

Page 1 of 50

GDML USER’S GUIDE
Version 2.9

Page 2 of 50

Contents
GDML USER’S GUIDE... 1
Contents .. 2
1. Introduction ... 5
2. Getting started ... 6

2.1 Installation of GDML in Geant4 ... 6
2.2 Running simple examples ... 6

3. GDMLSchema .. 7
3.1 General structure ... 7

3.1.1 Splitting GDML file using ENTITY ... 9
3.1.2 Multiple GDML files .. 9

3.2 Definitions .. 10
3.2.1 Constants ... 10
3.2.2 Quantities .. 10
3.2.3 Variables .. 10
3.2.4 Positions .. 10
3.2.5 Rotations .. 11
3.2.6 Scales ... 11
3.2.7 Matrices ... 11

3.3 Materials ... 13
3.3.1 Isotopes .. 13
3.3.2 Elements .. 13
3.3.3 Materials .. 14

3.4 Solids .. 15
3.4.1 Box .. 15
3.4.2 Cone Segment ... 15
3.4.3 Ellipsoid .. 15
3.4.4 Elliptical Tube ... 16
3.4.5 Elliptical Cone ... 16
3.4.6 Orb ... 16
3.4.7 Paraboloid .. 17
3.4.8 Parallelepiped .. 17
3.4.9 Polycone .. 17
3.4.10 Generic Polycone .. 18
3.4.11 Polyhedron .. 19
3.4.12 Generic Polyhedron ... 19
3.4.13 Sphere .. 20
3.4.14 Torus Segment ... 20
3.4.15 Trapezoid – x & y varying along z .. 20
3.4.16 General Trapezoid ... 21

Page 3 of 50

3.4.17 Tube with Hyperbolic Profile .. 21
3.4.18 Cut Tube .. 22
3.4.19 Tube Segment .. 22
3.4.20 Twisted Box .. 23
3.4.21 Twisted Trapezoid ... 23
3.4.22 Twisted General Trapezoid ... 23
3.4.23 Twisted Tube Segment .. 24
3.4.24 Extruded Solid ... 24
3.4.25 Arbitrary Trapezoid (Arb8) ... 25
3.4.26 Tessellated solid .. 26
3.4.27 Tetrahedron ... 27
3.4.28 Using loops for solids .. 28
3.4.29 Boolean Solids ... 28
3.4.30 Scaled Solids ... 29

3.5 Structure .. 29
3.5.1 Loops ... 31
3.5.2 Replicated Volumes .. 33
3.5.3 Parameterised Volumes ... 34
3.5.3.1. Dimensions of Parameterised Box ... 35
3.5.3.2. Dimensions of Parameterised Tube .. 35
3.5.3.3. Dimensions of Parameterised Cone .. 35
3.5.3.4. Dimensions of Parameterised Orb .. 36
3.5.3.5. Dimensions of Parameterised Sphere ... 36
3.5.3.6. Dimensions of Parameterised Torus ... 36
3.5.3.7. Dimensions of Parameterised Hype ... 37
3.5.3.8. Dimensions of Parameterised Parallelepiped ... 37
3.5.3.9. Dimensions of Parameterised Trapezoid .. 37
3.5.3.10. Dimensions of Parameterised General Trapezoid 38
3.5.3.11. Dimensions of Parametrised Polycone ... 38
3.5.3.12. Dimensions of Parametrised Polyhedron ... 38
3.5.3.13. Dimensions of Parametrised Ellipsoid ... 39
3.5.4 GDML Modules .. 39
3.5.5 Volume Auxiliary Information .. 41
3.5.6 Auxiliary User Information ... 41

3.6 Setup ... 43
4. Importing and exporting GDML files ... 45

4.1 GDML Reading .. 45
4.1.1 Importing GDML files into Geant4 Geometry ... 45

4.2 GDML Writing ... 46
4.2.1 Exporting Geant4 Geometry ... 46
4.2.2 Exporting ST-Viewer CAD Geometry .. 47

5. User extensions to GDML using Geant4 .. 48
5.1 A ‘redefine’ element ... 48
5.2 New Elements ... 49

Page 4 of 50

Page 5 of 50

1. Introduction

The Geometry Description Markup Language (GDML) is a specialized XML-based
language designed as an application-independent persistent format for describing the
geometries of detectors (or parts of them) for physics experiments. It serves to
implement “geometry trees” which correspond to the hierarchy of volumes a detector
geometry can be composed of, and to allow to identify the position of individual solids, as
well as to describe the materials they are made of. Being pure XML, GDML can be
universally used and in particular, it can be considered as the format for interchanging
geometries among different applications.

GDML consists of two elements, an XML definition part containing the set of rules and
the list of the legal elements to be used in constructing any GDML document, and the
GDML generating and processing code implemented in the client tools. The structure of
the GDML document is defined through a set of XML Schema Definition (XSD) files,
which we call the GDMLSchema. Any GDML geometry file must be valid with respect to
the GDMLSchema. The GDML file itself, can be either written by hand (in case GDML is
used as the primary geometry source) or generated automatically (in case GDML is used
as an exchange or persistency format) out of the application specific “in-memory”
geometry tree using one of the GDML “writers” called by the user application. The GDML
reader is responsible for parsing the GDML file and creating the in-memory
representation of the geometry tree specific for the user application.

This manual will focus on the Geant4 binding to GDML, which, starting from release 9.2
of the simulation toolkit, it is now integrated in Geant4. The Root binding for GDML is
integrated within the Root framework; the user should refer to the general Root manual
for any information on importing and/or exporting GDML files to/from the Root geometry
model. The description of the GDMLSchema in Section 3, however, is application-
independent and therefore is relevant for both Geant4 and Root users.
GDML Schema is distributed with GDML Geant4 binding.

Page 6 of 50

2. Getting started

2.1 Installation of GDML in Geant4

Building the GDML module in Geant4 is optional; by default, the GDML plug-in is not
built along with the rest of the Geant4 libraries. In order to build the Geant4 module for
GDML, one needs to have:

• The XercesC parser pre-installed
• The GEANT4_USE_GDML variable set to ON at the CMake configuration stage

With this setting, the GDML module in Geant4 will be built using the standard build
procedure applicable for Geant4.

2.2 Running simple examples

The Geant4 binding for GDML comes with three examples, which demonstrate the
reading and writing out of different geometry configurations from/to GDML files. The
examples also show how user can extend GDML and how to export ST-Viewer CAD
Geometry. The directories containing these examples can be found in the Geant4
distribution in the $G4INSTALL/examples/extended/persistency/gdml directory. NOTE: in
case of using dynamic libraries, one needs to set the LD_LIBRARY_PATH variable to
point to all the necessary libraries (CLHEP, Geant4, and XercesC) before running the
examples. Please refer to the examples README files for more information.

Page 7 of 50

3. GDMLSchema

3.1 General structure

The GDML schema is a set of XSD files which define the structure of the GDML
document and its legal elements. The general structure of the GDML file can be seen
below (with some parts replaced by ‘...’ for brevity).

<?xml version="1.0" encoding="UTF-8"?>
<gdml xsi:noNamespaceSchemaLocation="schema/gdml.xsd">
 <define>
 …
 <position name="TrackerinWorldpos" unit="mm" x="0" y="0" z="100"/>
 </define>
 <materials>
 …
 <element name="Nitrogen" formula="N" Z="7.">
 <atom value="14.01"/>

</element>
 <material formula=" " name="Air" >
 <D value="1.290" unit="mg/cm3"/>
 <fraction n="0.7" ref="Nitrogen" />
 <fraction n="0.3" ref="Oxygen" />
 </material>
 </materials>
 <solids>
 …
 <box lunit="mm" name="Tracker" x="50" y="50" z="50"/>
 </solids>
 <structure>
 …
 <volume name="World" >
 <materialref ref="Air" />
 <solidref ref="world" />
 <physvol>
 <volumeref ref="Tracker" />
 <positionref ref="TrackerinWorldpos"/>
 <rotationref ref="TrackerinWorldrot"/>
 </physvol>
 </volume>
 </structure>
 <setup name="Default" version="1.0" >
 <world ref="World" />
 </setup>
</gdml>

One can distinguish there five parts, each holding specific type of data.

The <define> ... </define> block contains numerical values of different constants,
positions, rotations and scales that will be used later on in the geometry construction.

The <materials> ...</materials> block contains definitions of all the materials used in
the given geometry. The supported forms are simple materials, which are made from one
element as well as mixtures. Mixtures can be composed on the basis of fraction of mass
or atom count.

The <solids> ... </solids> block is the collection of all solid definitions which are used
in the given geometry description. The presently supported solids are described in
Section 3.4. Composite solids made using Boolean operation (union, subtraction,
intersection) are also supported.

Page 8 of 50

The <structure> ... </structure> block contains the actual implementation of the
geometry tree together with the assignment of solids and materials. The hierarchy of
volumes is defined by specifying the daughter volumes (physvol) positioned inside a
volume; placed volumes can be provided of a copy-number through the copynumber
attribute tag. Constructions like assembly volumes, reflections, replicas and divisions are
possible. A more detailed discussion of the ‘structure’ block can be found in Section 3.5.

Finally, the <setup> ... </setup> block serves to specify the top volume of the geometry
tree. It is possible to define several "setups" within one file, allowing testing different
subparts (or different configurations included in the same file) of the geometry tree
without changing the GDML file.

Page 9 of 50

3.1.1 Splitting GDML file using ENTITY

Any GDML file can be split into several files, which are combined together during the
parsing by using the ENTITY statement. The files included in such a way are not
standalone GDML files, they simply contain parts of the GDML description and in general
are meaningful only when put all together.

