

 [image: Cover image]

Book For Application Developers

Scope of this manual

The User's Guide for Application Developers is the first manual the
reader should consult when learning about Geant4 or developing a
Geant4 -based detector simulation program. This manual is designed to:

	introduce the first-time user to the Geant4 object-oriented detector
simulation toolkit,

	provide a description of the available tools and how to use them, and

	supply the practical information required to develop and run
simulation applications which may be used in real experiments.

This manual is intended to be an overview of the toolkit, rather than an
exhaustive treatment of it. Related physics discussions are not included
unless required for the description of a particular tool. Detailed
discussions of the physics included in Geant4 can be found in the
Physics Reference
Manual#1.
Details of the design and functionality of the Geant4 classes can be found in
the User's Guide for Toolkit
Developers#2.

Geant4 is a detector simulation toolkit written in the C++ language. The
reader is assumed to have a basic knowledge of object-oriented programming
using C++. Although Geant4 is a fairly complicated software system, only a
relatively small part of it needs to be understood in order to begin
developing detector simulation applications. An understanding of radiation
physics and associated processes is beneficial.

Contents

	Introduction

	Getting Started with Geant4 - Running a Simple Example

	Toolkit Fundamentals

	Detector Definition and Response

	Tracking and Physics

	User Actions

	Control

	Visualization

	Analysis

	Examples

	Appendix

	Bibliography

Status of this Document

Guide for Application Developers using the Geant4 toolkit.

	Rev 1.0: First Sphinx version implemented for Geant4 Release 10.4, 8th Dec 2017

	Rev 2.0: Updates and fixes in documentatio for Geant4 Release 10.4, 15th May 2018

	Rev 3.0: Geant4 Release 10.5, 11th December 2018

	Rev 3.1: Geant4 Updates and fixes - especially to search functionality, 5th March 2019

	Rev 4.0: Geant4 Release 10.6, 6th December 2019

	Rev 5.0: Geant4 Release 10.7, 4th December 2020

	Rev 6.0: Geant4 Release 11.0, 10th December 2021

	Rev 7.0: Geant4 Release 11.1, 9th December 2022

	Rev 7.1: Geant4 Fixes to http links, 15th July 2023

	Rev 8.0: Geant4 Release 11.2, 8th December 2023

Footnotes

	#1

	https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/index.html

	#2

	https://geant4-userdoc.web.cern.ch/UsersGuides/ForToolkitDeveloper/html/index.html

Introduction

How to use this manual

A very basic introduction to Geant4 is presented in Section Getting Started with Geant4 - Running a Simple Example.
It is a
recipe for writing and running a simple Geant4 application program. New
users of Geant4 should read this chapter first. It is strongly
recommended that this chapter be read in conjunction with a Geant4
system installed and running on your computer. It is helpful to run the
provided examples as they are discussed in the manual. To install the
Geant4 system on your computer, please refer to the Installation Guide
for Setting up Geant4 in Your Computing
Environment#1.

Section Toolkit Fundamentals discusses general Geant4 issues
such as class categories and the physical units system. It goes on to
discuss runs and events, which are the basic units of a simulation.

Section Detector Definition and Response describes how to
construct a detector from customized materials and geometric shapes, and
embed it in electromagnetic fields. It also describes how to make the
detector sensitive to particles passing through it and how to store this
information.

How particles are propagated through a material is treated in
Section Tracking and Physics. The Geant4 "philosophy" of particle
tracking is presented along with summaries of the physics processes
provided by the toolkit. The definition and implementation of Geant4
particles is discussed and a list of particle properties is provided.

Section User Actions is a description of the "user hooks" by
which the simulation code may be customized to perform special tasks.

Section Control provides a summary of the
commands available to the user to control the execution of the
simulation. After Chapter 2, Chapters 6 and 7 are of foremost importance
to the new application developer.

The display of detector geometry, tracks and events may be incorporated
into a simulation application by using the tools described in
Section Visualization.

Section Examples provides a set of basic, novice, extended and
advanced simulation codes which may be compiled and run "as is" from the
Geant4 source code. These examples may be used as educational tools or
as base code from which more complex applications are developed.

Footnotes

	#1

	https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/index.html

Getting Started with Geant4 - Running a Simple Example

	How to Define the main() Program
	A Sample main() Method

	G4RunManager

	User Initialization and Action Classes

	G4UImanager and UI CommandSubmission

	G4cout, G4cerr and G4debug

	How to Define a Detector Geometry
	Basic Concepts

	Create a Simple Volume

	Choose a Solid

	Create a Logical Volume

	Place a Volume

	Create a Physical Volume

	Coordinate Systems and Rotations

	How to Specify Materials in the Detector
	General Considerations

	Define a Simple Material

	Define a Molecule

	Define a Mixture by Fractional Mass

	Define a Material from the Geant4 Material Database

	Define a Material from the Base Material

	Print Material Information

	Access to Geant4 material database

	How to Specify Particles
	Particle Definition

	Range Cuts

	How to Specify Physics Processes
	Physics Processes

	Managing Processes

	Specifying Physics Processes

	How to Generate a Primary Event
	Generating Primary Events

	G4VPrimaryGenerator

	Geant4 General Particle Source
	Introduction

	Configuration

	Macro Commands

	Example Macro File

	How to Make an Executable Program
	Using CMake to Build Applications

	Use of Geant4Config.cmake with find_package in CMake

	How to Set Up an Interactive Session
	Introduction

	A Short Description of Available Interfaces

	How to Select Interface in Your Applications

	How to Execute a Program
	Introduction

	'Hard-coded' Batch Mode

	Batch Mode with Macro File

	Interactive Mode Driven by Command Lines

	General Case

	How to Visualize the Detector and Events
	Introduction

	Visualization Drivers

	How to Incorporate Visualization Drivers into an Executable

	Writing the main() Method to Include Visualization

	Sample Visualization Sessions

	For More Information on Geant4 Visualization

Footnotes

How to Define the main() Program

A Sample main() Method

The contents of main() will vary according to the needs of a given
simulation application and therefore must be supplied by the user. The
Geant4 toolkit does not provide a main() method, but a sample is
provided here as a guide to the beginning user.
Listing 1 is the simplest example
of main() required to build a simulation program.

Listing 1 Simplest example of main()

#include "DetectorConstruction.hh"
#include "PhysicsList.hh"
#include "ActionInitialization01.hh"

#include "G4RunManagerFactory.hh"
#include "G4UImanager.hh"

int main()
{
 // construct the default run manager
 auto runManager = G4RunManagerFactory::CreateRunManager();

 // set mandatory initialization classes
 runManager->SetUserInitialization(new DetectorConstruction);
 runManager->SetUserInitialization(new PhysicsList);
 runManager->SetUserInitialization(new ActionInitialization);

 // initialize G4 kernel
 runManager->Initialize();

 // get the pointer to the UI manager and set verbosities
 G4UImanager* UI = G4UImanager::GetUIpointer();
 UI->ApplyCommand("/run/verbose 1");
 UI->ApplyCommand("/event/verbose 1");
 UI->ApplyCommand("/tracking/verbose 1");

 // start a run
 int numberOfEvent = 3;
 runManager->BeamOn(numberOfEvent);

 // job termination
 delete runManager;
 return 0;
}

The main() method is implemented by two toolkit classes,
G4RunManager and G4UImanager, and three classes,
DetectorConstruction, PhysicsList and
ActionInitialization, which are derived from toolkit classes.
Each of these are explained in the following sections.

G4RunManager

The first thing main() must do is create an instance of the
G4RunManager class. This is the only manager class in the Geant4
kernel which should be explicitly constructed in the user's main().
It controls the flow of the program and manages the event loop(s) within
a run. G4RunManagerFactory::CreateRunManager() instantiates a
G4RunManager object whose concrete type is:

	G4MTRunManager if Geant4 library was built with multithreading support

	G4RunManager otherwise

The concrete type chosen may be overridden at application runtime
without recompilation by setting the environment
variable G4RUN_MANAGER_TYPE, whose value can be set to either
Serial, MT, Tasking or TBB. For Geant4 version 10.7, options
Tasking and TBB are provided as beta-release.
The traditional style of direct instantiation of G4RunManager
(sequential mode) or G4MTRunMabager (multithreaded mode) is
also available.

When G4RunManager is created, the other major manager classes are
also created. They are deleted automatically when G4RunManager is
deleted. The run manager is also responsible for managing initialization
procedures, including methods in the user initialization classes.
Through these the run manager must be given all the information
necessary to build and run the simulation, including

	how the detector should be constructed,

	all the particles and all the physics processes to be simulated,

	how the primary particle(s) in an event should be produced, and

	any additional requirements of the simulation.

In the sample main() the lines

runManager->SetUserInitialization(new DetectorConstruction);
runManager->SetUserInitialization(new PhysicsList);
runManager->SetUserInitialization(new ActionInitialization);

create objects which specify the detector geometry, physics processes
and primary particle, respectively, and pass their pointers to the run
manager. DetectorConstruction is an example of a user
initialization class which is derived from
G4VUserDetectorConstruction. This is where the user describes the
entire detector setup, including

	its geometry,

	the materials used in its construction,

	a definition of its sensitive regions and

	the readout schemes of the sensitive regions.

Similarly PhysicsList is derived from G4VUserPhysicsList
and requires the user to define

	the particles to be used in the simulation,

	all the physics processes to be simulated.

User can also override the default implementation for

	the range cuts for these particles and

Also ActionInitialization is derived from
G4VUserActionInitialization and requires the user to define

	so-called user action classes (see next section) that are invoked
during the simulation,

	which includes one mandatory user action to define the primary
particles.

The next instruction

runManager->Initialize();

performs the detector construction, creates the physics processes,
calculates cross sections and otherwise sets up the run. The final run
manager method in main()

int numberOfEvent = 3;
runManager->beamOn(numberOfEvent);

begins a run of three sequentially processed events. The beamOn()
method may be invoked any number of times within main() with each
invocation representing a separate run. Once a run has begun neither the
detector setup nor the physics processes may be changed. They may be
changed between runs, however, as described in
Customizing the Run Manager. More information on G4RunManager in
general is found in Run.

As mentioned above, other manager classes are created when the run
manager is created. One of these is the user interface manager,
G4UImanager. In main() a pointer to the interface manager must
be obtained

G4UImanager* UI = G4UImanager::getUIpointer();

in order for the user to issue commands to the program. In the present
example the applyCommand() method is called three times to direct
the program to print out information at the run, event and tracking
levels of simulation. A wide range of commands is available which allows
the user detailed control of the simulation. A list of these commands
can be found in Built-in Commands.

User Initialization and Action Classes

User Classes

There are two kinds of user classes, user initialization classes and
user action classes. User initialization classes are used during the
initialization phase, while user action classes are used during the run.
User initialization classes should be directly set to G4RunManager
through SetUserInitialization() method, while user action classes
should be defined in G4VUserActionInitialization class.

User Initialization Classes

All three user initialization classes are mandatory. They must be
derived from the abstract base classes provided by Geant4:

	G4VUserDetectorConstruction

	G4VUserPhysicsList

	G4VUserActionInitialization

Geant4 does not provide default behavior for these classes.
G4RunManager checks for the existence of these mandatory classes
when the Initialize() and BeamOn() methods are invoked.

As mentioned in the previous section, G4VUserDetectorConstruction
requires the user to define the detector and G4VUserPhysicsList
requires the user to define the physics. Detector definition will be
discussed in Sections How to Define a Detector Geometry and
How to Specify Materials in the Detector. Physics definition will be discussed in
How to Specify Particles and
How to Specify Physics Processes. The user action
G4VUserPrimaryGeneratorAction requires that the initial event state
be defined. Primary event generation will be discussed in
How to Make an Executable Program.

G4VUserActionInitialization should include at least one mandatory
user action class G4VUserPrimaryGeneratorAction. All user action
classes are described in the next section.

Listing 2 Simplest example of ActionInitialization

#include "ActionInitialization.hh"
#include "PrimaryGeneratorAction.hh"

void ActionInitialization::Build() const
{
 SetUserAction(new PrimaryGeneratorAction);
}

User Action Classes

G4VUserPrimaryGeneratorAction is a mandatory class the user has to
provide. It creates an instance of a primary particle generator.
PrimaryGeneratorAction is an example of a user action class
which is derived from G4VUserPrimaryGeneratorAction. In this class
the user must describe the initial state of the primary event. This
class has a public virtual method named GeneratePrimaries() which
will be invoked at the beginning of each event. Details will be given in
How to Generate a Primary Event. Note that Geant4 does not provide any
default behavior for generating a primary event.

Geant4 provides additional five user hook classes:

	G4UserRunAction

	G4UserEventAction

	G4UserStackingAction

	G4UserTrackingAction

	G4UserSteppingAction

These optional user action classes have several virtual methods which
allow the specification of additional procedures at all levels of the
simulation application. Details of the user initialization and action
classes are provided in User Actions.

G4UImanager and UI CommandSubmission

Geant4 provides a category named intercoms. G4UImanager is the
manager class of this category. Using the functionalities of this
category, you can invoke set methods of class objects of which you
do not know the pointer. In
Listing 3, the verbosities of
various Geant4 manager classes are set. Detailed mechanism description
and usage of intercoms will be given in the next chapter, with a
list of available commands. Command submission can be done all through
the application.

Listing 3 An example of main() using interactive terminal.

