 
schema for example G03 is found in a subdirectory of the example:  
 

SimpleExtensionSchema/SimpleExtension.xsd 
 
The original main GDML schema is imported from its local, relative location within your 
GDML directory.  The new schema file normally will need to contain two main parts:  
 

5.1 A ‘redefine’ element  
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This element uses the extension schema to modify existing GDML elements by adding 
additional content. This is called by this line, which gives the location of the schema to 
redefine: 
 

<xs:redefine schemaLocation="schema/gdml.xsd"> 
 
In most cases, the extension will consist in defining new objects (like color) to a volume 
etc. In such case, the redefine needs to add a ReferenceType to the base it needs to be 
added to: 
 
    <xs:extension base="VolumeType"> 
        <xs:sequence> 
     <xs:element minOccurs="0" maxOccurs="1" name="colourref" 
type="ReferenceType"/> 
        </xs:sequence> 
    </xs:extension> 
   

5.2 New Elements 
 
The new schema will need to define the new ‘element’ that the ReferenceType will be 
referencing to. In the example of adding a 'color' reference to a volume, the element 
color will need to be defined. 
 
When elements are defined, attributes of that element are defined within it, but if tags 
within the element contain more than one attribute, a type needs to be defined, and then 
referenced to. This is implemented in the G03 schema file. 
  
All the new elements can't be contained inside the <gdml> tag as they are not part of the 
original schema, there needs to be a new container defined that contains the new 
elements AND replaces the original <gdml> tag; we call it here, 
<gdml_simple_extension>. 
A new special tag, <extension>, is used to include all new tags to be considered as 
extension to the original GDML schema; in our example, we have only one tag, <color>, 
which is part of the extension. This is shown below: 
 
  <xs:element name="gdml_simple_extension"> 
    <xs:annotation> 
      <xs:documentation> 
 New container for new element and gdml. 
      </xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:sequence> 
 <xs:element ref="extension" minOccurs="0" maxOccurs="1"/> 
 <xs:element ref="gdml" minOccurs="1"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 

 
This then means that a GDML file now takes the following structure based on the above: 
 
    <gdml_simple_extension xmlns:gdml_simple_extension= "http://www.example.org"                      
              xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"  
              xs:noNamespaceSchemaLocation="./SimpleExtensionSchema/SimpleExtension.xsd"> 
 
        <extension> 
            <color name="aColor" R="1.0" G="0.0" B="0.0" A="1.0" /> 
        </extension> 
 
        <structure> 
           <volume> 
                <materialref ref="someMaterial"/> 



 

Page 50 of 50 

                <solidref ref="someSolid"/>  
                <colorref ref="aColor"/>  <!—- new reference type -->  
           </volume> 
         </structure> 
     
    </gdml_simple_extension> 

 
In any GDML file you wish to use your ‘extended schema’ in, you will need to change the 
Namespace GDML Schema Location to your extended schema file and replace the 
original schema. The new schema location must be relative to the location of the GDML 
file in question.  This will then import your new additions as well as the original GDML 
schema, as shown above. 
 
 
Customised Reader 
 
Once the GDML schema has been extended as wished, the application making use of 
the extended GDML, needs to provide the necessary instruments in order to properly 
handle the extensions. This is done by implementing a specialized 'reader' class, whose 
instance will replace the standard reader inside the G4GDMLParser class in Geant4. The 
new class must inherit from G4GDMLStructureRead and override in this case two 
methods: 
 
 void ExtensionRead(const xercesc::DOMElement* const element); 
 void VolumeRead(const xercesc::DOMElement* const element); 
 
The former will have to handle the top level parsing of the new tags (in our case, 
<color>), while the latter will have to properly bound the new reference-type 
(<colorref>) to the volume, such that the new tag can be assigned as attribute to the 
volume entity. 
In our example, the class ColorReader implements such required functionality. 
An instance of the reader must be dynamically created in the DetectorConstruction 
class and provided through pointer argument to the G4GDMLParser instance to be 
created as usual for importing GDML files in Geant4. 
 
 
Try it... 
 
To run the example application you simply need to build it, using the standard procedure 
as for any Geant4 application. Then from the G03 directory, you can run the example 
using this command: 
 

read_ext [filename.gdml] 
 
The default file is color_extension.gdml, which defines a single colored box in the 
world volume. 