In order to use such a mechanism, one has to first declare the given ENTITY (just after
the <xml ... > tag)

<!DOCTYPE gdml [
<!ENTITY materials SYSTEM “materials.xml”>
]>

where materials.xml is the name of the file to be included and materials is the
ENTITY name that we have assigned to it. The entity can be then used anywhere inside
the GDML description.

<gdml>
....
&materials;
....
<gdml>

The &materials line is then replaced during parsing by the contents of materials.xml
file.

3.1.2 Multiple GDML files

It is also possible to define the geometry in the form of several standalone GDML files,
each one representing a module of the setup we want to describe. Each GDML file
would contain only the materials, the solids and the volumes the module is made of. For
example, if one wants to describe a detector, instead of creating a single
detector.gdml file with thousands of volumes and materials, one could create smaller
modules called tracker.gdml, calorimeter.gdml, beampipe.gdml, etc, and a small
main detector.gdml file combining those modules. This approach makes it easier to
read and write the geometries and to apply changes. Explanations and details on how
GDML modules are defined and put together are given in the Section 3.5.

Page 10 of 50

3.2 Definitions

3.2.1 Constants
Constants are defined in the beginning of the GDML file (in the define section). Once
defined, they can be used anywhere inside the file. A constant can be defined as in the
following example:

<constant name=“length” value=“6.25”/>

3.2.2 Quantities
Quantities are constants with units, they are defined in the beginning of the GDML file (in
the define section). Once defined, they can be referenced where quantity is expected
with the same type. Example:

<quantity name=“W_Density” type=“density” value=“1” unit=“g/cm3”
/>

3.2.3 Variables

Variables are defined in the beginning of the GDML file (in the define section). Once
defined, they can be used anywhere inside the file. Their value will be evaluated each
time they are used and it can change if they are used as loop variables (see section
3.5.1). A variable can be defined as in the following example:

<variable name=“x” value=“6”/>

This simple code defines a variable with an initial value of 6. Of course previously
defined variables may be used in variable definitions, as in the following example:

<variable name=“x” value=“6”/>
<variable name=“y” value=“x/2”/>

In this case variable y is set with an initial value of 3. You can now use your variable
wherever you like, for example in a box definition:

<box name=“my_box” x=“x” y=“y” z=“x+y”/>

3.2.4 Positions
Positions are usually defined in the beginning of the GDML file (in the define section).
Once defined, they can be referenced in place where positions are expected. A position
can be defined as in the following examples:

<position name=“box_position” x=“25.0” y=“50.0” z=“75.0”
unit=“cm”/>

Page 11 of 50

<constant name=“size” value=“25.0”/>
<position name=“position” x=“2.0*size” y=“size” z=“75.0”
unit=“m”/>

3.2.5 Rotations
Rotations are usually defined in the beginning of the GDML file (in the define section).
Once defined, they can be referenced in place where rotations are expected. Positive
rotations are expected to be right-handed. A rotation can be defined as in the following
example:

<rotation name=“RotateZ” z==“30” unit=“deg”/>

3.2.6 Scales
Scales are usually defined in the beginning of the GDML file (in the define section). Once
defined, they can be referenced in place where scales are expected. Scale can be used
to implement reflection and has no units. A scale can be defined as in the following
example:

<scale name=“my_reflection” x=“-1” y=“-1” z=“1”/>

3.2.7 Matrices

A matrix definition allows you to store values in matrix format. The definition of a matrix is
very simple: <matrix name=“name” coldim=“number of columns” values=“space-
separated values” />. A simple example follows:

<matrix name=“m” coldim=“3” values=“0.4 9 126 8.5 7 21 34.6 7 9”
/>

Or you could also write it like this (visually clearer):

<matrix name=“m” coldim=“3” values=“ 0.4 9 126
 8.5 7 21
 34.6 7 9” />

The elements of a matrix can be accessed anywhere after the definition of the matrix
itself, just variables. To access them you have to use the following syntax:

matrix_name[row_number, column_number]

For example:

m[3,1]

Page 12 of 50

will be evaluated to 34.6. You can also put variables inside the square brackets, like this:

m[y,y]

So if y=3 this will be evaluated to 9. Just be sure that the values of the variables don’t
exceed the matrix dimensions, otherwise you will get an error when processing the file.
A matrix with coldim=“1” is a vector and its elements may be accessed using only one
index as in the following example:

<matrix name=“m” coldim=“1” values=“4 9 12 6 7 9” />

So,

m[4]

will be evaluated to 6. Matrices can of course be used inside loops (there is where they
are actually most useful). We will see how to do this in section 3.5.1.

Page 13 of 50

3.3 Materials

3.3.1 Isotopes

Isotopes can be defined using the construct

<isotope name=its_name Z=atomic_number N=num_of_nucleons>.

The following shows an example:

3.3.2 Elements

Elements can be defined using fractions of isotopes as follows:

<isotope name="U235" Z="92" N="235">
 <atom type="A" value="235.01">
</isotope>
<isotope name="U238" Z="92" N="238">
 <atom type="A" value="235.03">
</isotope>

<element name="enriched_uranium" >
 <fraction ref="U235" n="0.9" />
 <fraction ref="U238" n="0.1" />
 </element>

Page 14 of 50

3.3.3 Materials

Materials can be defined in three ways. The material can be defined directly from an
element, created from previously defined elements or materials on number of atoms, and
finally created as a fractional mixture of previously defined elements or materials.
Optionally, you can specify the pressure (P) and the temperature (T). If you intend to
utilise your GDML file with Geant4 only, you can also use directly the predefined Geant4
NIST database materials (see Section 3.5).

<material name="Water" formula="H2O">
 <D value="1.0" />
 <composite n="2" ref="Hydrogen" />
 <composite n="1" ref="Oxygen" />
 </material>

<material name="Al" Z="13.0" >
 <D value="2.70" />
 <atom value="26.98" />
 </material>

<material formula="air" name="Air" >
 <D value="0.0012899999999999999" />
 <fraction n="0.7" ref="Nitrogen" />
 <fraction n="0.3" ref="Oxygen" />
 </material>

Page 15 of 50

3.4 Solids

3.4.1 Box

The GDML box is formed using the three standard dimensions: x, y and z. The box
therefore has 4 attributes, the other being name which is standard for any SolidType
element and corresponds to the name the solid can be referenced by.

The following example illustrates the construction of a box made from the above
dimensions:

3.4.2 Cone Segment

The GDML Cone Segment is formed using 7 dimensions.

rmin1 inner radius at base of cone
rmax1 outer radius at base of cone
rmin2 inner radius at top of cone
rmax2 outer radius at top of cone
z height of cone segment
startphi start angle of the segment
deltaphi angle of the segment

The cone segment therefore has 8 attributes, the other being name which is standard for
any SolidType element and corresponds to the name the solid can be referenced by.

The following example illustrates the construction of a cone segment made from the
above dimensions:

3.4.3 Ellipsoid

The GDML Ellipsoid is formed using 3 dimensions.

ax x semi axis
by y semi axis
cz z semi axis

There are 2 optional dimensions that can cut the ellipsoid. zcut1 will remove the
specified value from the lower z axis effectively cutting a part of the bottom of the shape
off. zcut2 performs the same action but acts on the upper part of the z axis.

The ellipsoid therefore has 4 attributes, the other being name which is standard for any
SolidType element and corresponds to the name the solid can be referenced by.

<box name = "thebox" x= "30" y= "30" z= "30" lunit= "mm" />

<cone name = "thecone" rmin1="10" rmax1="15" rmin2="15" rmax2="25" z="30"
startphi="1" deltaphi="4" aunit="rad" lunit= "mm" />

Page 16 of 50

The following example illustrates the construction of a ellipsoid made from the above
dimensions:

3.4.4 Elliptical Tube

The GDML Elliptical Tube is formed using 3 dimensions:

dx x semi axis
dy y semi axis
dz z semi axis

The elliptical tube therefore has 4 attributes, the other being name which is standard for
any SolidType element and corresponds to the name the solid can be referenced by.

The following example illustrates the construction of an elliptical tube made from the
above dimensions:

3.4.5 Elliptical Cone
NB: supported only by Geant4

The GDML Elliptical Cone is formed using 3 dimensions and one possible upper cut in Z:

dx ratio of the X semi axis of the elliptical section at Z=0 to zmax
dy ratio of the Y semi axis of the elliptical section at Z=0 to zmax
zmax Z coordinate of the apex
zcut upper cut in Z

The elliptical cone therefore has 5 attributes, the other being name which is standard for
any SolidType element and corresponds to the name the solid can be referenced by.

The following example illustrates the construction of an elliptical cone made from the
above dimensions:

3.4.6 Orb

The GDML Orb is formed using only 1 dimension:

r radius

The orb is a simplified GDML Sphere with only the radius specified. The orb therefore
has 2 attributes, the other being name which is standard for any SolidType element and
corresponds to the name the solid can be referenced by.

<ellipsoid name = "theellipsoid" ax="10" by="15" cz="20" zcut2="4" lunit= "mm"/>

<eltube name = "theeltube" dx="10" dy="15" dz="20" lunit= "mm" />

<elcone name = "theelcone" dx="1" dy="1.5" zmax="2" zcut="1.5" lunit= "mm" />

Page 17 of 50

The following example illustrates the construction of an orb made from the above
dimensions:

3.4.7 Paraboloid

The GDML Paraboloid is formed using 3 dimensions:

rlo radius at -z
rhi radius at +z
dz z length

The paraboloid therefore has 4 attributes, the other being name which is standard for
any SolidType element and corresponds to the name the solid can be referenced by.