 #include "DetectorConstruction.hh"
 #include "PhysicsList.hh"
 #include "PrimaryGeneratorAction.hh"

 #include "G4RunManager.hh"
 #include "G4UImanager.hh"

 #include "G4UIExecutive.hh"

 int main(int argc,char** argv)
 {
 // construct the default run manager
 G4RunManager* runManager = new G4RunManager;

 // set mandatory initialization classes
 runManager->SetUserInitialization(new DetectorConstruction);
 runManager->SetUserInitialization(new PhysicsList);

 // set mandatory user action class
 runManager->SetUserAction(new PrimaryGeneratorAction);

 // initialize G4 kernel
 runManager->Initialize();

 // Get the pointer to the User Interface manager
 G4UImanager* UImanager = G4UImanager::GetUIpointer();

 if (argc == 1) {
 // interactive mode : define UI session
 G4UIExecutive* ui = new G4UIExecutive(argc, argv);
 UImanager->ApplyCommand("/control/execute init.mac");
 ui->SessionStart();
 delete ui;
 }
 else {
 // batch mode
 G4String command = "/control/execute ";
 G4String fileName = argv[1];
 UImanager->ApplyCommand(command+fileName);
 }

 // job termination
 delete runManager;
 return 0;
 }

G4cout, G4cerr and G4debug

Although not yet included in the above examples, output streams will be
needed. G4cout and G4cerr are iostream objects defined by
Geant4. The usage of these objects is exactly the same as the ordinary
cout and cerr, except that the output streams will be handled by
G4UImanager. Thus, output strings may be displayed on another window
or stored in a file. Manipulation of these output streams will be
described in How to control the output of G4cout/G4cerr. These objects should be
used instead of the ordinary cout and cerr.

Similarly, G4debug may be used for your debug statements. In the Qt GUI
lines are highlighted to help you pick out your debug information.

[image: ../_images/G4debug.png]

Footnotes

How to Define a Detector Geometry

Basic Concepts

A detector geometry in Geant4 is made of a number of volumes. The
largest volume is called the World volume. It must contain, with
some margin, all other volumes in the detector geometry. The other
volumes are created and placed inside previous volumes, included in the
World volume. The most simple (and efficient) shape to describe the
World is a box.

Each volume is created by describing its shape and its physical
characteristics, and then placing it inside a containing volume.

When a volume is placed within another volume, we call the former volume
the daughter volume and the latter the mother volume. The coordinate
system used to specify where the daughter volume is placed, is the
coordinate system of the mother volume.

To describe a volume's shape, we use the concept of a solid. A solid is
a geometrical object that has a shape and specific values for each of
that shape's dimensions. A cube with a side of 10 centimeters and a
cylinder of radius 30 cm and length 75 cm are examples of solids.

To describe a volume's full properties, we use a logical volume. It
includes the geometrical properties of the solid, and adds physical
characteristics: the material of the volume; whether it contains any
sensitive detector elements; the magnetic field; etc.

We have yet to describe how to position the volume. To do this you
create a physical volume, which places a copy of the logical volume
inside a larger, containing, volume.

Create a Simple Volume

What do you need to do to create a volume?

	Create a solid.

	Create a logical volume, using this solid, and adding other
attributes.

Each of the volume types (solid, logical, and physical) has an
associated registry (VolumeStore) which contains a list of all the
objects of that type constructed so far. The registries will
automatically delete those objects when requested; users should not
deleted geometry objects manually.

Choose a Solid

To create a simple box, you only need to define its name and its extent
along each of the Cartesian axes.

Listing 4 Creating a box.

 G4double world_hx = 3.0*m;
 G4double world_hy = 1.0*m;
 G4double world_hz = 1.0*m;

 G4Box* worldBox
 = new G4Box("World", world_hx, world_hy, world_hz);

This creates a box named "World" with the extent from -3.0 meters to
+3.0 meters along the X axis, from -1.0 to 1.0 meters in Y, and from
-1.0 to 1.0 meters in Z. Note that the G4Box constructor takes as
arguments the halves of the total box size.

It is also very simple to create a cylinder. To do this, you can use the
G4Tubs class.

Listing 5 Creating a cylinder.

 G4double innerRadius = 0.*cm;
 G4double outerRadius = 60.*cm;
 G4double hz = 25.*cm;
 G4double startAngle = 0.*deg;
 G4double spanningAngle = 360.*deg;

 G4Tubs* trackerTube
 = new G4Tubs("Tracker",
 innerRadius,
 outerRadius,
 hz,
 startAngle,
 spanningAngle);

This creates a full cylinder, named "Tracker", of radius 60 centimeters
and length 50 cm (the hz parameter represents the half length in Z).

Create a Logical Volume

To create a logical volume, you must start with a solid and a material.
So, using the box created above, you can create a simple logical volume
filled with argon gas (see How to Specify Materials in the Detector) by entering:

G4LogicalVolume* worldLog
 = new G4LogicalVolume(worldBox, Ar, "World");

This logical volume is named "World".

Similarly we create a logical volume with the cylindrical solid filled
with aluminium

G4LogicalVolume* trackerLog
 = new G4LogicalVolume(trackerTube, Al, "Tracker");

and named "Tracker".

Place a Volume

How do you place a volume? You start with a logical volume, and then you
decide the already existing volume inside of which to place it. Then you
decide where to place its center within that volume, and how to rotate
it. Once you have made these decisions, you can create a physical
volume, which is the placed instance of the volume, and embodies all of
these attributes.

Create a Physical Volume

You create a physical volume starting with your logical volume. A
physical volume is simply a placed instance of the logical volume. This
instance must be placed inside a mother logical volume. For simplicity
it is unrotated:

Listing 6 A simple physical volume.

G4double pos_x = -1.0*meter;
G4double pos_y = 0.0*meter;
G4double pos_z = 0.0*meter;

G4VPhysicalVolume* trackerPhys
 = new G4PVPlacement(0, // no rotation
 G4ThreeVector(pos_x, pos_y, pos_z),
 // translation position
 trackerLog, // its logical volume
 "Tracker", // its name
 worldLog, // its mother (logical) volume
 false, // no boolean operations
 0); // its copy number

This places the logical volume trackerLog at the origin of the
mother volume worldLog, shifted by one meter along X and unrotated.
The resulting physical volume is named "Tracker" and has a copy number
of 0.

An exception exists to the rule that a physical volume must be placed
inside a mother volume. That exception is for the World volume, which is
the largest volume created, and which contains all other volumes. This
volume obviously cannot be contained in any other. Instead, it must be
created as a G4PVPlacement with a null mother pointer. It also must
be unrotated, and it must be placed at the origin of the global
coordinate system.

Generally, it is best to choose a simple solid as the World volume, the
G4Box solid type is used in all basic examples.

Coordinate Systems and Rotations

In Geant4, the rotation matrix associated to a placed physical volume
represents the rotation of the reference system of this volume with
respect to its mother.

A rotation matrix is normally constructed as in CLHEP, by instantiating
the identity matrix and then applying a rotation to it. This is also
demonstrated in Example B3.

Footnotes

How to Specify Materials in the Detector

General Considerations

In nature, general materials (chemical compounds, mixtures) are made of
elements, and elements are made of isotopes. Therefore, these are the
three main classes designed in Geant4. Each of these classes has a table
as a static data member, which is for keeping track of the instances
created of the respective classes. All three objects automatically
register themselves into the corresponding table on construction, and
should never be deleted in user code.

The G4Element class describes the properties of the atoms:

	atomic number,

	number of nucleons,

	atomic mass,

	shell energy,

	as well as quantities such as cross sections per atom, etc.

The G4Material class describes the macroscopic properties of matter:

	density,

	state,

	temperature,

	pressure,

	as well as macroscopic quantities like radiation length, mean free
path, dE/dx, etc.

The G4Material class is the one which is visible to the rest of the
toolkit, and is used by the tracking, the geometry, and the physics. It
contains all the information relative to the eventual elements and
isotopes of which it is made, at the same time hiding the implementation
details.

Define a Simple Material

In the example below, liquid argon is created, by specifying its name,
density, mass per mole, and atomic number.

Listing 7 Creating liquid argon.

G4double z, a, density;
density = 1.390*g/cm3;
a = 39.95*g/mole;

G4Material* lAr = new G4Material(name="liquidArgon", z=18., a, density);

The pointer to the material, lAr, will be used to specify the matter
of which a given logical volume is made:

G4LogicalVolume* myLbox = new G4LogicalVolume(aBox,lAr,"Lbox",0,0,0);

Define a Molecule

In the example below, the water, H2O, is built from its components, by
specifying the number of atoms in the molecule.

Listing 8 Creating water by defining its molecular components.

G4double z, a, density;
G4String name, symbol;
G4int ncomponents, natoms;

a = 1.01*g/mole;
G4Element* elH = new G4Element(name="Hydrogen",symbol="H" , z= 1., a);

a = 16.00*g/mole;
G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , z= 8., a);

density = 1.000*g/cm3;
G4Material* H2O = new G4Material(name="Water",density,ncomponents=2);
H2O->AddElement(elH, natoms=2);
H2O->AddElement(elO, natoms=1);

Define a Mixture by Fractional Mass

In the example below, air is built from nitrogen and oxygen, by giving
the fractional mass of each component.

Listing 9 Creating air by defining the fractional mass of its components.

G4double z, a, fractionmass, density;
G4String name, symbol;
G4int ncomponents;

a = 14.01*g/mole;
G4Element* elN = new G4Element(name="Nitrogen",symbol="N" , z= 7., a);

a = 16.00*g/mole;
G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , z= 8., a);

density = 1.290*mg/cm3;
G4Material* Air = new G4Material(name="Air ",density,ncomponents=2);
Air->AddElement(elN, fractionmass=70*perCent);
Air->AddElement(elO, fractionmass=30*perCent);

Define a Material from the Geant4 Material Database

In the example below, air and water are accessed via the Geant4 material
database.

Listing 10 Defining air and water from the internal Geant4 database.

G4NistManager* man = G4NistManager::Instance();

G4Material* H2O = man->FindOrBuildMaterial("G4_WATER");
G4Material* Air = man->FindOrBuildMaterial("G4_AIR");

Define a Material from the Base Material

It is possible to build new material on base of an existing "base"
material. This feature is useful for electromagnetic physics allowing to
peak up for the derived material all correction data and precomputed
tables of stopping powers and cross sections of the base material. In
the example below, two methods how to create water with unusual density
are shown.

Listing 11 Defining water with user defined density on base of G4_WATER.

G4double density;

density = 1.05*mg/cm3;
G4Material* water1 = new G4Material("Water_1.05",density,"G4_WATER");

density = 1.03*mg/cm3;
G4NistManager* man = G4NistManager::Instance();
G4Material* water2 = man->BuildMaterialWithNewDensity("Water_1.03","G4_WATER",density);

Print Material Information

Listing 12 Printing information about materials.

G4cout << H2O; \\ print a given material
G4cout << *(G4Material::GetMaterialTable()); \\ print the list of materials

In Geant4 examples you all possible ways to build a material.

Access to Geant4 material database

Listing 13 Geant4 material database may be accessed via UI commands.

/material/nist/printElement Fe \\ print element by name
/material/nist/printElementZ 13 \\ print element by atomic number
/material/nist/listMaterials type \\ print materials type = [simple | compound | hep | all]
/material/g4/printElement elmName \\ print instantiated element by name
/material/g4/printMaterial matName \\ print instantiated material by name

In Geant4 examples you with find all possible ways to build a material.

Footnotes

How to Specify Particles

G4VUserPhysicsList is one of the mandatory user base classes
described in How to Define the main() Program. Within this class all
particles and physics processes to be used in your simulation must be
defined. The range cut-off parameter should also be defined in this
class.

The user must create a class derived from G4VuserPhysicsList and
implement the following pure virtual methods:

ConstructParticle(); // construction of particles
ConstructProcess(); // construct processes and register them to particles

The user may also want to override the default implementation of the
following virtual method:

SetCuts(); // setting a range cut value for all particles

This section provides some simple examples of the
ConstructParticle() and SetCuts() methods. For information on
ConstructProcess() methods, please see
How to Specify Physics Processes.

Particle Definition

Geant4 provides various types of particles for use in simulations:

	ordinary particles, such as electrons, protons, and gammas

	resonant particles with very short lifetimes, such as vector mesons
and delta baryons

	nuclei, such as deuteron, alpha, and heavy ions (including
hyper-nuclei)

	quarks, di-quarks, and gluon

Each particle is represented by its own class, which is derived from
G4ParticleDefinition. (Exception: G4Ions represents all heavy
nuclei. Please see Particles.) Particles are organized into
six major categories:

	lepton,

	meson,

	baryon,

	boson,

	shortlived and

	ion,

each of which is defined in a corresponding sub-directory under
geant4/source/particles. There is also a corresponding granular
library for each particle category.

The G4ParticleDefinition Class

G4ParticleDefinition has properties which characterize individual
particles, such as, name, mass, charge, spin, and so on. Most of these
properties are "read-only" and can not be changed directly.
G4ParticlePropertyTable is used to retrieve (load) particle property
of G4ParticleDefinition into (from) G4ParticlePropertyData.

How to Access a Particle

Each particle class type represents an individual particle type, and
each class has a single object. This object can be accessed by using the
static method of each class. There are some exceptions to this rule;
please see Particles for details.

For example, the class G4Electron represents the electron and the
member G4Electron::theInstance points its only object. The pointer
to this object is available through the static methods
G4Electron::ElectronDefinition(). G4Electron::Definition().

More than 100 types of particles are provided by default, to be used in
various physics processes. In normal applications, users will not need
to define their own particles.

The unique object for each particle class is created when its static
method to get the pointer is called at the first time. Because particles
are dynamic objects and should be instantiated before initialization of
physics processes, you must explicitly invoke static methods of all
particle classes required by your program at the initialization step.
(NOTE: The particle object was static and created automatically before
8.0 release)

Dictionary of Particles

The G4ParticleTable class is provided as a dictionary of particles.
Various utility methods are provided, such as:

FindParticle(G4String name); // find the particle by name
FindParticle(G4int PDGencoding) // find the particle by PDG encoding .