The following example illustrates the construction of a paraboloid made from the above
dimensions:

3.4.8 Parallelepiped

The GDML Parallelepiped is formed using 6 dimensions:

x length of x
y length of y
z length of z
alpha angle between x and z planes
theta polar angle of the line joining the centres of the faces at –z & +z in z
phi azimuthal angle of the line joining the centres of faces at –z & +z in z

The Parallelepiped therefore has 7 attributes, the other being name which is standard for
any SolidType element and corresponds to the name the solid can be referenced by.

The following example illustrates the construction of a parallelepiped made from the
above dimensions:

3.4.9 Polycone

The GDML Polycone can be described in two ways :
 as Polycone using zplanes with rmin and rmax and
 as Generic Polycone using vertices with (r,z) coordinates.

The GDML Polycone is described using the following information:

startphi start angle of the segment – if not given 0.0 is defaulted

<orb name = "theorb" r="10" lunit= "mm"/>

<paraboloid name = "theparab" rlo="10" rhi="15" dz="20" aunit="rad" lunit= "mm" />

<para name = "thepara" x="10" y="10" z="10" alpha="1" theta="1" phi="1" aunit="rad"
lunit= "mm"/>

Page 18 of 50

deltaphi angle of the segment
zplane see below

The zplane element is required to be used at least once. You can use it as many times
as you like. The zplane is formed using the 3 attributes shown above:

rmin inner radius of cone at this point – if not given 0.0 is defaulted.
rmax outer radius of cone at this point
z z coordinate of the plane

The Polycone therefore has a minimum of 7 attributes, the other being name which is
standard for any SolidType element and corresponds to the name the solid can be
referenced by.

The following example illustrates the construction of a polycone made from the above
dimensions:

3.4.10 Generic Polycone

The GDML Generic Polycone is described using the following information:

startphi start angle of the segment – if not given 0.0 is defaulted
deltaphi angle of the segment
rzpoint see below

The rzpoint element is required to be used at least three times. You can use it as many
times as you like. The rzpoint is formed using the 2 attributes shown above:

r r- coordinate of this point
z z-coordinate of this point

The Generic Polycone therefore has a minimum of 7 attributes, the other being name
which is standard for any SolidType element and corresponds to the name the solid can
be referenced by.

The following example illustrates the construction of a generic polycone made from the
above dimensions:

<polycone name = "thepolycone" startphi="1" deltaphi="4" aunit="rad" lunit= "mm">
 <zplane rmin="1" rmax="9" z="10" />
 <zplane rmin="3" rmax="5" z="12" />
</polycone>

<genericPolycone name = "thepolycone" startphi="1" deltaphi="4" aunit="rad"
 lunit= "mm">
 <rzpoint r="1" z="5" />
 <rzpoint r="3" z="10" />
 <rzpoint r="1" z="12" />
</genericPolycone>

Page 19 of 50

3.4.11 Polyhedron
The GDML Polychedron (Polyhedra) can be described in two ways :
 as Polyhedra using zplanes with rmin and rmax and
 as Generic Polyhedra using vertices with (r,z) coordinates.

The GDML Polyhedron (Polyhedra) is described using the following information:

startphi start angle of the segment
deltaphi angle of the segment
numsides number of sides
zplane see below

The zplane element is required to be used at least once. You can use it as many times
as you like. The zplane is formed using the 3 attributes shown above:

rmin inner radius of cone at this point – if not given 0.0 is defaulted.
rmax outer radius of cone at this point
z z coordinate of the plane

The Polyhedra therefore has a minimum of 6 attributes, the other being name which is
standard for any SolidType element and corresponds to the name the solid can be
referenced by.

The following example illustrates the construction of a polyhedra made from the above
dimensions:

3.4.12 Generic Polyhedron
The GDML Generic Polyhedra is described using the following information:

startphi start angle of the segment
deltaphi angle of the segment
numsides number of sides
rzpoint see below

The rzpoint element is required to be used at least three times. You can use it as many
times as you like. The rzpoint is formed using the 2 attributes shown above:

r r- coordinate of this point
z z-coordinate of this point

The Generic Polyhedra therefore has a minimum of 6 attributes, the other being name
which is standard for any SolidType element and corresponds to the name the solid can
be referenced by.

The following example illustrates the construction of a polyhedra made from the above
dimensions:

<polyhedra name= "thepolyhedra" startphi="1" deltaphi="4" numsides="10" aunit="rad"
 lunit= "mm">
 <zplane rmin="1" rmax="9" z="10" />
 <zplane rmin="3" rmax="5" z="12" />
</polyhedra>

Page 20 of 50

3.4.13 Sphere

The GDML Sphere is formed using 6 dimensions:

rmin inner radius – if not given 0.0 is defaulted
rmax outer radius
startphi starting angle of the segment – if not given 0.0 is defaulted
deltaphi delta angle of the segment
starttheta starting angle of the segment – if not given 0.0 is defaulted
deltatheta delta angle of the segment

The Sphere therefore has a minimum of 7 attributes, the other being name which is
standard for any SolidType element and corresponds to the name the solid can be
referenced by.

The following example illustrates the construction of a sphere made from the above
dimensions:

3.4.14 Torus Segment

The GDML Torus Segment is formed using 5 dimensions:

rmin inside radius of segment
rmax outside radius of segment
rtor swept radius of torus
startphi starting phi position angle of segment
deltaphi delta angle of segment

The Torus segment therefore has a minimum of 6 attributes, the other being name which
is standard for any SolidType element and corresponds to the name the solid can be
referenced by.

The following example illustrates the construction of a torus segment made from the
above dimensions:

3.4.15 Trapezoid – x & y varying along z

<sphere name = "thesphere" rmin="1" rmax="4" deltaphi="1" deltatheta="1" aunit="rad"
lunit= "mm"/>

<torus name = "thetorus" rmin="1" rmax="4" rtor="2" deltaphi="3" startphi="1" aunit="rad"
lunit= "mm"/>

<genericPolyhedra name= "thepolyhedra" startphi="1" deltaphi="4" numsides="10"
 aunit="rad" lunit= "mm">
 <rzpoint r="1" z="10" />
 <rzpoint r="3" z="12" />
 <rzpoint r="1" z="12" />
</genericPolyhedra>

Page 21 of 50

The GDML Trapezoid is formed using 5 dimensions:

x1 x length at -z
x2 x length at +z
y1 y length at -z
y2 y length at +z
z z length

The Trapezoid therefore has a minimum of 6 attributes, the other being name which is
standard for any SolidType element and corresponds to the name the solid can be
referenced by.

The following example illustrates the construction of a Trapezoid made from the above
dimensions:

3.4.16 General Trapezoid

The GDML General Trapezoid is formed using 11 dimensions:

z length along z axis
theta polar angle to faces joining at -/+z
phi azimuthal angle of line joining centre of –z face to centre of +z face
y1 length along y at the face -z
x1 length along x at side y = -y1 of the face at -z
x2 length along x at side y = +y1 of the face at -z
alpha1 angle with respect to the y axis from the centre of side at y = -y1 to centre

of y = +y1 of the face at -z
y2 length along y at the face +z
x3 length along x at side y = -y1 of the face at +z
x4 length along x at side y = +y1 of the face at +z
alpha2 angle with respect to the y axis from the centre of side at y = -y2 to centre

of y = +y2 of the face at +z

The General Trapezoid therefore has a minimum of 12 attributes, the other being name
which is standard for any SolidType element and corresponds to the name the solid can
be referenced by.

The following example illustrates the construction of a General Trapezoid made from the
above dimensions:

3.4.17 Tube with Hyperbolic Profile

The GDML Tube with Hyperbolic Profile is formed using 5 dimensions:

rmin inside radius of tube
rmax outside radius of tube
inst inner stereo
outst outer stereo
z z length

<trd name = "thetrd" x1="9" x2="8" y1="6" y2="5" z="10" lunit= "mm"/>

<trap name = "thetrap" z="10" theta="1" phi="2" y1="15" x1="10" x2="10" alpha1="1"
y2="15" x3="10" x4="10" alpha2="1" aunit="rad" lunit= "mm"/>

Page 22 of 50

The Hyperbolic Tube therefore has a minimum of 6 attributes, the other being name
which is standard for any SolidType element and corresponds to the name the solid can
be referenced by.

The following example illustrates the construction of a hyperbolic tube made from the
above dimensions:

3.4.18 Cut Tube

The GDML Cut Tube is formed using 11 dimensions:

z length along z axis
rmin inner radius – if not given 0.0 is defaulted
rmax outer radius
startphi starting phi angle of segment – if not given 0.0 is defaulted
deltaphi delta phi of angle
lowX normal at lower z plane
lowY normal at lower z plane
lowZ normal at lower z plane
highX normal at upper z plane
highY normal at upper z plane
highZ normal at upper z plane

The cut Tube therefore has a minimum of 12 attributes, the other being name which is
standard for any SolidType element and corresponds to the name the solid can be
referenced by.

The following example illustrates the construction of a cut Tube made from the above
dimensions:

3.4.19 Tube Segment

The GDML Tube Segment is formed using 5 dimensions:

rmin inside radius of segment - if not given 0.0 is defaulted
rmax outside radius of segment
z z length of tube segment
startphi starting phi position angle of segment - if not given 0.0 is defaulted
deltaphi delta angle of segment

The Tube segment therefore has a minimum of 6 attributes, the other being name which
is standard for any SolidType element and corresponds to the name the solid can be
referenced by.

<hype name = "thehype" rmin="1" rmax="2" z="20" inst="3" outst="4" lunit= "mm"/>

<cutTube name = "thecuttube" z="20" rmin="1" rmax="5" startphi="1" deltaphi="4" lowX="15"
lowY="15" lowZ="15" highX="10" highY="10" highZ="10" aunit="rad" lunit= "mm"/>

Page 23 of 50

The following example illustrates the construction of a tube segment made from the
above dimensions:

3.4.20 Twisted Box
NB: supported only by Geant4

The GDML Twisted box is formed using the three standard dimensions: x, y and z and
one added dimension: PhiTwist. The box therefore has 5 attributes, the other being
name which is standard for any SolidType element and corresponds to the name the
solid can be referenced by.

The following example illustrates the construction of a box made from the above
dimensions:

3.4.21 Twisted Trapezoid
NB: supported only by Geant4

The GDML Twisted Trapezoid is formed using 6 dimensions:

PhiTwist Twist Angle
x1 x length at -z
x2 x length at +z
y1 y length at -z
y2 y length at +z
z z length

The Twisted Trapezoid therefore has a minimum of 7 attributes, the other being name
which is standard for any SolidType element and corresponds to the name the solid can
be referenced by.

The following example illustrates the construction of a Twisted Trapezoid made from the
above dimensions:

3.4.22 Twisted General Trapezoid
NB: supported only by Geant4

The GDML Twisted General Trapezoid is formed using 11 dimensions:

PhiTwist twist angle
z length along z axis
Theta polar angle to faces joining at -/+z
Phi azimuthal angle of line joining centre of –z face to centre of +z face
y1 length along y at the face -z
x1 length along x at side y = -y1 of the face at -z

<tube name = "thetube" rmin="1" rmax="4" z="20" deltaphi="3" startphi="1"
aunit="rad" lunit= "mm"/>

<twistedbox name = "twistbox" PhiTwist= "1" x= "30" y= "30" z= "30" aunit="rad"
lunit= "mm"/>

<twistedtrd name = "twisttrd" PhiTwist="1" x1="9" x2="8" y1="6" y2="5" z="10" aunit="rad"
lunit= "mm"/>

Page 24 of 50

x2 length along x at side y = +y1 of the face at -z
y2 length along y at the face +z
x3 length along x at side y = -y1 of the face at +z
x4 length along x at side y = +y1 of the face at +z
Alph angle with respect to the y-axis from the centre of the side

The Twisted General Trapezoid therefore has a minimum of 12 attributes, the other
being name which is standard for any SolidType element and corresponds to the name
the solid can be referenced by.

The following example illustrates the construction of a General Twisted Trapezoid made
from the above dimensions:

3.4.23 Twisted Tube Segment
NB: supported only by Geant4

The GDML Twisted Tube Segment is formed using at least 4 dimensions, depending on
the kind of construction chosen:

endinnerrad inside radius at end of segment (constructors 1,2)
endouterrad outside radius at end of segment (constructors 1,2)
zlen z length of tube segment (constructors 1,2)
twistedangle twist angle (constructors 1,2,3,4)
phi phi angle of segment (constructors 1,3)
midinnerrad inner radius at z=0 (constructors 3,4)
midouterrad outer radius at z=0 (constructors 3,4)
nseg number of segments in totalPhi (constructors 2,4)
totphi total angle of all segments (constructors 2,4)

The Twisted Tube segment therefore has a minimum of 4 attributes, the other being
name which is standard for any SolidType element and corresponds to the name the
solid can be referenced by.

The following example illustrates the construction of a twisted tube segment made from
the above dimensions:

3.4.24 Extruded Solid

The GDML Extruded Solid (Xtru) is formed using 2 attributes:

twoDimVertex vertices of an unbound blueprint polygon
section z sections

The twoDimVertex element is required to be used at least 3 times and the section
element is required to be used at least twice. You can use both as many times as you
like. The twoDimVertex is formed using the 2 attributes shown below:

<twistedtrap name = "twisttrap" PhiTwist="1" z="10" Theta="1" Phi="2" y1="15"
x1="10" x2="10" y2="15" x3="10" x4="10" Alph="1" aunit="rad" lunit= "mm"/>

<twistedtubs name = "twisttube" endinnerrad="1" endouterrad="4" zlen="20" phi="3"
twistedangle="1" aunit="rad" lunit= "mm"/>

Page 25 of 50

x x coordinate of the vertex
y y coordinate of the vertex

The section is formed using the 5 attributes shown below:

zOrder index of the section, must be between 0 and n-1 where n is
the number of sections

zPosition distance from the plane z=0
xOffset x offset from centre point of original plane
yOffset y offset from centre point of original plane
scalingFactor proportion to original blueprint

The Xtru therefore has a minimum of 17 attributes, the other being name which is
standard for any SolidType element and corresponds to the name the solid can be
referenced by.

The following example illustrates the construction of an Xtru made from the above
dimensions:

3.4.25 Arbitrary Trapezoid (Arb8)

The GDML Arb8 (arbitrary trapezoid with less than 8 vertices) is formed using 17
dimensions. It’s made up of two quadrilaterals sitting on parallel planes. V1 to V4 define
the vertices for the quadrilateral base situated at -dz, V5 to V8 define the vertices for the
other quadrilateral situated at -dx.

v1x vertex 1 x position
v1y vertex 1 y position
v2x vertex 2 x position
v2y vertex 2 y position
v3x vertex 3 x position
v3y vertex 3 y position
v4x vertex 4 x position
v4y vertex 4 y position

v5x vertex 5 x position
v5y vertex 5 y position
v6x vertex 6 x position
v6y vertex 6 y position
v7x vertex 7 x position
v7y vertex 7 y position
v8x vertex 8 x position
v8y vertex 8 y position

dz half z length

<xtru name = "theXtru" lunit= "mm" >
 <twoDimVertex x="3" y="9" />
 <twoDimVertex x="1" y="5" />
 <twoDimVertex x="2" y="4" />
 <section zOrder="1" zPosition="2" xOffset="5" yOffset="3" scalingFactor="3" />
 <section zOrder="2" zPosition="5" xOffset="3" yOffset="5" scalingFactor="1" />
</xtru>

Page 26 of 50

The Arb8 therefore has a minimum of 18 attributes, the other being name which is
standard for any SolidType element and corresponds to the name the solid can be
referenced by.

The following example illustrates the construction of an Arb8 made from the above
dimensions:

3.4.26 Tessellated solid
NB: supported only by Geant4

The GDML tessellated solid can be made of any number of triangular and/or
quadrangular facets forming a closed space. Each facet is defined by specifying
references to (names of) three (for the triangular one) or four (for the quadrangular one)
vertices. The vertices are standard position elements and should be declared
beforehand within the define section. If a referenced vertex is not defined, an error
message is displayed. By looking from the outside of the tessellated solid, vertices are
listed in the anti-clockwise order for each of the facets. There are two ways of defining
vertices: ABSOLUTE (default), and RELATIVE. In the first case each vertex coordinates are
considered to be absolute coordinates in the reference system of the solid. In the second
case, only the first listed vertex has absolute coordinates, while the remaining ones are
considered to be translations from the first one.
The tessellated solid has only one attribute name, which is standard for any SolidType
element and corresponds to the name the solid can be referenced by. The sub-elements
of tessellated solid element are all of FacetType, in other words they are the triangular
and/or quadrangular facets the solid is made of.
The triangular (quadrangular) facet element contains three (four) attributes
vertex1, vertex2, vertex3, (vertex4), being references to the vertices (defined
beforehand) of the facet and an optional attribute type indicated whether the coordinates
of the vertices are ABSOLUTE (default) or RELATIVE.

The following example illustrates the construction of a simple tessellated solid made from
a square base and six triangular walls. We first define the vertices

<define>
 <position name="v1" x="10" y="10" z="0" unit="m"/>
 <position name="v2" x="-10" y="10" z="0" unit="m"/>
 <position name="v3" x="-10" y="-10" z="0" unit="m"/>
 <position name="v4" x="10" y="-10" z="0" unit="m"/>
 <position name="v5" x="7" y="3" z="20" unit="m"/>
 <position name="v6" x="-3" y="7" z="5" unit="m"/>
</define>

and then we build the tessellated solid out of them

<tessellated name="pyramid">
 <triangular vertex1="v1" vertex2="v2" vertex3="v6" type="ABSOLUTE"/>
 <triangular vertex1="v2" vertex2="v3" vertex3="v6" type="ABSOLUTE"/>
 <triangular vertex1="v3" vertex2="v4" vertex3="v5" type="ABSOLUTE"/>
 <triangular vertex1="v4" vertex2="v1" vertex3="v5" type="ABSOLUTE"/>
 <triangular vertex1="v1" vertex2="v6" vertex3="v5" type="ABSOLUTE"/>

<arb8 name = "thearb8" v1x="1" v1y="1" v2x="2" v2y="2" v3x="3" v3y="3" v4x="4"
v4y="4" v5x="10" v5y="10" v6x="11" v6y="11" v7x="12" v7y="12" v8x="13" v8y="13"
dz="20" lunit= "mm"/>

Page 27 of 50

 <triangular vertex1="v6" vertex2="v3" vertex3="v5" type="ABSOLUTE"/>
 <quadrangular vertex1="v4" vertex2="v3" vertex3="v2" vertex4="v1" type="ABSOLUTE"/>
</tessellated>

Figure: graphical representation of the tessellated solid as described in the example.

3.4.27 Tetrahedron
NB: supported only by Geant4

The tetrahedron solid in GDML is defined by specifying the coordinates of the four
vertices. In order for the solid not to be degenerated, the four points must not lie on the
same surface.
The tet solid element contains the standard name attribute and four attributes being
references to the vertices namely vertex1, vertex2, vertex3 and vertex4. These
vertices are standard position elements which must be defined beforehand within the
define part.
The following example illustrates the construction of the tetrahedron.