G4ParticleTable is defined as a singleton object, and the static
method G4ParticleTable::GetParticleTable() provides its pointer.

As for heavy ions (including hyper-nuclei), objects are created
dynamically by requests from users and processes. The
G4ParticleTable class provides methods to create ions, such as:

G4ParticleDefinition* GetIon(G4int atomicNumber,
 G4int atomicMass,
 G4double excitationEnergy);

Particles are registered automatically during construction. The user has
no control over particle registration.

Constructing Particles

ConstructParticle() is a pure virtual method, in which the static
member functions for all the particles you require should be called.
This ensures that objects of these particles are created.

Warning

You must define "ALL PARTICLE TYPES" which are used in your
application, except for heavy ions. "ALL PARTICLE TYPES" means not only
primary particles, but also all other particles which may appear as
secondaries generated by physics processes you use. Beginning with
Geant4 version 8.0, you should keep this rule strictly because all
particle definitions are revised to "non-static" objects.

For example, suppose you need a proton and a geantino, which is a
virtual particle used for simulation and which does not interact with
materials. The ConstructParticle() method is implemented as below:

Listing 14 Construct a proton and a geantino.

 void MyPhysicsList::ConstructParticle()
 {
 G4Proton::ProtonDefinition();
 G4Geantino::GeantinoDefinition();
 }

Due to the large number of pre-defined particles in Geant4, it is
cumbersome to list all the particles by this method. If you want all the
particles in a Geant4 particle category, there are six utility classes,
corresponding to each of the particle categories, which perform this
function:

	G4BosonConstructor

	G4LeptonConstructor

	G4MesonConstructor

	G4BaryonConstructor

	G4IonConstructor

	G4ShortlivedConstructor.

An example of this is shown in ExN05PhysicsList, listed below.

Listing 15 Construct all leptons.

 void ExN05PhysicsList::ConstructLeptons()
 {
 // Construct all leptons
 G4LeptonConstructor pConstructor;
 pConstructor.ConstructParticle();
 }

Range Cuts

To avoid infrared divergence, some electromagnetic processes require a
threshold below which no secondary will be generated. Because of this
requirement, gammas, electrons and positrons require production
threshold. This threshold should be defined as a distance, or range
cut-off, which is internally converted to an energy for individual
materials. The range threshold should be defined in the initialization
phase using the SetCuts() method of G4VUserPhysicsList.
Cuts per Region discusses threshold and tracking cuts in detail.

Setting the cuts

Production threshold values should be defined in SetCuts() which is
a virtual method of the G4VUserPhysicsList. Construction of
particles, materials, and processes should precede the invocation of
SetCuts(). G4RunManager takes care of this sequence in usual
applications.

This range cut value is converted threshold energies for each material
and for each particle type (i.e. electron, positron and gamma) so that
the particle with threshold energy stops (or is absorbed) after
traveling the range cut distance. In addition, from the 9.3 release
,this range cut value is applied to the proton as production thresholds
of nuclei for hadron elastic processes. In this case, the range cut
value does not means the distance of traveling. Threshold energies are
calculated by a simple formula from the cut in range.

Note that the upper limit of the threshold energy is defined as 10 GeV.
If you want to set higher threshold energy, you can change the limit by
using "/cuts/setMaxCutEnergy" command before setting the range cut.

The idea of a "unique cut value in range" is one of the important
features of Geant4 and is used to handle cut values in a coherent
manner. For most applications, users need to determine only one cut
value in range, and apply this value to gammas, electrons and positrons
alike. (and proton too)

The default implementation of SetCuts() method provides a
defaultCutValue member as the unique range cut-off value for all
particle types. The defaultCutValue is set to 1.0 mm by default.
User can change this value by SetDefaultCutValue() The "/run/setCut"
command may be used to change the default cut value interactively.

Warning

DO NOT change cut values inside the event loop. Cut values may
however be changed between runs.

It is possible to set different range cut values for gammas, electrons
and positrons by using SetCutValue() methods (or using
"/run/setCutForAGivenParticle" command). However, user must be careful
with physics outputs because Geant4 processes (especially energy loss)
are designed to conform to the "unique cut value in range" scheme.

Beginning with Geant4 version 5.1, it is now possible to set production
thresholds for each geometrical region. This new functionality is
described in Cuts per Region.

Footnotes

How to Specify Physics Processes

Physics Processes

Physics processes describe how particles interact with materials. Geant4
provides seven major categories of processes:

	electromagnetic,

	hadronic,

	transportation,

	decay,

	optical,

	photolepton_hadron, and

	parameterisation.

All physics processes are derived from the G4VProcess base class.
Its virtual methods

	AtRestDoIt,

	AlongStepDoIt, and

	PostStepDoIt

and the corresponding methods

	AtRestGetPhysicalInteractionLength,

	AlongStepGetPhysicalInteractionLength, and

	PostStepGetPhysicalInteractionLength

describe the behavior of a physics process when they are implemented in
a derived class. The details of these methods are described in
Physics Processes.

The following are specialized base classes to be used for simple
processes:

	G4VAtRestProcess
	Processes with only AtRestDoIt

	G4VContinuousProcess
	Processes with only AlongStepDoIt

	G4VDiscreteProcess
	processes with only PostStepDoIt

Another 4 virtual classes, such as G4VContinuousDiscreteProcess, are
provided for complex processes.

Managing Processes

The G4ProcessManager class contains a list of processes that a
particle can undertake. It has information on the order of invocation of
the processes, as well as which kind of DoIt method is valid for
each process in the list. A G4ProcessManager object corresponds to
each particle and is attached to the G4ParticleDefiniton class.

In order to validate processes, they should be registered with the
particle's G4ProcessManager. Process ordering information is
included by using the AddProcess() and SetProcessOrdering()
methods. For registration of simple processes, the
AddAtRestProcess(), AddContinuousProcess() and
AddDiscreteProcess() methods may be used.

G4ProcessManager is able to turn some processes on or off during a
run by using the ActivateProcess() and InActivateProcess()
methods. These methods are valid only after process registration is
complete, so they must not be used in the PreInit phase.

The G4VUserPhysicsList class creates and attaches
G4ProcessManager objects to all particle classes defined in the
ConstructParticle() method.

Specifying Physics Processes

G4VUserPhysicsList is the base class for a "mandatory user class"
(see How to Define the main() Program), in which all physics processes and
all particles required in a simulation must be registered. The user must
create a class derived from G4VUserPhysicsList and implement the
pure virtual method ConstructProcess().

For example, if just the G4Geantino particle class is required, only
the transportation process need be registered. The
ConstructProcess() method would then be implemented as follows:

Listing 16 Register processes for a geantino.

void MyPhysicsList::ConstructProcess()
{
 // Define transportation process
 AddTransportation();
}

Here, the AddTransportation() method is provided in the
G4VUserPhysicsList class to register the G4Transportation class
with all particle classes. The G4Transportation class (and/or
related classes) describes the particle motion in space and time. It is
the mandatory process for tracking particles.

In the ConstructProcess() method, physics processes should be
created and registered with each particle's instance of
G4ProcessManager.

An example of process registration is given in the
G4VUserPhysicsList::AddTransportation() method.

Registration in G4ProcessManager is a complex procedure for other
processes and particles because the relations between processes are
crucial for some processes. In order to ease registration procedures,
G4PhysicsListHelper is provided. Users do not care about type of
processes (i.e. AtRest and/or Discrete and/or Continuous) or ordering
parameters.

An example of electromagnetic process registration for the gamma is
shown below

Listing 17 Register processes for a gamma.

void MyPhysicsList::ConstructProcess()
{
 // Define transportation process
 AddTransportation();
 // electromagnetic processes
 ConstructEM();
}

void MyPhysicsList::ConstructEM()
{
 // Get pointer to G4PhysicsListHelper
 G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper();

 // Get pointer to gamma
 G4ParticleDefinition* particle = G4Gamma::GammaDefinition();

 // Construct and register processes for gamma
 ph->RegisterProcess(new G4PhotoElectricEffect(), particle);
 ph->RegisterProcess(new G4ComptonScattering(), particle);
 ph->RegisterProcess(new G4GammaConversion(), particle);
 ph->RegisterProcess(new G4RayleighScattering(), particle);
}

Footnotes

How to Generate a Primary Event

Generating Primary Events

G4VuserPrimaryGeneratorAction is one of the mandatory classes
available for deriving your own concrete class. In your concrete class,
you have to specify how a primary event should be generated. Actual
generation of primary particles will be done by concrete classes of
G4VPrimaryGenerator, explained in the following sub-section. Your
G4VUserPrimaryGeneratorAction concrete class just arranges the way
primary particles are generated.

Listing 18 PrimaryGeneratorAction: An example of a G4VUserPrimaryGeneratorAction concrete class using G4ParticleGun. For the usage of G4Particle Gun refer to the next subsection.

//////////////////////////////////
// PrimaryGeneratorAction.hh
//////////////////////////////////

#ifndef PrimaryGeneratorAction_h
#define PrimaryGeneratorAction_h 1

#include "G4VUserPrimaryGeneratorAction.hh"
#include "G4ThreeVector.hh"
#include "globals.hh"

class G4ParticleGun;
class G4Event;

class PrimaryGeneratorAction : public G4VUserPrimaryGeneratorAction
{
 public:
 PrimaryGeneratorAction(
 const G4String& particleName = "geantino",
 G4double energy = 1.*MeV,
 G4ThreeVector position= G4ThreeVector(0,0,0),
 G4ThreeVector momentumDirection = G4ThreeVector(0,0,1));
 ~PrimaryGeneratorAction();

 // methods
 virtual void GeneratePrimaries(G4Event*);

 private:
 // data members
 G4ParticleGun* fParticleGun; //pointer a to G4 service class
};

#endif

//////////////////////////////////
// PrimaryGeneratorAction.cc
//////////////////////////////////

#include "PrimaryGeneratorAction.hh"

#include "G4Event.hh"
#include "G4ParticleGun.hh"
#include "G4ParticleTable.hh"
#include "G4ParticleDefinition.hh"

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

PrimaryGeneratorAction::PrimaryGeneratorAction(
 const G4String& particleName,
 G4double energy,
 G4ThreeVector position,
 G4ThreeVector momentumDirection)
 : G4VUserPrimaryGeneratorAction(),
 fParticleGun(0)
{
 G4int nofParticles = 1;
 fParticleGun = new G4ParticleGun(nofParticles);

 // default particle kinematic
 G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
 G4ParticleDefinition* particle
 = particleTable->FindParticle(particleName);
 fParticleGun->SetParticleDefinition(particle);
 fParticleGun->SetParticleEnergy(energy);
 fParticleGun->SetParticlePosition(position);
 fParticleGun->SetParticleMomentumDirection(momentumDirection);
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

PrimaryGeneratorAction::~PrimaryGeneratorAction()
{
 delete fParticleGun;
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void PrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{
 // this function is called at the beginning of event

 fParticleGun->GeneratePrimaryVertex(anEvent);
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

Selection of the generator

In the constructor of your G4VUserPrimaryGeneratorAction, you should
instantiate the primary generator(s). If necessary, you need to set some
initial conditions for the generator(s).

In PrimaryGeneratorAction, G4ParticleGun
is constructed to use as the actual primary particle generator. Methods
of G4ParticleGun are described in the following section. Please note
that the primary generator object(s) you construct in your
G4VUserPrimaryGeneratorAction concrete class must be deleted in your
destructor.

Generation of an event

G4VUserPrimaryGeneratorAction has a pure virtual method named
generatePrimaries(). This method is invoked at the beginning of each
event. In this method, you have to invoke the G4VPrimaryGenerator
concrete class you instantiated via the generatePrimaryVertex()
method.

You can invoke more than one generator and/or invoke one generator more
than once. Mixing up several generators can produce a more complicated
primary event.

G4VPrimaryGenerator

Geant4 provides three G4VPrimaryGenerator concrete classes. Among
these G4ParticleGun and G4GeneralParticleSource will be
discussed here. The third one is G4HEPEvtInterface, which will be
discussed in Event Generator Interface.

G4ParticleGun

G4ParticleGun is a generator provided by Geant4. This class
generates primary particle(s) with a given momentum and position. It
does not provide any sort of randomizing. The constructor of
G4ParticleGun takes an integer which causes the generation of one or
more primaries of exactly same kinematics. It is a rather frequent user
requirement to generate a primary with randomized energy, momentum,
and/or position. Such randomization can be achieved by invoking various
set methods provided by G4ParticleGun. The invocation of these
methods should be implemented in the generatePrimaries() method of
your concrete G4VUserPrimaryGeneratorAction class before invoking
generatePrimaryVertex() of G4ParticleGun. Geant4 provides
various random number generation methods with various distributions (see
Global Usage Classes).

Public methods of G4ParticleGun

The following methods are provided by G4ParticleGun, and all of them
can be invoked from the generatePrimaries() method in your concrete
G4VUserPrimaryGeneratorAction class.

	void SetParticleDefinition(G4ParticleDefinition*)

	void SetParticleMomentum(G4ParticleMomentum)

	void SetParticleMomentumDirection(G4ThreeVector)

	void SetParticleEnergy(G4double)

	void SetParticleTime(G4double)

	void SetParticlePosition(G4ThreeVector)

	void SetParticlePolarization(G4ThreeVector)

	void SetNumberOfParticles(G4int)

G4GeneralParticleSource

For many applications G4ParticleGun is a suitable particle
generator. However if you want to generate primary particles in more
sophisticated manner, you can utilize G4GeneralParticleSource, the
Geant4 General Particle Source module (GPS), discussed in the next
section (General Particle Source).

Footnotes

Geant4 General Particle Source

Introduction

The G4GeneralParticleSource (GPS) is part of the Geant4 toolkit for
Monte-Carlo, high-energy particle transport. Specifically, it allows the
specifications of the spectral, spatial and angular distribution of the
primary source particles. An overview of the GPS class structure is
presented here. Configuration covers the
configuration of GPS for a user application, and
Macro Commands describes the macro command
interface. Example Macro File gives an example
input file to guide the first time user.

G4GeneralParticleSource is used exactly the same way as
G4ParticleGun in a Geant4 application. In existing applications one
can simply change your PrimaryGeneratorAction by globally replacing
G4ParticleGun with G4GeneralParticleSource. GPS may be
configured via command line, or macro based, input. The experienced user
may also hard-code distributions using the methods and classes of the
GPS that are described in more detail in a technical note 1.

The class diagram of GPS is shown in Fig. 1. As of version 10.01, a split-class
mechanism was introduced to reduce memory usage in multithreaded mode.
The G4GeneralParticleSourceData class is a thread-safe singleton
which provides access to the source information for the
G4GeneralParticleSource class. The G4GeneralParticleSourceData
class can have multiple instantiations of the G4SingleParticleSource
class, each with independent positional, angular and energy
distributions as well as incident particle types. To the user, this
change should be transparent.

[image: ../_images/GPS.png]

Fig. 1 The class diagram of G4GeneralParticleSource.

	1

	General purpose Source Particle Module for Geant4/SPARSET: Technical
Note, UoS-GSPM-Tech, Issue 1.1, C Ferguson, February 2000.

Configuration

GPS allows the user to control the following characteristics of primary
particles:

	Spatial sampling: on simple 2D or 3D surfaces such as discs, spheres,
and boxes.

	Angular distribution: unidirectional, isotropic, cosine-law, beam or
arbitrary (user defined).

	Spectrum: linear, exponential, power-law, Gaussian, blackbody, or
piece-wise fits to data.

	Multiple sources: multiple independent sources can be used in the
same run.

As noted above, G4GeneralParticleSource is used exactly the same way
as G4ParticleGun in a Geant4 application, and may be substituted for
the latter by "global search and replace" in existing application source
code.

Position Distribution

The position distribution can be defined by using several basic shapes
to contain the starting positions of the particles. The easiest source
distribution to define is a point source. One could also define planar
sources, where the particles emanate from circles, annuli, ellipses,
squares or rectangles. There are also methods for defining 1D or 2D
accelerator beam spots. The five planes are oriented in the x-y plane.
To define a circle one gives the radius, for an annulus one gives the
inner and outer radii, and for an ellipse, a square or a rectangle one
gives the half-lengths in x and y.

More complicated still, one can define surface or volume sources where
the input particles can be confined to either the surface of a three
dimensional shape or to within its entire volume. The four 3D shapes
used within G4GeneralParticleSource are sphere, ellipsoid, cylinder and
parallelepiped. A sphere can be defined simply by specifying the radius.
Ellipsoids are defined by giving their half-lengths in x, y and z.
Cylinders are defined such that the axis is parallel to the z-axis, the
user is therefore required to give the radius and the z half-length.
Parallelepipeds are defined by giving x, y and z half-lengths, plus the
angles [image: \alpha], [image: \theta], and [image: \phi]
(Fig. 2).

[image: The angles used in the definition of a Parallelepiped.]

Fig. 2 The angles used in the definition of a Parallelepiped.

To allow easy definition of the sources, the planes and shapes are
assumed to be orientated in a particular direction to the coordinate
axes, as described above. For more general applications, the user may
supply two vectors (x' and a vector in the plane x'-y') to rotate the
co-ordinate axes of the shape with respect to the overall co-ordinate
system (Fig. 3). The rotation
matrix is automatically calculated within G4GeneralParticleSource. The
starting points of particles are always distributed homogeneously over
the 2D or 3D surfaces, although biasing can change this.

[image: An illustration of the use of rotation matrices. A cylinder is defined with its axis parallel to the z-axis (black lines), but the definition of 2 vectors can rotate it into the frame given by x', y', z' (red lines).]

Fig. 3 An illustration of the use of rotation matrices. A cylinder is
defined with its axis parallel to the z-axis (black lines), but the
definition of 2 vectors can rotate it into the frame given by x', y',
z' (red lines).

Angular Distribution

The angular distribution is used to control the directions in which the
particles emanate from/incident upon the source point. In general there
are three main choices, isotropic, cosine-law or user-defined. In
addition there are options for specifying parallel beam as well as
diverse accelerator beams. The isotropic distribution represents what
would be seen from a uniform [image: 4\pi] flux. The cosine-law represents the
distribution seen at a plane from a uniform [image: 2\pi] flux.

It is possible to bias (Biasing) both
[image: \theta] and [image: \phi] for any of the predefined distributions, including
setting lower and upper limits to [image: \theta] and [image: \phi]. User-defined
distributions cannot be additionally biased (any bias should obviously
be incorporated into the user definition).

Incident with zenith angle [image: \theta=0] means the particle is travelling
along the -z axis. It is important to bear this in mind when specifying
user-defined co-ordinates for angular distributions. The user must be
careful to rotate the co-ordinate axes of the angular distribution if
they have rotated the position distribution
(Fig. 3).

The user defined distribution requires the user to enter a histogram in
either [image: \theta] or [image: \phi] or both. The user-defined distribution may be
specified either with respect to the coordinate axes or with respect to
the surface-normal of a shape or volume. For the surface-normal
distribution, [image: \theta] should only be defined between 0 and [image: \pi/2], not the
usual 0 to [image: \pi] range.

The top-level /gps/direction command uses direction cosines to
specify the primary particle direction, as follows:

(1)[image: P_x & = - \sin \theta \cos \phi \\ P_y & = - \sin \theta \sin \phi \\ P_z & = - \cos \theta]

Energy Distribution

The energy of the input particles can be set to follow several built-in
functions or a user-defined one, as shown in
GPS-spectra. The user can bias any of the
pre-defined energy distributions in order to speed up the simulation
(user-defined distributions are already biased, by construction).

There is also the option for the user to define a histogram in energy
("User") or energy per nucleon ("Epn") or to give an arbitrary
point-wise spectrum ("Arb") that can be fit with various simple
functions. The data for histograms or point spectra must be provided in
ascending bin (abscissa) order. The point-wise spectrum may be
differential (as with a binned histogram) or integral (a cumulative
distribution function). If integral, the data must satisfy
[image: s(e1) \geq s(e2)] for [image: e1<e2] when entered;
this is not validated by the GPS code. The maximum energy of an integral
spectrum is defined by the last-but-one data point, because GPS converts
to a differential spectrum internally.

Unlike the other spectral distributions it has proved difficult to
integrate indefinitely the black-body spectrum and this has lead to an
alternative approach. Instead it has been decided to use the black-body
formula to create a 10,000 bin histogram and then to produce random
energies from this.

Similarly, the broken power-law for cosmic diffuse gamma rays makes
generating an indefinite integral CDF problematic. Instead, the minimum
and maximum energies specified by the user are used to construct a
definite-integral CDF from which random energies are selected.

Biasing

The user can bias distributions by entering a histogram. It is the
random numbers from which the quantities are picked that are biased and
so one only needs a histogram from 0 to 1. Great care must be taken when
using this option, as the way a quantity is calculated will affect how
the biasing works, as discussed below. Bias histograms are entered in
the same way as other user-defined histograms.

When creating biasing histograms it is important to bear in mind the way
quantities are generated from those numbers. For example let us compare
the biasing of a [image: \theta] distribution with that of a [image: \phi] distribution.
Let us divide the [image: \theta] and [image: \phi] ranges up into 10 bins, and then
decide we want to restrict the generated values to the first and last
bins. This gives a new [image: \phi] range of 0 to 0.628 and 5.655 to 6.283.
Since [image: \phi] is calculated using [image: \phi = 2\pi \times \rm{RNDM}], this simple biasing will work
correctly.

If we now look at [image: \theta], we expect to select values in the two ranges 0
to 0.314 (for [image: 0 \le \rm{RNDM} \le 0.1]) and 2.827 to 3.142 (for
[image: 0 \le \rm{RNDM} \le 0.9]). However, the polar angle [image: \theta]
is calculated from the formula
[image: \theta = \arccos (1-2\times \rm{RNDM})].
From this, we see that 0.1 gives a [image: \theta] of 0.644 and a [image: \rm{RNDM}] of 0.9
gives a [image: \theta] of 2.498. This means that the above will not bias the
distribution as the user had wished. The user must therefore take into
account the method used to generate random quantities when trying to
apply a biasing scheme to them. Some quantities such as x, y, z and [image: \phi]
will be relatively easy to bias, but others may require more thought.

User-Defined Histograms

The user can define histograms for several reasons: angular
distributions in either [image: \theta] or [image: \phi]; energy distributions; energy per
nucleon distributions; or biasing of x, y, z, [image: \theta], [image: \phi], or energy.
Even though the reasons may be different the approach is the same.

To choose a histogram the command /gps/hist/type is used
(Macro Commands). If one wanted to enter an angular
distribution one would type "theta" or "phi" as the argument. The
histogram is loaded, one bin at a time, by using the /gps/hist/point
command, followed by its two arguments the upper boundary of the bin and
the weight (or area) of the bin. Histograms are therefore differential
functions.

Currently histograms are limited to 1024 bins. The first value of each
user input data pair is treated as the upper edge of the histogram bin
and the second value is the bin content. The exception is the very first
data pair the user input whose first value is the treated as the lower
edge of the first bin of the histogram, and the second value is not
used. This rule applies to all distribution histograms, as well as
histograms for biasing.

The user has to be aware of the limitations of histograms. For example,
in general [image: \theta] is defined between 0 and [image: \pi] and [image: \phi] is defined
between 0 and [image: 2\pi], so histograms defined outside of these limits may not
give the user what they want (see also Biasing).

Macro Commands

G4GeneralParticleSource can be configured by typing commands from
the /gps command directory tree, or including the /gps commands
in a g4macro file.

G4ParticleGun equivalent commands

Table 1 G4ParticleGun equivalent commands.

	Command

	Arguments

	Description and restrictions

	/gps/List

	
	List available incident particles

	/gps/particle

	name

	Defines the particle type [default
geantino], using Geant4 naming
convention.

	/gps/direction

	Px Py Pz

	Set the momentum direction [default
(1,0,0)] of generated particles using
(1)

	/gps/energy

	E unit

	Sets the energy [default 1 MeV] for
mono-energetic sources. The units can be
eV, keV, MeV, GeV, TeV or PeV. (NB: it
is recommended to use /gps/ene/mono
instead.)

	/gps/position

	X Y Z unit

	Sets the centre co-ordinates (X,Y,Z) of
the source [default (0,0,0) cm]. The
units can be micron, mm, cm, m or km.
(NB: it is recommended to use
/gps/pos/centre instead.)

	/gps/ion

	Z A Q E

	After /gps/particle ion, sets the
properties (atomic number Z, atomic mass
A, ionic charge Q, excitation energy E
in keV) of the ion.

	/gps/ionLvl

	Z A Q lvl

	After /gps/particle ion, sets the
properties (atomic number Z, atomic mass
A, ionic charge Q, Number of metastable
state excitation level (0-9) of the ion.

	/gps/time

	t0 unit

	Sets the primary particle (event) time
[default 0 ns]. The units can be ps, ns,
us, ms, or s.

	/gps/polarization

	Px Py Pz

	Sets the polarization vector of the
source, which does not need to be a unit
vector.

	/gps/number

	N

	Sets the number of particles [default 1]
to simulate on each event.

	/gps/verbose

	level

	Control the amount of information
printed out by the GPS code. Larger
values produce more detailed output.

Multiple source specification

Table 2 Multiple source specification.

	Command

	Arguments

	Description and restrictions

	/gps/source/add

	intensity

	Add a new particle source with the
specified intensity

	/gps/source/list

	
	List the particle sources defined.

	/gps/source/clear

	
	Remove all defined particle sources.

	/gps/source/show

	
	Display the current particle source

	/gps/source/set

	index

	Select the specified particle source as
the current one.

	/gps/source/delete

	index

	Remove the specified particle source.

	/gps/source/
multiplevertex

	flag

	Specify true for simultaneous
generation of multiple vertices, one from
each specified source. False [default]
generates a single vertex, choosing one
source randomly.

	/gps/source/
intensity

	intensity

	Reset the current source to the
specified intensity

	/gps/source/
flatsampling

	flag

	Set to True to allow biased sampling
among the sources. Setting to True will
ignore source intensities. The default
is False.

Source position and structure

Source direction and angular distribution

Energy spectra

User-defined histograms and interpolated functions

Example Macro File

Macro test2.g4mac
/control/verbose 0
/tracking/verbose 0
/event/verbose 0
/gps/verbose 2
/gps/particle gamma
/gps/pos/type Plane
/gps/pos/shape Square
/gps/pos/centre 1 2 1 cm
/gps/pos/halfx 2 cm
/gps/pos/halfy 2 cm
/gps/ang/type cos
/gps/ene/type Lin
/gps/ene/min 2 MeV
/gps/ene/max 10 MeV
/gps/ene/gradient 1
/gps/ene/intercept 1
/run/beamOn 10000

The above macro defines a planar source, square in shape, 4 cm by 4 cm
and centred at (1,2,1) cm. By default the normal of this plane is the
z-axis. The angular distribution is to follow the cosine-law. The energy
spectrum is linear, with gradient and intercept equal to 1, and extends
from 2 to 10 MeV. 10,000 primaries are to be generated.