<define>
 <position name="v1" x="10" y="10" z="0"/>
 <position name="v2" x="-10" y="10" z="0"/>
 <position name="v3" x="-10" y="-10" z="0"/>
 <position name="v4" x="0" y="0" z="10"/>
</define>

<tet name="halfpyramid" vertex1="v1" vertex2="v2" vertex3="v3" vertex4="v4"/>

Page 28 of 50

3.4.28 Using loops for solids

Suppose you want to define a set of solids with the same shape but with dimensions
varying according to a particular function. In this case loops are very useful, because the
avoid repetition of solids definitions. For a more detailed discussion on loops please refer
to Section 3.5.1. The following example shows you how to use a loop to define a set (10)
of boxes with different dimensions. Without a loop you would write the following code:

<box name=“box0” x=“1” y=“5” z=“20” />
<box name=“box1” x=“4” y=“4.5” z=“18” />
<box name=“box2” x=“7” y=“4” z=“16” />
<box name=“box3” x=“10” y=“3.5” z=“14” />
<box name=“box4” x=“13” y=“3” z=“12” />
<box name=“box5” x=“16” y=“2.5” z=“10” />
<box name=“box6” x=“19” y=“2” z=“8” />
<box name=“box7” x=“22” y=“1.5” z=“6” />
<box name=“box8” x=“25” y=“1” z=“4” />
<box name=“box9” x=“28” y=“0.5” z=“2” />

Using a loop you would only need four lines

<variable name=“x” value=“0”/>

declared in the “define” section and

<loop for=“x” to=“9” step=“1”>
 <box name=“box” x=“1+(x*3)” y=“5-(x/2)” z=“20-(2*x)” />
</loop>

3.4.29 Boolean Solids

The GDML Boolean Solids can be described using following Boolean operations: union,
subtraction and intersection. As for Geant4 Boolean operations, the second solid is
placed with given position and rotation in the system coordinates of the first solid. The
following example illustrates the construction of Boolean solid using union operation:

<box name=“box_first” x=“1” y=“5” z=“20” />
<box name=“box_second” x=“4” y=“4.5” z=“18” />

<union name= =“union” >
<first ref=“box_first” />
<second ref=“box_second”/>
<positionref ref=“union_position” />
<rotationref ref=“union_rotation” />
</union>

Another way to describe Union Solid is by using the MultiUnion construct, which offers
possibility to make union of many solids. The following example illustrates the
construction of a MultiUnion structure:

<box name=“box_first” x=“1” y=“5” z=“20” />
<box name=“box_second” x=“4” y=“4.5” z=“18” />

Page 29 of 50

<multiUnion name= =“multiUnion” >
 <multiUnionNode name-“node-1”>
 <solid ref=“box_first” />
 </multiUnionNode>
 <multiUnionNode name=”node-2”>
 <solid ref=“box_second” />
 <positionref ref=“union_position” />
 <rotationref ref=“union_rotation” />
 </multiUnionNode>
</multiUnion>

3.4.30 Scaled Solids

Any solid can be scaled along Cartesian axes by specifying a scale transformation where
positive values for X, Y or Z should be specified, together with the shape, or reference to
a shape to be scaled:

<tube name=“my_tube” z=“100.0” rmax=“10.0” deltaphi=“360”/>

<scaledSolid name=“ScaledTube” >
 <solidref ref=“my_tube” />
 <scale name=“tube_scale” x=“1” y=“2” z=“1”/>
</scaledSolid>

3.5 Structure

The structure section is where volumes in the geometry are defined. Volumes are
referenced to solids and materials defined earlier to form the shape and composition of
that volume. This volume is then a logical volume. Volumes can be placed within this
logical volume; these volumes are called physical volumes. The physical volumes are
required to have the reference to the logical volume which they are a placement of. They
can be positioned and rotated how you wish within the logical volume. This can be done
using explicit position and rotation defined within the physical volume block or using
reference to position and rotation defined in the <defined> section. An example of the
GDML code for this is below:

<volume name="World">
 <materialref ref="Air"/>
 <solidref ref="WorldBox"/>

 <physvol>
 <volumeref ref="vol0"/>
 <positionref ref="center"/>
 <rotationref ref="identity"/>
 </physvol>
</volume>

If you intend to utilize your GDML file with Geant4 only, you can also use the predefined
Geant4 NIST database materials to construct your physical volumes. In that case, the
name of the referenced material has to correspond to the name in the Geant4 NIST
database, like for instance “G4_Al” or “G4_WATER” (see Geant4 manual). That material
should not be then defined in the <materials> section, it will be directly taken from the
Geant4 NIST database during the initialization of the geometry in memory.

Page 30 of 50

In addition to the standard logical volumes, one can also define assemblies, which are
made of several physical volumes and do not include a ‘mother volume’ being an
envelop for its physical volumes. An example of an assembly volume can be seen below:

 <assembly name="AssemblyVol">
 <physvol>
 <volumeref ref="TubeVol"/>
 <position name="pos1" unit="m" x="0" y="0" z="0.5"/>
 <rotationref ref="alignSurfX"/>
 </physvol>
 <physvol>
 <volumeref ref="TubeVol"/>
 <position name="pos2" unit="m" x="0" y="0" z="-0.5"/>
 <rotationref ref="alignSurfY"/>
 </physvol>
 </assembly>

Page 31 of 50

3.5.1 Loops

Loops can be used to avoid tedious repetitions of definitions. To use a loop you need to
define a variable first (section 3.2.1). Suppose you defined a variable x with 0 initial
value:

<variable name=“x” value=“0”/>

then, you can use it inside a loop statement:

<loop for=“x” to=“8” step=“2”>
…
</loop>

The code within the loop tags will we executed 5 times in this case, because the variable
x starting from the initial value of 0 (as in its definition) will be increased by 2 (according
to the step value) for each loop until it reaches the value of 8 (as stated in the to
attribute).
Loops are very useful to access elements of matrices (see section 3.2.2); for example:

<variable name=“i” value=“1”/>
<matrix name=“m” coldim=“3” values=“ 0.4 9 126
 8.5 7 21
 34.6 7 9” />
<loop for=“i” to=“3” step=“1”>
 … m[1,i] …
</loop>

We are able to access the three elements of the first row of the matrix, i.e. 0.4, 9 and
126. Loops can be used when defining solids, logical volumes and physical volumes;
let’s see how this is done in practice. Suppose we want to create the following structure:

Page 32 of 50

We need to write the code for 5 boxes, 5 logical volumes that refer to the boxes and 5
physical volumes that refer to the 5 logical volumes! The code would be the following:

<solids>
 <box name=“box1” x=“10” y=“5” z=“5” />
 <box name=“box2” x=“9” y=“4.5” z=“4” />
 <box name=“box3” x=“8” y=“4” z=“3.2” />
 <box name=“box4” x=“7” y=“3.5” z=“2.56” />
 <box name=“box5” x=“6” y=“3” z=“2.048” />
</solids>
<structure>
 <volume name=“volbox1”>
 <solidref ref=“box1” />
 <materialref ref=“iron” />
 </volume>
 <volume name=“volbox2”>
 <solidref ref=“box2” />
 <materialref ref=“iron” />
 </volume>
 <volume name=“volbox3”>
 <solidref ref=“box3” />
 <materialref ref=“iron” />
 </volume>
 <volume name=“volbox4”>
 <solidref ref=“box4” />
 <materialref ref=“iron” />
 </volume>
 <volume name=“volbox5”>
 <solidref ref=“box5” />
 <materialref ref=“iron” />
 </volume>
 <volume name=“world”>
 ...
 <physvol>
 <volumeref ref=“volbox1” />
 <position x=“5” y=“0” z=“0” />
 </physvol>
 <physvol>
 <volumeref ref=“volbox2” />
 <position x=“5” y=“4.25” z=“0” />
 </physvol>
 <physvol>
 <volumeref ref=“volbox3” />
 <position x=“5” y=“8.0” z=“0” />
 </physvol>
 <physvol>
 <volumeref ref=“volbox4” />
 <position x=“5” y=“11.25” z=“0” />
 </physvol>
 <physvol>
 <volumeref ref=“volbox5” />
 <position x=“5” y=“14” z=“0” />
 </physvol>
 </volume>
</structure>

Page 33 of 50

Of course this is always possible; but using the loop tags (and combining them properly
with matrices), you would have the same result with fewer code lines and less
complexity. Here’s the equivalent code using the loop and matrix tags:

<define>
 <matrix name=“m” coldim=“5” values=“0 4.25 8.0 11.25 14
 5 4 3.2 2.56 2.048” />
 <variable name=“i” value=“0” />
 <variable name=“num” value=“5” />
</define>
<solids>
 ...
 <loop for=“i” from=“1” to=“num” step=“1”>
 <box name=“box[i+1]” x=“10-i” y=“5-i/2” z=“m[2,i]” />
 </loop>
</solids>
<structure>
 <loop for=“i” from=“1” to=“num” step=“1”>
 <volume name=“volbox[i+1]”>
 <materialref ref=“iron” />
 <solidref ref=“box[i+1]” />
 </volume>
 </loop>
 <volume name=“world”>
 ...
 <loop for=“i” from=“1” to=“num” step=“1”>
 <physvol>
 <volumeref ref=“volbox[i+1]” />
 <position name=“pos” x=“5” y=“m[1,i]” z=“0”/>
 </physvol>
 </loop>
 </volume>
</structure>

In this example we only “looped” 5 times, but just think if we needed to loop 100 times or
more, the difference (in terms of code lines) between the two approaches would be
enormous.
Now two important rules you need to follow when using loops:

1) Always use a properly initialized variable for each loop tag (in our example i and
num for the three loops).