[image: ../_images/GPSexample.png]

Fig. 4 Energy, position and angular distributions of the primary
particles as generated by the macro file shown above.

The standard Geant4 output should show that the primary particles start
from between 1, 0, 1 and 3, 4, 1 (in cm) and have energies between 2 and
10 MeV, as shown in Fig. 4, in which we
plotted the actual energy, position and angular distributions of the
primary particles generated by the above macro file.

How to Make an Executable Program

The code for the user examples in Geant4 is placed in the subdirectory
examples of the main Geant4 source package. This directory is
installed to the share/Geant4-G4VERSION/examples (where G4VERSION is the
Geant4 version number) subdirectory under the installation prefix. In
the following section, a quick overview will be given on how to build a
concrete example, "ExampleB1", which is part of the Geant4 distribution,
using CMake.

Using CMake to Build Applications

Geant4 installs a file named Geant4Config.cmake located in

+- CMAKE_INSTALL_PREFIX
 +- lib/
 +- cmake/
 +- Geant4/
 +- Geant4Config.cmake

which is designed for use with the CMake find_package command.
Building a Geant4 application using CMake therefore involves writing a
CMakeLists.txt script using this and other CMake commands
to locate Geant4 and describe the build of your client application.
Whilst it requires a bit of effort to write the script, CMake provides a
very friendly yet powerful tool, especially if you are working on multiple platforms.
It is therefore the method we recommend for building Geant4 applications.

We'll use Basic Example B1, which you may find in the Geant4 source
directory under examples/basic/B1, to demonstrate the use of CMake
to build a Geant4 application. You'll find links to the latest CMake
documentation for the commands used throughout, so please follow these
for further information. The application sources and scripts are
arranged in the following directory structure:

+- B1/
 +- CMakeLists.txt
 +- exampleB1.cc
 +- include/
 | ... headers.hh ...
 +- src/
 ... sources.cc ...

Here, exampleB1.cc contains main() for the application, with
include/ and src/ containing the implementation class headers
and sources respectively. This arrangement of source files is not
mandatory when building with CMake, apart from the location of the
CMakeLists.txt file in the root directory of the application.

The text file CMakeLists.txt is the CMake script containing commands
which describe how to build the exampleB1 application

(1)
cmake_minimum_required(VERSION 3.16...3.21)
project(B1)

(2)
option(WITH_GEANT4_UIVIS "Build example with Geant4 UI and Vis drivers" ON)
if(WITH_GEANT4_UIVIS)
 find_package(Geant4 REQUIRED ui_all vis_all)
else()
 find_package(Geant4 REQUIRED)
endif()

(3)
include(${Geant4_USE_FILE})
include_directories(${PROJECT_SOURCE_DIR}/include)

(4)
file(GLOB sources ${PROJECT_SOURCE_DIR}/src/*.cc)
file(GLOB headers ${PROJECT_SOURCE_DIR}/include/*.hh)

(5)
add_executable(exampleB1 exampleB1.cc ${sources} ${headers})
target_link_libraries(exampleB1 ${Geant4_LIBRARIES})

(6)
set(EXAMPLEB1_SCRIPTS
 exampleB1.in
 exampleB1.out
 init_vis.mac
 run1.mac
 run2.mac
 vis.mac
)

foreach(_script ${EXAMPLEB1_SCRIPTS})
 configure_file(
 ${PROJECT_SOURCE_DIR}/${_script}
 ${PROJECT_BINARY_DIR}/${_script}
 COPYONLY
)
endforeach()

(7)
install(TARGETS exampleB1 DESTINATION bin)

For clarity, the above listing has stripped out the main comments (CMake
comments begin with a "#") you'll find in the actual file to highlight
each distinct task:

	Basic Configuration

The cmake_minimum_required command and if block simply ensures we're using a suitable version of
CMake and that it has been setup appropriately. The project
command sets the name of the project and enables and configures C and C++ compilers.

	Find and Configure Geant4

The aforementioned find_package command is used to locate and configure Geant4 (we'll
see how to specify the location later when we run CMake), the
REQUIRED argument being supplied so that CMake will fail with an
error if it cannot find Geant4. The option command specifies a
boolean variable which defaults to ON, and which can be set when running CMake via a -D
command line argument, or toggled in the CMake GUI interfaces. We
wrap the calls to find_package in a conditional
block#1 on
the option value. This allows us to configure the use of Geant4 UI
and Visualization drivers by exampleB1 via the ui_all vis_all
"component" arguments to find_package. An overview of available
components is provided Use of Geant4Config.cmake with find_package in CMake with a full listing at the top of the
installed Geant4Config.cmake file.

	Configure the Project to Use Geant4 and B1 Headers

To automatically configure CMake to use additional CMake modules supplied by the
Geant4 examples, we use the include command to load a script supplied by Geant4. The
CMake variable named Geant4_USE_FILE is set to the path to this
module when Geant4 is located by find_package. We use the include_directories
command to add the B1 header directory to the compiler's header search path. The CMake variable
PROJECT_SOURCE_DIR points to the top level directory of the project and is
set by the earlier call to the project command.

	List the Sources to Build the Application

Use the globbing functionality of the file command to prepare lists of the B1 source and header
files.

Note however that CMake globbing is only used here as a
convenience. The expansion of the glob only happens when CMake is
run, so if you later add or remove files, the generated build scripts
will not know a change has taken place. Kitware strongly recommend
listing sources explicitly as CMake automatically makes the build
depend on the CMakeLists.txt file. This means that if you
explicitly list the sources in CMakeLists.txt, any changes you
make will be automatically picked up when you rebuild. This is also
useful when you are working on a project with sources under version
control and multiple contributors to ensure traceability and consistent builds.

	Define and Link the Executable

The add_executable command defines the build of an application, outputting
an executable named by its first argument, with the sources
following. Note that we add the headers to the list of sources so
that they will appear in IDEs like Xcode.

After adding the executable, we use the target_link_libraries command to link it with the Geant4 libraries. The
Geant4_LIBRARIES variable is set by find_package when Geant4 is located, and is a list of all the
libraries needed to link against to use Geant4.

	Copy any Runtime Scripts to the Build Directory

Because we want to support out of source builds so that we won't mix
CMake generated files with our actual sources, we copy any scripts
used by the B1 application to the build directory. We use foreach to loop over the list of scripts we
constructed, and configure_file to perform the actual copy.

Here, the CMake variable PROJECT_BINARY_DIR is set by the earlier call to the project
command and points to the directory where we run CMake to configure the build.

	If Required, Install the Executable

Use the install command to create an install target that will install
the executable to a bin directory under CMAKE_INSTALL_PREFIX.

If you don't intend your application to be installable, i.e. you only
want to use it locally when built, you can leave this out.

This sequence of commands is the most basic needed to compile and link
an application with Geant4, and is easily extendable to more involved
use cases such as platform specific configuration or using other third
party packages (via find_package).

With the CMake script in place, using it to build an application is a
two step process. First CMake is run to generate buildscripts to
describe the build. By default, these will be Makefiles on Unix
platforms, and Visual Studio solutions on Windows, but you can generate
scripts for other tools like Xcode and
Eclipse#2
if you wish. Second, the buildscripts are run by the chosen build tool
to compile and link the application.

A key concept with CMake is that we generate the buildscripts and run
the build in a separate directory, the so-called build directory, from
the directory in which the sources reside, the so-called source
directory. This is the exact same technique we used when building
Geant4 itself. Whilst this may seem awkward to begin with, it is a very
useful technique to employ. It prevents mixing of CMake generated files
with those of your application, and allows you to have multiple builds
against a single source without having to clean up, reconfigure and
rebuild.

We'll illustrate this configure and build process on Linux/macOS using
Makefiles, and on Windows using Visual Studio. The example script and
Geant4's Geant4Config.cmake script are vanilla CMake, so you should
be able to use other Generators (such as Xcode and Eclipse) without
issue.

Building ExampleB1 with CMake on Unix with Makefiles

We'll assume, for illustration only, that you've copied the exampleB1
sources into a directory under your home area so that we have:

+- /home/you/B1/
 +- CMakeLists.txt
 +- exampleB1.cc
 +- include/
 +- src/
 +- ...

Here, our source directory is /home/you/B1, in other words the
directory holding the CMakeLists.txt file.

Let's also assume that you have already installed Geant4 in your home
area under, for illustration only, /home/you/geant4-install.

Our first step is to create a build directory in which build the
example. We will create this alongside our B1 source directory as
follows:

$ cd $HOME
$ mkdir B1-build

We now change to this build directory and run CMake to generate the
Makefiles needed to build the B1 application. We pass CMake two
arguments

$ cd $HOME/B1-build
$ cmake -DCMAKE_PREFIX_PATH=/home/you/geant4-install $HOME/B1

Here, the first argument#3
points CMake to the install prefix of Geant4. CMAKE_INSTALL_PREFIX may be extended
with additional paths to search for packages, and also set in the environment. See
the CMake documentation on CMAKE_PREFIX_PATH#4
and find_package#5 for
more details.

For an exact search, you may also use the Geant4_DIR variable, e.g:

$ cd $HOME/B1-build
$ cmake -DGeant4_DIR=/home/you/geant4-install/lib/cmake/Geant4 $HOME/B1

This variable should set to the directory holding the Geant4Config.cmake file
for the install of Geant4 you want to use.

The second argument to CMake is the path to the source directory of
the application we want to build. Here it's just the B1 directory as
discussed earlier. You should of course adapt the value of that variable
to where you copied the B1 source directory.

CMake will now run to configure the build and generate Makefiles and
you will see output similar to

$ cmake -DCMAKE_PREFIX_PATH=/home/you/geant4-install $HOME/B1
-- The C compiler identification is GNU 9.3.0
-- The CXX compiler identification is GNU 9.3.0
-- Check for working C compiler: /usr/bin/gcc-9
-- Check for working C compiler: /usr/bin/gcc-9 -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/g++-9
-- Check for working CXX compiler: /usr/bin/g++-9 -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /home/you/B1-build

The exact output will depend on the UNIX variant, compiler, and CMake version but the last three
lines should be identical to within the exact path used.

If you now list the contents of you build directory, you can see the
files generated:

$ ls
CMakeCache.txt exampleB1.in Makefile vis.mac
CMakeFiles exampleB1.out run1.mac
cmake_install.cmake init_vis.mac run2.mac

Note the Makefile and that all the scripts for running the exampleB1
application we're about to build have been copied across. With the
Makefile available, we can now build by simply running make:

$ make -jN

CMake generated Makefiles support parallel builds, so N can be set
to the number of cores on your machine (e.g. on a dual core
processor, you could set N to 2). When make runs, you should see the
output:

$ make
Scanning dependencies of target exampleB1
[12%] Building CXX object B1/CMakeFiles/exampleB1.dir/exampleB1.cc.o
[25%] Building CXX object B1/CMakeFiles/exampleB1.dir/src/ActionInitialization.cc.o
[37%] Building CXX object B1/CMakeFiles/exampleB1.dir/src/DetectorConstruction.cc.o
[50%] Building CXX object B1/CMakeFiles/exampleB1.dir/src/EventAction.cc.o
[62%] Building CXX object B1/CMakeFiles/exampleB1.dir/src/PrimaryGeneratorAction.cc.o
[75%] Building CXX object B1/CMakeFiles/exampleB1.dir/src/RunAction.cc.o
[87%] Building CXX object B1/CMakeFiles/exampleB1.dir/src/SteppingAction.cc.o
[100%] Linking CXX executable exampleB1
[100%] Built target exampleB1

CMake Unix Makefiles are quite terse, but you can make them more verbose
by adding the VERBOSE argument to make:

$ make VERBOSE=1

If you now list the contents of your build directory you will see the
exampleB1 application executable has been created:

$ ls
CMakeCache.txt exampleB1 init_vis.mac run2.mac
CMakeFiles exampleB1.in Makefile vis.mac
cmake_install.cmake exampleB1.out run1.mac

You can now run the application in place:

$./exampleB1
Available UI session types: [GAG, tcsh, csh]

 Geant4 version Name: geant4-11-02 [MT] (8-December-2023)
 << in Multi-threaded mode >>
 Copyright : Geant4 Collaboration
 References : NIM A 506 (2003), 250-303
 : IEEE-TNS 53 (2006), 270-278
 : NIM A 835 (2016), 186-225
 WWW : http://geant4.org/

<<< Reference Physics List QBBC
Visualization Manager instantiating with verbosity "warnings (3)"...
Visualization Manager initialising...
Registering graphics systems...

Note that the exact output shown will depend on how both Geant4 and your
application were configured. Further output and behaviour beyond the
Registering graphics systems... line will depend on what UI and
Visualization drivers your Geant4 install supports. If you recall the
use of the ui_all vis_all in the find_package command, this
results in all available UI and Visualization drivers being activated in
your application. If you didn't want any UI or Visualization, you could
rerun CMake in your build directory with arguments:

$ cmake -DWITH_GEANT4_UIVIS=OFF .

This would switch the option we set up to false, and result in
find_package not activating any UI or Visualization for the
application. You can easily adapt this pattern to provide options for
your application such as additional components or features.

Once the build is configured, you can edit code for the application in
its source directory. You only need to rerun make in the
corresponding build directory to pick up and compile the changes.
However, note that due to the use of CMake globbing to create the source
file list, if you add or remove files, you must remember to rerun CMake to pick
up the changes. This is another reason why Kitware recommend listing the
sources explicitly.

Building ExampleB1 with CMake on Windows with Visual Studio

As with building Geant4 itself, the simplest system to use for building
applications on Windows is a Visual Studio Developer Command Prompt,
which can be started from Start → Visual Studio 2017 → Developer Command Prompt for VS2017
(similarly for VS2015)

We'll assume, for illustration only, that you've copied the exampleB1
sources into a directory C:\Users\YourUsername\B1 so that we
have:

+- C:\Users\YourUsername\B1
 +- CMakeLists.txt
 +- exampleB1.cc
 +- include\
 +- src\
 +- ...

Here, our source directory is C:\Users\YourUsername\B1, in
other words the directory holding the CMakeLists.txt file.

Let's also assume that you have already installed Geant4 in your home
area under, for illustration only, C:\Users\YourUsername\Geant4-install.

Our first step is to create a build directory in which build the
example. We will create this alongside our B1 source directory as
follows, working from the Visual Studio Developer Command Prompt:

> cd %HOMEPATH%
> mkdir B1-build

We now change to this build directory and run CMake to generate the
Visual Studio solution needed to build the B1 application. We pass CMake
two arguments

> cd %HOMEPATH%\Geant4\B1-build
> cmake -DCMAKE_PREFIX_PATH="%HOMEPATH%\Geant4-install" "%HOMEPATH%\B1"

Here, the first argument#6
points CMake to the install prefix of Geant4. CMAKE_INSTALL_PREFIX may be extended
with additional paths to search for packages, and also set in the environment. See
the CMake documentation on CMAKE_PREFIX_PATH#7
and find_package#8 for
more details. As with the examples above, you can also use the
Geant4_DIR variable. The second argument is the path to the source directory of the
application we want to build. Here it's just the B1 directory as
discussed earlier. You should of course adapt it to where you copied the B1 source directory.
In both cases the arguments are quoted in case of the paths containing spaces.

CMake will now run to configure the build and generate Visual Studio
solutions and you will see output similar to

-- Building for: Visual Studio 15 2017
-- The C compiler identification is MSVC 19.11.25547.0
-- The CXX compiler identification is MSVC 19.11.25547.0
-- Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.11.25503/bin/Hostx86/x86/cl.exe
-- Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.11.25503/bin/Hostx86/x86/cl.exe -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.11.25503/bin/Hostx86/x86/cl.exe
-- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.11.25503/bin/Hostx86/x86/cl.exe -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: C:/Users/YourUsername/B1-build

If you now list the contents of you build directory, you can see the
files generated:

> dir /B
ALL_BUILD.vcxproj
ALL_BUILD.vcxproj.filters
B1.sln
B1.vcxproj
B1.vcxproj.filters
CMakeCache.txt
CMakeFiles
cmake_install.cmake
exampleB1.in
exampleB1.out
exampleB1.vcxproj
exampleB1.vcxproj.filters
init_vis.mac
INSTALL.vcxproj
INSTALL.vcxproj.filters
run1.mac
run2.mac
vis.mac
ZERO_CHECK.vcxproj
ZERO_CHECK.vcxproj.filters

Note the B1.sln solution file and that all the scripts for running
the exampleB1 application we're about to build have been copied across.
With the solution available, we can now build by running cmake to drive
MSBuild:

> cmake --build . --config Release

Solution based builds are quite verbose, but you should not see any
errors at the end. In the above, we have built the B1 program in
Release mode, meaning that it is optimized and has no debugging
symbols. As with building Geant4 itself, this is chosen to provide
optimum performance. If you require debugging information for your
application, simply change the argument to RelWithDebInfo. Note that
in both cases you must match the configuration of your application with
that of the Geant4 install, i.e. if you are building the application in
Release mode, then ensure it uses a Release build of Geant4.
Link and/or runtime errors may result if mixed configurations are used.

After running the build, if we list the contents of the build directory
again we see:

> dir /B
ALL_BUILD.vcxproj
ALL_BUILD.vcxproj.filters
B1.sln
B1.vcxproj
B1.vcxproj.filters
CMakeCache.txt
CMakeFiles
cmake_install.cmake
exampleB1.dir
exampleB1.in
exampleB1.out
exampleB1.vcxproj
exampleB1.vcxproj.filters
init_vis.mac
INSTALL.vcxproj
INSTALL.vcxproj.filters
Release
run1.mac
run2.mac
vis.mac
Win32
ZERO_CHECK.vcxproj
ZERO_CHECK.vcxproj.filters

> dir /B Release
exampleB1.exe
...

Here, the Release subdirectory contains the executable, and the main
build directory contains all the .mac scripts for running the
program. If you build in different modes, the executable for that mode
will be in a directory named for that mode, e.g.
RelWithDebInfo/exampleB1.exe. You can now run the application in
place:

> .\Release\exampleB1.exe

 Geant4 version Name: geant4-11-02 [MT] (8-December-2023)
 << in Multi-threaded mode >>
 Copyright : Geant4 Collaboration
 References : NIM A 506 (2003), 250-303
 : IEEE-TNS 53 (2006), 270-278
 : NIM A 835 (2016), 186-225
 WWW : http://geant4.org/

<<< Reference Physics List QBBC
Visualization Manager instantiating with verbosity "warnings (3)"...
Visualization Manager initialising...
Registering graphics systems...

Note that the exact output shown will depend on how both Geant4 and your
application were configured. Further output and behaviour beyond the
Registering graphics systems... line will depend on what UI and
Visualization drivers your Geant4 install supports.

Whilst the Visual Studio Developer Command prompt provides the simplest
way to build an application, the generated Visual Studio Solution file
(B1.sln in the above example) may also be opened directly in the
Visual Studio IDE. This provides a more comprehensive development and
debugging environment, and you should consult its documentation if you
wish to use this.

One key CMake related item to note goes back to our listing of the
headers for the application in the call to add_executable. Whilst
CMake will naturally ignore these for configuring compilation of the
application, it will add them to the Visual Studio Solution. If you do
not list them, they will not be editable in the Solution in the Visual
Studio IDE.

Use of Geant4Config.cmake with find_package in CMake

The Geant4Config.cmake file installed by Geant4 is designed to be used with
CMake's find_package#9
command. CMake will search for the file using a standard set of paths#10
used by find_package, or via the Geant4_DIR.
When found, it sets several CMake variables and provides a mechanism for checking and activating optional features of
Geant4 if your application requires these. The simplest possible usage of find_package and these variables to configure an
application or library requiring Geant4 is:

find_package(Geant4 REQUIRED) # Find Geant4
add_executable(myg4app myg4app.cc) # Compile application
target_link_libraries(myg4app ${Geant4_LIBRARIES}) # Link it to Geant4

The Geant4_LIBRARIES variable holds the list of CMake Imported Targets#11 for the Geant4 libraries.
These set and propagate all Usage Requirements#12 of Geant4 to the consuming target(s) (the myg4app executable in the above).

The minimal example just requires that a Geant4 install be found.
A version number may be supplied to search for an install
greater than or equal to the supplied version, e.g.

find_package(Geant4 10.0 REQUIRED)

makes CMake search for a Geant4 install whose version number is
greater than or equal to 10.0. An exact version number may also be
specified:

find_package(Geant4 10.4.0 EXACT REQUIRED)

In both cases, CMake will fail with an error if a Geant4 install meeting
these version requirements is not found.

Geant4 can be installed with many optional components, and the presence of
these can also be required and activated by passing extra "component" arguments. For
example, to require that Geant4 is found and that it has support for
gdml and Qt:

find_package(Geant4 REQUIRED gdml qt)

which will fail if the found install was not built with these options.
If you want to activate components only if they exist, you can use the
pattern

find_package(Geant4 REQUIRED)
find_package(Geant4 QUIET OPTIONAL_COMPONENTS qt)

which will require CMake to locate a core install of Geant4, and then
check for and activate Qt support if the install provides it, continuing
without error otherwise. A key thing to note here is that you can call
find_package multiple times to append configuration of components.
If you use this pattern and need to check if a component was found, you
can use the Geant4_<COMPONENTNAME>_FOUND variables which are set after the
call to find_package.

Some components are "passive" in that they just indicate support is available, others are "active"
in that they indicate support for and activate use of the component in the application
linking to the targets in Geant4_LIBRARIES. A partial list of the most useful components
and their behaviour is given below, but for a full list, please see the listing in the installed Geant4Config.cmake
file.

	multithreaded

Geant4_multithreaded_FOUND is TRUE if the install of Geant4
was built with multithreading support.

Note that this is a passive option and only indicates availability of multithreading support!
Multithreading in your application code requires creation and usage of the appropriate C++ objects and
interfaces as described in this guide.

	gdml

Geant4_gdml_FOUND is TRUE if the install of Geant4 was built
with GDML support.

Note that this is a passive option, and indicates support for GDML is availble in the found install.

	ui_all

Activates all available UI drivers. Does not set any variables, and
never causes CMake to fail. It is recommended to use this over specific UI drivers
unless your application has strong requirements.

	vis_all

Activates all available Visualization drivers. Does not set any
variables, and never causes CMake to fail. It is recommended to use this over specific Vis drivers
unless your application has strong requirements.

	ui_tcsh

Geant4_ui_tcsh_FOUND is TRUE if the install of Geant4
provides the TCsh command line User Interface. Using this component
activates and allows use of the TCsh command line interface in the linked
application.

	ui_win32

Geant4_ui_win32_FOUND is TRUE if the install of Geant4
provides the Win32 command line User Interface. Using this component
activates and allows use of the Win32 command line interface in the linked
application.

	motif

Geant4_motif_FOUND is TRUE if the install of Geant4 provides
the Motif(Xm) User Interface and Visualization driver. Using this
component activates and allows use of the Motif User Interface and Visualization
Driver in the linked application.

	qt

Geant4_qt_FOUND is TRUE if the install of Geant4 provides the
Qt User Interface and Visualization driver. Using this component
activates and allows use of the Qt User Interface and Visualization Driver in the
linked application.

	vis_raytracer_x11

Geant4_vis_raytracer_x11_FOUND is TRUE if the install of Geant4
provides the X11 interface to the RayTracer Visualization driver. Using
this component activates and allows use of the RayTracer X11 Visualization Driver in
the linked application.

	vis_opengl_x11

Geant4_vis_opengl_x11_FOUND is TRUE if the install of Geant4
provides the X11 interface to the OpenGL Visualization driver. Using
this component activates and allows use of the X11 OpenGL Visualization Driver in
the linked application.

	vis_opengl_win32

Geant4_vis_opengl_win32_FOUND is TRUE if the install of
Geant4 provides the Win32 interface to the OpenGL Visualization
driver. Using this component activates and allows use of the Win32 OpenGL
Visualization Driver in the linked application.

	vis_openinventor

Geant4_vis_openinventor_FOUND is TRUE if the install of
Geant4 provides the OpenInventor Visualization driver. Using this
component activates and allows use of the OpenInventor Visualization Driver in the
linked application.

	vis_toolssg_x11_gles

Geant4_vis_toolssg_x11_gles_FOUND is TRUE if the install of Geant4 provides
the ToolsSG visualization driver with X11 backend. Using this
component allows use of the ToolsSG Visualization Driver in the
linked application.

	vis_toolssg_xt_gles

Geant4_vis_toolssg_xt_gles_FOUND is TRUE if the install of Geant4 provides
the ToolsSG visualization driver with Motif backend. Using this
component allows use of the ToolsSG Visualization Driver in the
linked application.

	vis_toolssg_qt_gles

Geant4_vis_toolssg_qt_gles_FOUND is TRUE if the install of Geant4 provides
the ToolsSG visualization driver with Qt5 backend. Using this
component allows use of the ToolsSG Visualization Driver in the
linked application.

	vis_toolssg_windows_gles

Geant4_vis_toolssg_windows_gles_FOUND is TRUE if the install of Geant4 provides
the ToolsSG visualization driver with Windows backend. Using this
component allows use of the ToolsSG Visualization Driver in the
linked application.

	vis_Vtk

Geant4_vis_Vtk_FOUND is TRUE if the install of Geant4 provides
the Vtk visualization driver. Using this
component allows use of the Vtk Visualization Driver in the
linked application.

Footnotes

	#1

	https://cmake.org/cmake/help/v3.16/command/if.html

	#2

	https://cmake.org/cmake/help/v3.16/manual/cmake-generators.7.html

	#3

	https://cmake.org/cmake/help/v3.16/variable/CMAKE_PREFIX_PATH.html

	#4

	https://cmake.org/cmake/help/v3.16/variable/CMAKE_PREFIX_PATH.html#variable:CMAKE_PREFIX_PATH

	#5

	https://cmake.org/cmake/help/v3.16/command/find_package.html#search-procedure

	#6

	https://cmake.org/cmake/help/v3.16/variable/CMAKE_PREFIX_PATH.html

	#7

	https://cmake.org/cmake/help/v3.16/variable/CMAKE_PREFIX_PATH.html#variable:CMAKE_PREFIX_PATH

	#8

	https://cmake.org/cmake/help/v3.16/command/find_package.html#search-procedure

	#9

	https://cmake.org/cmake/help/v3.16/command/find_package.html

	#10

	https://cmake.org/cmake/help/v3.16/command/find_package.html

	#11

	https://cmake.org/cmake/help/v3.16/manual/cmake-buildsystem.7.html#imported-targets

	#12

	https://cmake.org/cmake/help/v3.16/manual/cmake-buildsystem.7.html#build-specification-and-usage-requirements

How to Set Up an Interactive Session

Introduction

Roles of the "intercoms" category

The "intercoms" category provides an expandable command interpreter. It
is the key mechanism of Geant4 to realize secure user interactions
across categories without being annoyed by dependencies among
categories. Geant4 commands can be used in an interactive session, a
batch mode with a macro file, or a direct C++ call.