2) When you use linked loop triples (loop triple = 3 loop tags, as we did in our
example; linked in the sense that we looped over a solid, then we looped over a
logical volume that referred to that solid, and finally we looped over a physical
volume that referred to that logical volume) you always have to be sure that the
number of steps is the same for every loop tag of that particular triple. In our
example that number was 5: from 1 to 5.

3.5.2 Replicated Volumes
NB: supported only by Geant4

Replicated volumes in GDML correspond to Geant4 Replicas. Replica volumes are
created along the specific direction of one of Cartesian or Cylindrical Axis. The first
replica is placed at the given position and rotated according to given rotation and others
are placed using given distance. This repeated Volumes technique is available for
volumes described by Geant4 CSG Solids. The following example illustrates the
construction of replica volumes along X Axis. An example ‘replicated.gdml’ can be found
in the $G4INSTALL/examples/extended/persistency/gdml/G01 girectory.

Page 34 of 50

<solids >
 …
 <box name=“Mother_Cube” x=“800” y=“100” z=“100”/>
 <box name=“Cube” x=“100” y=“100” z=“100”.>
</solids>

<structure>
 …
 <volume name=“lvCube”>
 <solidref ref=“Cube” />
 <materialref ref=“ALU” />
 </volume>

 <volume name=“lvReplica”>
 <solidref ref=“Mother_Cube” />
 <materialref ref=“AIR” />
 <replicavol number=“8”>
 <volumeref ref=“lvCube” />
 <replicate_along_axis>
 <direction x=“1” />
 <width value=“100” unit=“mm” />
 <offset value=“0” unit=“mm” />
 </replicate_along_axis>
 </replicavol>
 </volume>
</structure>
…

3.5.3 Parameterised Volumes
NB: supported only by Geant4

Parameterised volumes in GDML correspond to the parameterised physical volumes in
Geant4 with the difference that in GDML only parameterisation of dimension and
placement is supported.
Parameterisation of type of solid or its material is not supported by current
implementation; however it can be implemented as possible extension to the GDML
schema.
Parameterised volumes are repeated volumes in the case in which the multiple copies of
a volume can be different in size and position.
Examples of GDML files describing parameterised volumes are parameterized.gdml
and pTube.gdml located in the example G01 distributed with Geant4.
The following example illustrates the construction of parameterised volumes:

<solids >
 …
 <box name=“tracker” x=“4800” y=“4800” z=“4800”/>
 <box name=“chamber” x=“2000” y=“2000” z=“2000”.>
</solids>

<structure>
 …
<volume name=“Chamber”>
 <solidref ref=“chamber” />
 <materialref ref=“XenonGas” />
 </volume>

<volume name=“Tracker”>
 <solidref ref=“tracker” />
 <materialref ref=“Air” />

 <paramvol ncopies=“2”>
 <volumeref ref=“Chamber”/>
 <parameterised_position_size>
 <parameters number=“1”>
 <position name=“positionCopy1” x=“0” y=“0” z=“-1500”/>

Page 35 of 50

 <box_dimensions x=“240” y=“240” z=“100”/>
 </parameters>

 <parameters number=“2”>
 <position name=“positionCopy2” x=“0” y=“0” z=“-700”/>
 <box_dimensions x=“672” y=“672” z=“100”/>
 </parameters>

 </parameterised_position_size>
 </paramvol>
 </volume>
…
</structure>
…

For giving the dimensions of each parameterised solid in GDML a special syntax is used.

3.5.3.1. Dimensions of Parameterised Box

The GDML dimensions of a parameterised box have the following form with 3 standard
dimensions: x, y and z. Example:

3.5.3.2. Dimensions of Parameterised Tube

The GDML dimensions of a parameterised tube are given using :

InR inside radius of segment
OutR outside radius of segment
hz z length of tube segment
StartPhi starting phi position angle of segment
DeltaPhi delta angle of segment

 The following example illustrates its construction:

3.5.3.3. Dimensions of Parameterised Cone

The GDML dimensions of a parameterised cone are given using:

rmin1 inside radius at base of cone
rmax1 outside radius at base of cone
rmin2 inside radius at top of cone
rmax2 outside radius at top of cone
z z length of cone
startphi starting phi position of segment
deltaphi delta angle of segment

<box_dimensions x="30" y="30" z="30" lunit= "mm"/>

<tube_dimensions InR="30" OutR="60" hz="30" lunit= "mm"
 StartPhi="60" DeltaPhi="30" aunit= "deg"/>

Page 36 of 50

 The following example illustrates its construction:

3.5.3.4. Dimensions of Parameterised Orb

The GDML dimensions of a parameterised orb have the following form with 1 standard
dimension: r (radius). Example:

3.5.3.5. Dimensions of Parameterised Sphere

The GDML dimensions of a parameterised sphere are given using:

rmin inside radius
rmax outside radius
startphi starting phi position of segment
deltaphi delta angle of segment
starttheta starting theta position of segment
deltatheta delta theta angle of segment

 The following example illustrates its construction:

3.5.3.6. Dimensions of Parameterised Torus

The GDML dimensions of a parameterised torus are given using:

rmin inside radius
rmax outside radius
rtor swept radius of torus
startphi starting phi position of segment
deltaphi delta angle of segment

 The following example illustrates its construction:

<cone_dimensions rmin1="30" rmax1="60" rmin2="20" rmax2="60" z="30" lunit= "mm"
 startphi="60" deltaphi="30" aunit= "deg"/>

<orb_dimensions r="30" lunit= "mm"/>

<sphere_dimensions rmin="30" rmax="60" lunit= "mm" starttheta="0" deltatheta="40"
 startphi="60" deltaphi="30" aunit= "deg"/>

<torus_dimensions rmin="30" rmax="60" rtor="160" lunit= "mm"
 startphi="60" deltaphi="30" aunit= "deg"/>

Page 37 of 50

3.5.3.7. Dimensions of Parameterised Hype

The GDML dimensions of a parameterised hype are given using:

rmin inside radius
rmax outside radius
z length
ihst inner stereo
outst outer stereo

 The following example illustrates its construction:

3.5.3.8. Dimensions of Parameterised Parallelepiped

The GDML dimensions of a parameterised parallelepiped are given using:

x length of x
y length of y
z length of z
alpha angle between x and z plane
theta polar angle of the line joining the centre of the faces –z&+z in z
phi azimuthal angle of the line joining the centre of the faces –z&+z in
z

 The following example illustrates its construction:

3.5.3.9. Dimensions of Parameterised Trapezoid

The GDML dimensions of a parameterised trapezoid are given using:

x1 x length at - z
x2 x length at +z
y1 y length at - z
y2 y length at +z
z z length

 The following example illustrates its construction:

<hype_dimensions rmin="30" rmax="60" z="160" lunit= "mm"
 inst="3" outst="4" />

<para_dimensions x="30" y="60" z= "60" alpha="1" theta="1"
 phi="1" lunit="mm" aunit= "rad"/>

<trd_dimensions x1="30" x2="60" y1="20" y2="40" z ="30" lunit= "mm"/>

Page 38 of 50

3.5.3.10. Dimensions of Parameterised General Trapezoid

The GDML dimensions of a parameterised general trapezoid are given using:

x1 length along x at side y=-y1 of the face at - z
x2 length along x at side y=+y1 of the face at - z
x3 length along x at side y=-y1 of the face at + z
x4 length along x at side y=+y1 of the face at + z
alpha1 angle with respect to the y axis from the centre of side at y=-y1
 to centre of y=+y1 of the face at -z
alpha2 angle with respect to the y axis from the centre of side at y=-y2
 to centre of y=+y2 of the face at -z
theta polar angle of the line joining the centre of the faces –z&+z in z
phi azimuthal angle of the line joining the centre of the faces –z&+z in
z
y1 y length at - z
y2 y length at +z
z length along z axis

 The following example illustrates its construction:

3.5.3.11. Dimensions of Parametrised Polycone

The GDML dimensions of a parameterised polycone are given using:

startPhi start angle of the segment
openPhi angle of the segment
numRZ number of zplanes forming polycone
zplane inner radius, outer radius and z coordinate of each plane

The following example illustrates its construction:

3.5.3.12. Dimensions of Parametrised Polyhedron

The GDML dimensions of a parameterised polyhedron (polyhedra) are given using:

<trap_dimensions x1="30" x2="60" y1="20" y2="40" x3="30" x4="60" z ="30" lunit= "mm"
 alpha1="30" alpha2="30" phi="30" theta="60" aunit="deg" />

<polycone_dimensions startPhi="30" openPhi="60" numRZ="2" lunit= "mm" aunit="deg"
 <zplane rmin="0" rmax="2" z="10" />
 <zplane rmin="0" rmax="4" z="20" />
 polycone_dimensions/>

Page 39 of 50

startPhi start angle of the segment
openPhi angle of the segment
numRZ number of zplanes forming polycone
numSide number of sides
zplane inner radius, outer radius and z coordinate of each plane

The following example illustrates its construction:

3.5.3.13. Dimensions of Parametrised Ellipsoid

The GDML dimensions of a parameterised general tellipsoid are given using:

ax length of semi-axis in x direction
by length of semi-axis in y direction
cz length of semi-axis in z direction
zcut1 lower cut plane level at -z (solid lies above this plane)
zcut2 upper cut plane level at +z (solid lies below this plane)

The following example illustrates its construction:

3.5.4 GDML Modules

GDML modules are GDML files used in the definition of (complex) geometries. They
allow an easier to understand view of big geometries as they split it into smaller (and
therefore more readable) pieces.
A GDML module is a normal GDML file and it is completely independent from all the
other modules (also from its mother module): it contains all the information (definitions,
materials, solids and volumes) it needs, to be fully defined. It defines a logical volume
(which corresponds to its world volume), which can be referenced by physical volumes of
other modules (which are called mother modules).
To include a GDML module (say child.gdml) in a mother module (say mother.gdml), in
the structure section of the mother module you should add a physical volume which
points to the child module, as in the following example:

- Instead of having one file:

// mother.gdml

<volume name="child">
 <materialref ref="Alluminium"/>
 <solidref ref="ChildBox"/>
</volume>
<volume name="mother">

<ellipsoid_dimensions ax="30" by="60" cz="20" zcut1="-30" zcut2="30" lunit= "mm"/>

<polycone_dimensions startPhi="30" openPhi="60" numRZ="2" numSide="3"
 lunit= "mm" aunit="deg"
 <zplane rmin="0" rmax="2" z="10" />
 <zplane rmin="0" rmax="4" z="20" />
 polycone_dimensions/>

Page 40 of 50

 <materialref ref="Iron"/>
 <solidref ref="MotherBox"/>
 <physvol>
 <volumeref ref="child"/>
 <positionref ref="center"/>
 <rotationref ref="identity"/>
 </physvol>
</volume>

- You can define child logical volume in a different GDML file, so you will have two files:

// mother.gdml

<volume name="mother">
 <materialref ref="Iron"/>
 <solidref ref="MotherBox"/>
 <physvol>
 <file name="child.gdml"/>
 <positionref ref="center"/>
 <rotationref ref="identity"/>
 </physvol>
</volume>

// child.gdml

<volume name="child">
 <materialref ref="Alluminium"/>
 <solidref ref="ChildBox"/>
</volume>

So in the general case instead of writing:

<volumeref ref="_logical_volume_"/>

You will need to write:

<file name="_logical_volume_.gdml"/>

And then define _logical_volume_ inside _logical_volume_.gdml.

In the example given above, the mother module will only contain the material Iron and
the solid MotherBox, while the child module will contain only the material Aluminium and
the solid ChildBox, thus enhancing readability and modularity.

Some advises:

- While it is not useful to have a module for every single volume of the geometry, it is
good to have one for each group of volumes that you would consider as a module in the
real world (see par. “Multiple GDML files”).

- Modules should have low coupling, i.e. they should be as independent as possible from
other modules (this improves reusability dramatically).

- Modules should have high cohesion, i.e. they should contain all (and only) the volumes
that contribute to the geometry of the corresponding real world modules (this improves
readability).

Page 41 of 50

3.5.5 Volume Auxiliary Information

Volumes can have auxiliary information attached to them through GDML.

The auxiliary tags look like this:

<auxiliary auxtype=”SensDet” auxvalue=”veloSD1”/>

They have two attributes, auxtype and auxvalue, which are meant to specify what kind
of auxiliary information it is and what is its value. An additional, optional attribute
auxunit is also possible since version 3.1.2 of the schema; the new schema also
allows for inserting recursive auxiliary tags as part of a single auxiliary information block.
It is important to stress here that the GDML parser does not interpret in any way the
auxiliary attributes. The auxiliary attributes are stored in memory and available to the
user once the parsing is done. The auxiliary tags are placed within a volume like this:

<volume name="main">
 <materialref ref="Iron"/>
 <solidref ref="Box"/>
 <physvol>
 <volumeref ref="world"/>
 <positionref ref="center"/>
 <rotationref ref="identity"/>
 </physvol>
<auxiliary auxtype=”SensDet” auxvalue=”veloSD1”/>
<auxiliary auxtype=”Color” auxvalue=”blue”/>
</volume>

In Geant4, an additional GDML file example is auxiliary.gdml located in example G01
provided in the Geant4 distribution; the same example also provides a snippet of code in
its main() program showing how to retrieve the auxiliary information. Example G04
instead shows how to define a sensitive detector associated to a logical volume, using
the Auxiliary Information field.

3.5.6 Auxiliary User Information

Since version 3.1.2 of the schema, it is possible to specify an -optional- auxiliary block
<userinfo> ... </userinfo>, after the <structure> ... </structure> block, where a
generic list of auxiliary tags can be included to describe specific features of a model,
which are then properly treated by the client code. Here is an example on how to
represent geometrical regions with energy cuts associated to logical volumes in Geant4:

<userinfo>
 <auxiliary auxtype=”Region” auxvalue=”DefaultRegionForTheWorld”>
 <auxiliary auxtype=”volume” auxvalue=”World”/>
 <auxiliary auxtype=”gamcut” auxunit=”mm” auxvalue=”0.7”/>
 <auxiliary auxtype=”ecut” auxunit=”mm” auxvalue=”0.7”/>
 <auxiliary auxtype=”poscut” auxunit=”mm” auxvalue=”0.7”/>
 <auxiliary auxtype=”pcut” auxunit=”mm” auxvalue=”0.7”/>
 </auxiliary>
 <auxiliary auxtype=”Region” auxvalue=”CalorA”>
 <auxiliary auxtype=”volume” auxvalue=”CalorA”/>
 <auxiliary auxtype=”gamcut” auxunit=”mm” auxvalue=”0.2”/>
 <auxiliary auxtype=”ecut” auxunit=”mm” auxvalue=”0.2”/>
 <auxiliary auxtype=”poscut” auxunit=”mm” auxvalue=”0.2”/>
 <auxiliary auxtype=”pcut” auxunit=”mm” auxvalue=”0.2”/>
 </auxiliary>

Page 42 of 50

 <auxiliary auxtype=”Region” auxvalue=”CalorB”>
 :
 </auxiliary>
 :
</userinfo>

Page 43 of 50

3.6 Setup

The top volume of the geometry needs to be specified. This is done using the setup
section. The following GDML is the generic and most common for the setup section.

The only part you should need to change is the world ref name to the volume name of
the top volume of your geometry. Only one setup is defined here, however it is possible
define multiple geometry setups choosing different volumes as world volumes from all
the already defined volumes.

<setup name="Test1" version="1.0">
 <world ref="World"/>
 </setup>

Page 44 of 50

GDML file example

<?xml version="1.0" encoding="UTF-8" ?>

<gdml xmlns:gdml="http://cern.ch/2001/Schemas/GDML"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="schema/gdml.xsd" >

 <define>
 <constant name="const1" value="100" />
 <position name="pos1" unit="mm" x="0" y="0" z="0" />
 <rotation name="rot1" unit="deg" x="const1" y="0" z="0" />
 <scale name=”scl1” x=”-1” y=”+1” z=”+1”/>
 </define>

 <materials>
 <element Z="7" formula="N" name="Nitrogen" >
 <atom value="14.01" />
 </element>
 <element Z="8" formula="O" name="Oxygen" >
 <atom value="16" />
 </element>

 <material formula=" " name="Air" >
 <D value="0.00128" />
 <fraction n="0.7" ref="Nitrogen" />
 <fraction n="0.3" ref="Oxygen" />
 </material>
 </materials>

 <solids>
 <box aunit="radian" lunit="mm" name="world" x="10000" y="10000" z="10000" />
 <box aunit="radian" lunit="mm" name="det” x="2000" y="2000" z="2000" />
 </solids>

 <structure>
 <volume name="Detector" >
 <materialref ref="Air" />
 <solidref ref="det" />
 </volume>
 <volume name="World" >
 <materialref ref="Air" />
 <solidref ref="world" />
 <physvol>
 <volumeref ref="Detector" />
 <positionref ref="pos1" />
 <rotationref ref="rot1" />
 <scaleref ref=”scl1” />
 </physvol>
 </volume>
 </structure>

 <setup name="Default" version="1.0" >
 <world ref="World" />
 </setup>

XML Declaration

XML Schema Instance
Namespace

GDML Namespace

GDML Schema Location

Declaration of constants,
positions, rotations, scalings,
variables and matrices

Definition of elements,
materials, isotopes etc. Only
materials can be referenced
to volumes

Simple material defined using
fractions of elements defined
higher up.

All solids to be used inside
the geometry defined here

All volumes declared in the
structure section.

World volume is declared

Physical Volumes placed
inside a Logical Volume with
a specified position, rotation
and scale

The top volume of the
geometry is specified

Page 45 of 50

4. Importing and exporting GDML files
4.1 GDML Reading

4.1.1 Importing GDML files into Geant4 Geometry

GDML files can be directly imported into Geant4 geometry, using the GDML plug-in
facility in your Geant4 application. Generally, you will want to put the following lines into
your DetectorCostruction class:
- In the class constructor (as far as the initializations are concerned – step 2)
- In the Construct method (steps 3 and 4)

This can be done in four steps:

1) Include the necessary header files

#include “G4GDMLParser.hh”

2) Declare and initialize properly the parser

G4GDMLParser parser;

source_file.gdml will be your GDML source file, in case of multiple GDML files
(modules) you should put the main GDML file there (the main mother module).

3) Run the parser

parser.Read("source_file.gdml");

If solids or other entities with the same name are found in different modules, a warning
message is generated. Usually this happens when different GDML modules define the
same logical volume. This is not a problem, but it may suggest that the input GDML
modules have a low cohesion, therefore it maybe useful to review the way you have
organized your geometry. All names for solids, volumes and other entities are by default
stripped of possible hexadecimal suffixes (see Section 4.2.1); it is possible to disable the
name stripping by calling SetStripFlag(false)available from the parser, before
reading.
By default, when the parser reads a GDML file, comparison with the GDML Schema
(from GDML Schema Location) is made. It is possible to switch off this comparison by
setting to ‘false’ second optional parameter in the Read:

parser.Read("source_file.gdml", false);

4) Get the World volume

G4VphysicalVolume* W = parser.GetWorldVolume(); //world volume
W->GetLogicalVolume()->SetVisAttributes(G4VisAttributes::Invisible);

The second line is optional, but commonly used, because you generally don’t want to be
able to see the World volume.