User Interfaces to drive the simulation

Geant4 can be controlled by a series of Geant4 UI commands. The
"intercoms" category provides the abstract class G4UIsession that
processes interactive commands. The concrete implementations of
(graphical) user interface are provided in the "interfaces" category.
The strategy realize to adopt various user interface tools, and allows
Geant4 to utilize the state-of-the-art GUI tools such as Motif, Qt, and
Java etc. The following interfaces is currently available;

	Command-line terminal (dumb terminal and tcsh-like terminal)

	Xm, Qt, Win32, variations of the above terminal by using a Motif, Qt,
Windows widgets

	GAG, a fully graphical user interface and its network extension
GainServer of the client/server type.

Implementation of the user sessions (1 and 2) is included in the
source/interfaces/basic directory. As for GAG, the front-end class
is included in the source/interfaces/GAG directory, while its
partner GUI package MOMO.jar is available under the
environments/MOMO directory. MOMO.jar, Java archive file, contains
not only GAG, but also GGE and other helper packages.

A Short Description of Available Interfaces

G4UIterminal

This interface opens a session on a command-line terminal.
G4UIterminal runs on all supported platforms. There are two kinds of
shells, G4UIcsh and G4UItcsh. G4UItcsh supports tcsh-like
readline features (cursor and command completion) and works on Linux on
Mac, while G4UIcsh is a plain standard input (cin) shell that works
on all platforms. The following built-in commands are available in
G4UIterminal;

	cd, pwd
	change, display the current command directory.

	ls, lc
	list commands and subdirectories in the current directory.

	history
	show previous commands.

	!historyID
	reissue previous command.

	?command
	show current parameter values of the command.

	help command
	show command help.

	exit
	terminate the session.

G4UItcsh supports user-friendly key bindings a-la-tcsh. G4UItcsh
runs on Linux and Mac. The following keybindings are supported;

	^A
	move cursor to the top

	^B
	backward cursor ([LEFT] cursor)

	^C (except Windows terminal)
	abort a run (
soft abort
) during event processing. A program will be terminated while
accepting a user command.

	^D
	delete/exit/show matched list

	^E
	move cursor to the end

	^F
	forward cursor ([RIGHT] cursor)

	^K
	clear after the cursor

	^N
	next command ([DOWN] cursor)

	^P
	previous command ([UP] cursor)

	TAB
	command completion

	DEL
	backspace

	BS
	backspace

The example below shows how to set a user's prompt.

G4UItcsh* tcsh = new G4UItcsh();
tcsh-> SetPrompt("%s>");

The following strings are supported as substitutions in a prompt string.

	%s
	current application status

	%/
	current working directory

	%h
	history number

Command history in a user's session is saved in a file
$(HOME)/.g4_hist that is automatically read at the next session, so
that command history is available across sessions.

G4UIXm, G4UIQt and G4UIWin32 classes

These interfaces are versions of G4UIterminal implemented over
libraries Motif, Qt and WIN32 respectively. G4UIXm uses the Motif
XmCommand widget, G4UIQt the Qt dialog widget, and G4UIWin32 the
Windows "edit" component to do the command capturing. These interfaces
are useful if working in conjunction with visualization drivers that use
the Xt library, Qt library or the WIN32 one.

A command box is at disposal for entering or recalling Geant4 commands.
Command completion by typing "TAB" key is available in the command box.
The shell commands "exit, cont, help, ls, cd..." are also supported. A
menu bar can be customized through the AddMenu and AddButton method.
Ex:

	/gui/addMenu
	test Test

	/gui/addButton
	test Init /run/initialize

	/gui/addButton
	test "Set gun" "/control/execute gun.g4m"

	/gui/addButton
	test "Run one event" "/run/beamOn 1"

G4UIXm runs on Unix/Linux with Motif. G4UIQt run everywhere with
Qt. G4UIWin32 runs on Windows.

G4UIGAG and G4UIGainServer classes

They are front-end classes of Geant4 which make connections with their
respective graphical user interfaces, GAG (Geant4 Adaptive GUI) via
pipe, and Gain (Geant4 adaptive interface for network) via sockets.
While GAG must run on the same system (Windows or Unixen) as a Geant4
application, Gain can run on a remote system (Windows, Linux, etc.) in
which JRE (Java Runtime Environment) is installed. A Geant4 application
is invoked on a Unix (Linux) system and behaves as a network server. It
opens a port, waiting the connection from the Gain. Gain has capability
to connect to multiple Geant4 "servers" on Unixen systems at different
hosts.

Client GUIs, GAG and Gain have almost similar look-and-feel. So, GAG's
functionalities are briefly explained here. Please refer to the URL
previously mentioned for details.

Using GAG, user can select a command, set its parameters and execute it.
It is adaptive, in the sense that it reflects the internal states of
Geant4 that is a state machine. So, GAG always provides users with the
Geant4 commands which may be added, deleted, enabled or disabled during
a session. GAG does nothing by itself but to play an intermediate
between user and an executable simulation program via pipes. Geant4's
front-end class G4UIGAG must be instantiated to communicate with
GAG. GAG runs on Linux and Windows. MOMO.jar is supplied in the Geant4
source distribution and can be run by a command:

%java -jar /path/to/geant4.10.00/environments/MOMO/MOMO.jar

GAG has following functions.

	GAG Menu:
	The menus are to choose and run a Geant4 executable file, to kill or
exit a Geant4 process and to exit GAG. Upon the normal exit or an
unexpected death of the Geant4 process, GAG window are automatically
reset to run another Geant4 executable.

	Geant4 Command tree:
	Upon the establishment of the pipe connection with the Geant4
process, GAG displays the command menu, using expandable tree
browser whose look and feel is similar to a file browser. Disabled
commands are shown in opaque. GAG doesn't display commands that are
just below the root of the command hierarchy. Direct type-in field
is available for such input. Guidance of command categories and
commands are displayed upon focusing. GAG has a command history
function. User can re-execute a command with old parameters, edit
the history, or save the history to create a macro file.

	Command Parameter panel:
	GAG's parameter panel is the user-friendliest part. It displays
parameter name, its guidance, its type(s) (integer, double, Boolean
or string), omittable, default value(s), expression(s) of its range
and candidate list(s) (for example, of units). Range check is done
by intercoms and the error message from it is shown in the pop-up
dialog box. When a parameter component has a candidate list, a list
box is automatically displayed . When a file is requested by a
command, the file chooser is available.

	Logging:
	Log can be redirected to the terminal (xterm or cygwin window) from
which GAG is invoked. It can be interrupted as will, in the middle
of a long session of execution. Log can be saved to a file
independent of the above redirection . GAG displays warning or error
messages from Geant4 in a pop-up warning widget.

How to Select Interface in Your Applications

To choose an interface (G4UIxxx where
xxx = terminal,Xm, Win32, Qt,
GAG, GainServer) in your programs, there are two ways.

	Calling G4UIxxx directly:

#include "G4Uixxx.hh"

G4UIsession* session = new G4UIxxx;
session-> SessionStart();

delete session;

Note

For using a tcsh session,
G4UIterminal is instantiated like:

G4UIsession* session = new G4UIterminal(new G4UItcsh);

If the user wants to deactivate the default signal handler (soft
abort) raised by "Ctr-C", the false flag can be set in the second
argument of the G4UIterminal constructor like

G4UIsession* session = new G4UIterminal(new G4UItcsh, false).

	Using G4UIExecutive
This is more convenient way for choosing a session type, that can
select a session at run-time according to a rule described below.

#include "G4UIExecutive.hh"

G4UIExecutive* ui = new G4UIExecutive(argc, argv);
ui->SessionStart();

delete ui;

G4UIExecutive has several ways to choose a session type. A session
is selected in the following rule. Note that session types are
identified by a case-insensitive characters ("qt", "xm", "win32", "gag",
"tcsh", "csh").

	Check the argument of the constructor of G4UIExecutive. You can
specify a session like new G4UIExecutive(argc, argv, "qt");

	Check environment variables,
G4UI_USE_XX (XX= QT, XM, WIN32, GAG, TCSH).
Select a session if the corresponding environment variable is
defined. Variables are checked in the order of QT, XM, WIN32, GAG,
TCSH if multiple variables are set.

	Check ~/.g4session . You can specify the default session type
and a session type by each
application in that file. The below shows a sample of
.g4session.

tcsh # default session
exampleN03 Qt # (application name / session type)
myapp tcsh
hoge csh

	Guess the best session type according to build session libraries. The
order of the selection is Qt, tcsh, Xm.

In any cases, G4UIExecutive checks if a specified session is build
or not. If not, it goes the next step. A terminal session with csh is
the fallback session. If none of specified session is available, then it
will be selected.

Footnotes

How to Execute a Program

Introduction

A Geant4 application can be run either in

	'purely hard-coded' batch mode

	batch mode, but reading a macro of commands

	interactive mode, driven by command lines

	interactive mode via a Graphical User Interface

The last mode will be covered in How to Set Up an Interactive Session. The
first three modes are explained here.

'Hard-coded' Batch Mode

Below is a modified main program of the basic example B1 to represent an
application which will run in batch mode.

Listing 19 An example of the main() routine for an application which will run in batch mode.

using namespace B1;

int main()
{
 // Construct the default run manager
 auto runManager = G4RunManagerFactory::CreateRunManager();

 // Set mandatory initialization classes
 runManager->SetUserInitialization(new DetectorConstruction);
 runManager->SetUserInitialization(new QGSP_BIC_EMY);
 runManager->SetUserInitialization(new ActionInitialization);

 // Initialize G4 kernel
 runManager->Initialize();

 // start a run
 int numberOfEvent = 1000;
 runManager->BeamOn(numberOfEvent);

 // job termination
 delete runManager;
 return 0;
}

Even the number of events in the run is 'frozen'. To change this
number you must at least recompile main().

Batch Mode with Macro File

Below is a modified main program of the basic example B1 to represent an
application which will run in batch mode, but reading a file of
commands.

Listing 20 An example of the main() routine for an application which will run in batch mode, but reading a file of commands.

using namespace B1;

int main(int argc,char** argv)
{
 // Construct the default run manager
 auto runManager = G4RunManagerFactory::CreateRunManager();

 // Set mandatory initialization classes
 runManager->SetUserInitialization(new DetectorConstruction);
 runManager->SetUserInitialization(new QGSP_BIC_EMY);
 runManager->SetUserInitialization(new ActionInitialization);

 // Initialize G4 kernel
 runManager->Initialize();

 //read a macro file of commands
 G4UImanager* UI = G4UImanager::GetUIpointer();
 G4String command = "/control/execute ";
 G4String fileName = argv[1];
 UI->ApplyCommand(command+fileName);

 // job termination
 delete runManager;
 return 0;
}

This example will be executed with the command:

> exampleB1 run1.mac

where exampleB1 is the name of the executable and run1.mac is a
macro of commands located in the current directory, which could look
like:

Listing 21 A typical command macro.

#
Macro file for myProgram
#
set verbose level for this run
#
/run/verbose 2
/event/verbose 0
/tracking/verbose 1
#
Set the initial kinematic and run 100 events
electron 1 GeV to the direction (1.,0.,0.)
#
/gun/particle e-
/gun/energy 1 GeV
/run/beamOn 100

Indeed, you can re-execute your program with different run conditions
without recompiling anything.

Note

many G4 category of classes have a verbose flag which
controls the level of 'verbosity'.

Usually verbose=0 means silent. For instance

	/run/verbose is for the RunManager

	/event/verbose is for the EventManager

	/tracking/verbose is for the TrackingManager

	...etc...

Interactive Mode Driven by Command Lines

Below is an example of the main program for an application which will
run interactively, waiting for command lines entered from the keyboard.

Listing 22 An example of the main() routine for an application which will run interactively, waiting for commands from the keyboard.

using namespace B1;

int main(int argc,char** argv)
{
 // Construct the default run manager
 G4RunManager* runManager = new G4RunManager;

 // Set mandatory initialization classes
 runManager->SetUserInitialization(new DetectorConstruction);
 runManager->SetUserInitialization(new QGSP_BIC_EMY);
 runManager->SetUserInitialization(new ActionInitialization);

 // Initialize G4 kernel
 runManager->Initialize();

 // Define UI terminal for interactive mode
 G4UIsession * session = new G4UIterminal;
 session->SessionStart();
 delete session;

 // job termination
 delete runManager;
 return 0;
}

This example will be executed with the command:

> exampleB1

where exampleB1 is the name of the executable.

The G4 kernel will prompt:

Idle>

and you can start your session. An example session could be:

Run 5 events:

Idle> /run/beamOn 5

Switch on tracking/verbose and run one more event:

Idle> /tracking/verbose 1
Idle> /run/beamOn 1

Change primary particle type an run more events:

Idle> /gun/particle mu+
Idle> /gun/energy 10 GeV
Idle> /run/beamOn 1
Idle> /gun/particle proton
Idle> /gun/energy 100 MeV
Idle> /run/beamOn 3
Idle> exit

For the meaning of the machine state Idle, see
 as a state machine.

This mode is useful for running a few events in debug mode and
visualizing them. How to include visualization will be shown in the
next, general case, example.

General Case

All basic examples in the examples/basic subdirectory of the Geant4
source distribution have the following main() structure. The
application can be run either in batch or interactive mode.