Page 46 of 50

4.2 GDML Writing

4.2.1 Exporting Geant4 Geometry

Geant4 geometry can be exported into GDML files. To do so you should do the following:

1) Include the Geant4 header file of the parser

#include “G4GDMLParser.hh”

2) Get the world volume from the geometry

G4VphysicalVolume* W = G4TransportationManager::
GetTransportationManager()->GetNavigatorForTracking()
->GetWorldVolume();

3) Instantiate the parser and write to file

G4GDMLParser parser;
parser.Write(“output.gdml”, W, true, "path_to_GDML_schema");

The last parameter is optional and refers to the GDML Schema path, it is very important
to set this right in order to allow for comparison with the Schema while reading the file
back to Geant4; the path can either be an absolute directory path relative to the system
(schema location local to that system) or an URL to the Schema. By default the schema
location points to the latest version of the GDML schema located in the GDML web site.

There exists also an optional third parameter, which is a Boolean value set by default to
TRUE. This parameter tells how you would like the names of volumes (as well as of
solids, materials and all entities) to be formatted in your output GDML file:

true (default) – The names will be concatenated with their logical address in
hexadecimal format. This is to avoid name duplication in the GDML output; in fact
Geant4 allows different volumes (as well as materials and solids) with the same name.
When you will read the GDML output file back into Geant4 the address part will be
stripped off and you will have the original names. This is almost always safe.

false – The names will NOT be concatenated with anything. So the names in the output
file will correspond exactly to the ones you have in Geant4. This is the prettiest format
although you have to be REALLY sure that you don’t have name duplication inside
Geant4, otherwise this will generate a GDML output with duplicated names, which will be
unreadable by any parser of course.

4) Methods for dumping the geometry

There are three ways of doing this:

a) parser.Write("output.gdml", W);
 Dumps all the geometry in a single GDML output file.

b) parser.AddModule(physvol);

Page 47 of 50

 Dumps the geometry modularizing the output. The generated module will include
the geometry tree starting from the physical-volume pointer physvol.

c) parser.AddModule(depth);
 Dumps the geometry modularizing the output. The parameter in input is an
integer indicating the depth in the geometry levels from where you wish to start
modularization. Any new sub-tree at that depth level will become a module stored in a
different GDML file; the main tree binding all modules will include the geometry from the
world volume down to that specified level and will be stored in a separate GDML file.

4.2.2 Exporting ST-Viewer CAD Geometry

ST-Viewer is an interactive tool for viewing 3D CAD information. ST-Viewer includes
functions to display and relate product identification information, assembly structure
information and 3D geometry information. ST-Viewer implements the ISO STEP
standard for product model data. ST-Viewer works with a very large range of CAD, CAM,
CAE and PDM systems. A list of systems that have been tested with the ST-Viewer can
be found at: http://www.steptools.com.

ST-Viewer uses intermediate files to store CAD geometry and structure information.
These files (with .geom and .tree extensions respectively) use an internal format that can
be parsed and translated into GDML format using the functionalities provided by the
Geant4 GDML plug-in.

The geometry of the solids is defined by means of triangular facets, i.e. every solid in the
.geom files is a tessellated solid made of only triangular facets. Therefore the GDML
output will be a collection of tessellated solids where each solid has its own set of facets
that are in turn defined by a set of three vertices. The vertices are named vectors of
three values (x,y and z coordinates) and are defined in the beginning of the GDML file.
The facets within a tessellated solid contain references to the names (not the values) of
the three vertices they are made of (for more information on how a tessellated solid is
defined in GDML please refer to the GDML Solids Schema : solids.xsd).

Of course multiple facets may share a common vertex, therefore in their definition there
will be a reference to the same vertex name. Again, the actual values of the vertices’
vectors are stored in the first part (the one enclosed by the <define> and </define>
tags) of the GDML file.

In order to use the parser in your own application you need to

1) Include the Geant4 parser header:

#include "G4GDMLParser.hh"

2) Instantiate a Geant4 parser object:

G4GDMLParser parser;

3) Call the parse method:

G4LogicalVolume* STW = parser.ParseST("filename", med_mat,
geo_mat);

Page 48 of 50

This method takes three parameters: the first one is a string which specifies the name
without file extension for the .geom and .tree files (assumed to have the same names
and be located in the current directory). It returns a pointer of a generated mother
volume with 'med_mat' material pointer associated, including the imported tessellated
geometry with 'geom_mat' material pointer associated.
Common vertices will not be repeated in the define section, i.e. facets sharing the same
vertex will refer to the same vertex name defined at the beginning of the GDML file. In
this case there will not be any two vertices with the same coordinates.

During a test, a input .geom file of 9.5 MB could be saved in a GDML output file of 10.5
MB; the same input file would have become a 33 MB GDML output file, with repetition of
common vertices.

4) Call the dump method:

parser.Write("output.gdml", STW_phys);

The same method of the parser for writing the GDML output file can be used, by passing
the placed physical volume pointer of such geometry.
The result is a GDML file corresponding to the .geom and .tree files previously taken as
input.

5. User extensions to GDML using Geant4

The GDML syntax is defined in an XML schema. Inside the schema are all the definitions
of the tags and the rules associated to those tags. The GDML schema can be extended,
as XML is a fully extendable mark-up language. This section will discuss how to add
custom elements to GDML. This could be useful if certain information is required to be
contained in the GDML file for an application of GDML. The extension can be defined as
such to contain a new tag and values within whichever chosen part of the GDML file. It
may be the case that within the binding to GDML being used, there are methods already
in place for information not supported by the GDML schema, in which case the user
extension facility will help implementing that.

An example of a user extension is implemented in Geant4 and can be found in the
directory geant4/examples/persistency/gdml/G03. This example will be used as a
point of reference throughout this section.

The Schema

The first step in extending GDML is to redefine the GDML schema. It needs to include
the custom elements of the extension. The extension is done in a separate schema file
that imports the original schema as opposed to adding new parts to the old one. The
schema for example G03 is found in a subdirectory of the example:

SimpleExtensionSchema/SimpleExtension.xsd

The original main GDML schema is imported from its local, relative location within your
GDML directory. The new schema file normally will need to contain two main parts:

5.1 A ‘redefine’ element

Page 49 of 50

This element uses the extension schema to modify existing GDML elements by adding
additional content. This is called by this line, which gives the location of the schema to
redefine:

<xs:redefine schemaLocation="schema/gdml.xsd">

In most cases, the extension will consist in defining new objects (like color) to a volume
etc. In such case, the redefine needs to add a ReferenceType to the base it needs to be
added to:

 <xs:extension base="VolumeType">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" name="colourref"
type="ReferenceType"/>
 </xs:sequence>
 </xs:extension>

5.2 New Elements

The new schema will need to define the new ‘element’ that the ReferenceType will be
referencing to. In the example of adding a 'color' reference to a volume, the element
color will need to be defined.

When elements are defined, attributes of that element are defined within it, but if tags
within the element contain more than one attribute, a type needs to be defined, and then
referenced to. This is implemented in the G03 schema file.

All the new elements can't be contained inside the <gdml> tag as they are not part of the
original schema, there needs to be a new container defined that contains the new
elements AND replaces the original <gdml> tag; we call it here,
<gdml_simple_extension>.
A new special tag, <extension>, is used to include all new tags to be considered as
extension to the original GDML schema; in our example, we have only one tag, <color>,
which is part of the extension. This is shown below:

 <xs:element name="gdml_simple_extension">
 <xs:annotation>
 <xs:documentation>
 New container for new element and gdml.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="extension" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="gdml" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

This then means that a GDML file now takes the following structure based on the above:

 <gdml_simple_extension xmlns:gdml_simple_extension= "http://www.example.org"
 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
 xs:noNamespaceSchemaLocation="./SimpleExtensionSchema/SimpleExtension.xsd">

 <extension>
 <color name="aColor" R="1.0" G="0.0" B="0.0" A="1.0" />
 </extension>

 <structure>
 <volume>
 <materialref ref="someMaterial"/>

Page 50 of 50

 <solidref ref="someSolid"/>
 <colorref ref="aColor"/> <!—- new reference type -->
 </volume>
 </structure>

 </gdml_simple_extension>

In any GDML file you wish to use your ‘extended schema’ in, you will need to change the
Namespace GDML Schema Location to your extended schema file and replace the
original schema. The new schema location must be relative to the location of the GDML
file in question. This will then import your new additions as well as the original GDML
schema, as shown above.

Customised Reader

Once the GDML schema has been extended as wished, the application making use of
the extended GDML, needs to provide the necessary instruments in order to properly
handle the extensions. This is done by implementing a specialized 'reader' class, whose
instance will replace the standard reader inside the G4GDMLParser class in Geant4. The
new class must inherit from G4GDMLStructureRead and override in this case two
methods:

 void ExtensionRead(const xercesc::DOMElement* const element);
 void VolumeRead(const xercesc::DOMElement* const element);

The former will have to handle the top level parsing of the new tags (in our case,
<color>), while the latter will have to properly bound the new reference-type
(<colorref>) to the volume, such that the new tag can be assigned as attribute to the
volume entity.
In our example, the class ColorReader implements such required functionality.
An instance of the reader must be dynamically created in the DetectorConstruction
class and provided through pointer argument to the G4GDMLParser instance to be
created as usual for importing GDML files in Geant4.

Try it...

To run the example application you simply need to build it, using the standard procedure
as for any Geant4 application. Then from the G03 directory, you can run the example
using this command:

read_ext [filename.gdml]

The default file is color_extension.gdml, which defines a single colored box in the
world volume.