Listing 23 The typical main() routine from the examples directory.

using namespace B1;

int main(int argc,char** argv)
{
 // Detect interactive mode (if no arguments) and define UI session
 G4UIExecutive* ui = 0;
 if (argc == 1) {
 ui = new G4UIExecutive(argc, argv);
 }

 // Optionally: choose a different Random engine...
 // G4Random::setTheEngine(new CLHEP::MTwistEngine);

 // Construct the default run manager
 G4RunManager* runManager = new G4RunManager;

 // Set mandatory initialization classes
 //
 // Detector construction
 runManager->SetUserInitialization(new DetectorConstruction());

 // Physics list
 G4VModularPhysicsList* physicsList = new QBBC;
 physicsList->SetVerboseLevel(1);
 runManager->SetUserInitialization(physicsList);

 // User action initialization
 runManager->SetUserInitialization(new ActionInitialization());

 // Initialize visualization
 G4VisManager* visManager = new G4VisExecutive;
 // G4VisExecutive can take a verbosity argument - see /vis/verbose guidance.
 // G4VisManager* visManager = new G4VisExecutive("Quiet");
 visManager->Initialize();

 // Get the pointer to the User Interface manager
 G4UImanager* UImanager = G4UImanager::GetUIpointer();

 // Process macro or start UI session
 if (! ui) {
 // batch mode
 G4String command = "/control/execute ";
 G4String fileName = argv[1];
 UImanager->ApplyCommand(command+fileName);
 } else {
 // interactive mode
 UImanager->ApplyCommand("/control/execute init_vis.mac");
 ui->SessionStart();
 delete ui;
 }

 // Job termination
 // Free the store: user actions, physics_list and detector_description are
 // owned and deleted by the run manager, so they should not be deleted
 // in the main() program !

 delete visManager;
 delete runManager;
}

Listing 24 The init.mac macro

Macro file for the initialization phase of example B1
when running in interactive mode without visualization
#
Set some default verbose
/control/verbose 2
/control/saveHistory
/run/verbose 2

The init_vis.mac
macro has just added a line with a call to vis.mac:

Macro file for the initialization phase of example B1
when running in interactive mode with visualization
#
Set some default verbose
#
/control/verbose 2
/control/saveHistory
/run/verbose 2
#
Visualization setting
/control/execute vis.mac

The vis.mac
macro defines a minimal setting for drawing volumes and trajectories
accumulated for all events of a given run:

Macro file for the visualization setting in the initialization phase
of the B1 example when running in interactive mode
#
#
Use this open statement to create an OpenGL view:
/vis/open OGL 600x600-0+0
#
Draw geometry:
/vis/drawVolume
#
Specify view angle:
/vis/viewer/set/viewpointThetaPhi 90. 180.
#
Draw smooth trajectories at end of event, showing trajectory points
as markers 2 pixels wide:
/vis/scene/add/trajectories smooth
#
To superimpose all of the events from a given run:
/vis/scene/endOfEventAction accumulate
#
Re-establish auto refreshing and verbosity:
/vis/viewer/set/autoRefresh true
/vis/verbose warnings
#
For file-based drivers, use this to create an empty detector view:
#/vis/viewer/flush

Also, this example demonstrates that you can read and execute a macro
from another macro or interactively:

Idle> /control/execute mySubMacro.mac

Footnotes

How to Visualize the Detector and Events

Introduction

This section briefly explains how to perform Geant4 Visualization. The
description here is based on the sample program examples/basic/B1.
More details are given in Visualization.

Visualization Drivers

The Geant4 visualization system was developed in response to a diverse
set of requirements:

	Quick response to study geometries, trajectories and hits

	High-quality output for publications

	Flexible camera control to debug complex geometries

	Tools to show volume overlap errors in detector geometries

	Interactive picking to get more information on visualized objects

No one graphics system is ideal for all of these requirements, and many
of the large software frameworks into which Geant4 has been incorporated
already have their own visualization systems, so Geant4 visualization
was designed around an abstract interface that supports a diverse family
of graphics systems. Some of these graphics systems use a graphics
library compiled with Geant4, such as OpenGL, Qt or OpenInventor, while
others involve a separate application, such as HepRApp or DAWN.

You need not use all visualization drivers. You can select those
suitable to your purposes. In the following, for simplicity, we assume
that the Geant4 libraries are built with the Qt driver.

If you build Geant4 using the standard CMake procedure, you include
Qt by setting GEANT4_USE_QT to ON.

In order to use the the Qt driver, you need the OpenGL library, which is
installed in many platforms by default and CMake will find it. (If
you wish to "do-it-yourself", see Installing Visualization Drivers.)
The makefiles then set appropriate C-pre-processor flags to select
appropriate code at compilation time.

If you are using multithreaded mode, from Geant4 version 10.2 event
drawing is performed by a separate thread and you may need to optimise
this with special /vis/multithreading commands - see
Multithreading commands.

How to Incorporate Visualization Drivers into an Executable

Most Geant4 examples already incorporate visualization drivers. If you
want to include visualization in your own Geant4 application, you need
to instantiate and initialize a subclass of G4VisManager that
implements the pure virtual function RegisterGraphicsSystems().

The provided class G4VisExecutive can handle all of this work for
you. G4VisExecutive is sensitive to the G4VIS_... variables
(that you either set by hand or that are set for you by GNUMake or CMake
configuration):

auto visManager = new G4VisExecutive(argc, argv);

See below for how to use in your main program. Basic example B1 is a good
place to look..

If you really want to write your own subclass, rather than use
G4VisExecutive, you may do so. You will see how to do this by
looking at G4VisExecutive.icc. This subclass must be compiled in the
user's domain to force the loading of appropriate libraries in the right
order. A typical extract is:

...
 RegisterGraphicsSystem (new G4DAWNFILE);
...
#ifdef G4VIS_USE_OPENGLX
 RegisterGraphicsSystem (new G4OpenGLImmediateX);
 RegisterGraphicsSystem (new G4OpenGLStoredX);
#endif
...

The G4VisExecutive takes ownership of all registered graphics
systems, and will delete them when it is deleted at the end of the
user's job (see below).

If you wish to use G4VisExecutive but register an additional
graphics system, XXX say, you may do so either before or after
initializing:

visManager->RegisterGraphicsSytem(new XXX);
visManager->Initialize();

An example of a typical main() function is given below.

Writing the main() Method to Include Visualization

Now we explain how to write a visualization manager and the main()
function for Geant4 visualization. In order that your Geant4 executable
is able to perform visualization, you must instantiate and initialize
your Visualization Manager in the main() function. The typical
main() function available for visualization is written in the
following style:

Listing 25 The typical main() routine available for visualization.

.....
#include "G4VisExecutive.hh"
.....
int main(int argc,char** argv) {

 // Initialize visualization with the default graphics system
 auto visManager = new G4VisExecutive(argc, argv);
 // Constructors can also take optional arguments:
 // - a graphics system of choice, eg. "OGL"
 // - and a verbosity argument - see /vis/verbose guidance.
 // auto visManager = new G4VisExecutive(argc, argv, "OGL", "Quiet");
 // auto visManager = new G4VisExecutive("Quiet");
 visManager->Initialize();

 // Job termination
 delete visManager;

 return 0;
}

We recommend you choose the graphics driver at run time - see Controlling Visualization from Commands.
This gives you flexibility to switch drivers easily.

Note that we are here recommending that all jobs instantiate a Visualization Manager. Even in batch mode you may generate an image using one of the file-writing drivers - TSG_OFFSCREEN, VTK_OFFSCREEN, DAWNFILE, VRML2FILE, HepRepFile, RayTracer.

Note also that it is your
responsibility to delete the Visualization Manager. A good example
of a main() function is examples/basic/B1/exampleB1.cc.

Sample Visualization Sessions

Most Geant4 examples include a vis.mac. Run that macro to see a typical
visualization. Read the comments in the macro to learn a little bit
about some visualization commands. The vis.mac also includes
commented-out optional visualization commands. By uncommenting some of
these you can see additional visualization features.

For More Information on Geant4 Visualization

See the Visualization part of this user
guide.

Footnotes

Toolkit Fundamentals

	Class Categories and Domains
	What is a class category?

	Class categories in Geant4

	Global Usage Classes
	Signature of Geant4 classes

	The HEPRandom module in CLHEP

	The HEPNumerics module

	General management classes

	System of units
	Basic units

	Input your data

	Output your data

	Introduce new units

	Print the list of units

	Run
	Basic concept of Run

	Geant4 as a state machine

	User's hook for state change

	Customizing the Run Manager

	Managing worker thread

	Event
	Representation of an event

	Structure of an event

	Mandates of G4EventManager

	Stacking mechanism

	Event Generator Interface
	Structure of a primary event

	Interface to a primary generator

	Event overlap using multiple generators

	Event Biasing Techniques
	Scoring, Geometrical Importance Sampling and Weight Roulette

	Physics Based Biasing

	Adjoint/Reverse Monte Carlo

	Generic Biasing

Footnotes

Class Categories and Domains

What is a class category?

In the design of a large software system such as Geant4, it is essential
to partition it into smaller logical units. This makes the design well
organized and easier to develop. Once the logical units are defined
independent to each other as much as possible, they can be developed in
parallel without serious interference.

In object-oriented analysis and design methodology by Grady Booch
[Booch1994], class categories are used to create
logical units. They are defined as "clusters of classes that are
themselves cohesive, but are loosely coupled relative to other
clusters." This means that a class category contains classes which have
a close relationship (for example, the "has-a" relation). However,
relationships between classes which belong to different class categories
are weak, i.e., only limited classes of these have "uses" relations.
The class categories and their relations are presented by a class
category diagram. The class category diagram designed for Geant4 is
shown in the figure below (Fig. 5).
Each box in the figure represents a class
category, and a "uses" relation by a straight line. The circle at an end
of a straight line means the class category which has this circle uses
the other category.

[image: ../_images/classCategory.jpg]

Fig. 5 Class categories in Geant4.

The file organization of the Geant4 codes follows basically the
structure of this class category. This User's Manual is also
organized according to class categories.

In the development and maintenance of Geant4, one software team will be
assigned to a class category. This team will have a responsibility to
develop and maintain all classes belonging to the class category.

Class categories in Geant4

The following is a brief summary of the role of each class category in
Geant4.

	Run and Event

These are categories related to the generation of events, interfaces
to event generators, and any secondary particles produced. Their
roles are principally to provide particles to be tracked to the
Tracking Management.

	Tracking and Track

These are categories related to propagating a particle by analyzing
the factors limiting the step and applying the relevant physics
processes. The important aspect of the design was that a generalized
Geant4 physics process (or interaction) could perform actions, along
a tracking step, either localized in space, or in time, or
distributed in space and time (and all the possible combinations that
could be built from these cases).

	Geometry and Magnetic Field

These categories manage the geometrical definition of a detector
(solid modeling) and the computation of distances to solids (also in
a magnetic field). The Geant4 geometry solid modeler is based on the
ISO STEP standard and it is fully compliant with it. A key feature of
the Geant4 geometry is that the volume definitions are independent of
the solid representation. By this abstract interface for the G4
solids, the tracking component works identically for various
representations. The treatment of the propagation in the presence of
fields has been provided within specified accuracy. An OO design
allows to exchange different numerical algorithms and/or different
fields (not only B-field), without affecting any other component of
the toolkit.

	Particle Definition and Matter

These two categories manage the the definition of materials and
particles.

	Physics

This category manages all physics processes participating in the
interactions of particles in matter. The abstract interface of
physics processes allows multiple implementations of physics models
per interaction or per channel. Models can be selected by energy
range, particle type, material, etc. Data encapsulation and
polymorphism make it possible to give transparent access to the cross
sections (independently of the choice of reading from an ascii file,
or of interpolating from a tabulated set, or of computing
analytically from a formula). Electromagnetic and hadronic physics
were handled in a uniform way in such a design, opening up the
physics to the users.

	Hits and Digitization

These two categories manage the creation of hits and their use for
the digitization phase. The basic design and implementation of the
Hits and Digi had been realized, and also several prototypes, test
cases and scenarios had been developed before the alpha-release.
Volumes (not necessarily the ones used by the tracking) are
aggregated in sensitive detectors, while hits collections represent
the logical read out of the detector. Different ways of creating and
managing hits collections had been delivered and tested, notably for
both single hits and calorimetry hits types. In all cases, hits
collections had been successfully stored into and retrieved from an
Object Data Base Management System.

	Visualization

This manages the visualization of solids, trajectories and hits, and
interacts with underlying graphical libraries (the Visualization
class category). The basic and most frequently used graphics
functionality had been implemented already by the alpha-release. The
OO design of the visualization component allowed us to develop
several drivers independently, such as for OpenGL, Qt and
OpenInventor (for X11 and Windows), DAWN, Postscript (via DAWN) and
VRML.

	Interfaces

This category handles the production of the graphical user interface
(GUI) and the interactions with external software (OODBMS,
reconstruction etc.).

Footnotes

Global Usage Classes

The "global" category in Geant4 collects all classes, types, structures
and constants which are considered of general use within the Geant4
toolkit. This category also defines the interface with third-party
software libraries (CLHEP, STL, etc.) and system-related types, by
defining, where appropriate, typedefs according to the Geant4 code
conventions.

Signature of Geant4 classes

In order to keep an homogeneous naming style, and according to the
Geant4 coding style conventions, each class part of the Geant4 kernel
has its name beginning with the prefix G4, e.g.,
G4VHit, G4GeometryManager, G4ProcessVector, etc. Instead of the raw
C types, G4 types are used within the Geant4 code. For the basic
numeric types (int, float, double, etc.), different compilers and
different platforms provide different value ranges. In order to assure
portability, the use of G4int,
G4float, G4double, G4bool, globally defined, is preferable. G4
types implement the right generic type for a given architecture.

Basic types

The basic types in Geant4 are considered to be the following:

	G4int,

	G4long,

	G4float,

	G4double,

	G4bool,

	G4complex,

	G4String.

which currently consist of simple typedefs to respective types
defined in the CLHEP, STL or system libraries. Most definitions
of these basic types come with the inclusion of a single header file,
globals.hh. This file also provides inclusion of required system
headers, as well as some global utility functions needed and used within
the Geant4 kernel.

Typedefs to CLHEP classes and their usage

The following classes are typedefs to the corresponding classes of
the CLHEP (Computing Library for High Energy Physics)
distribution. For more detailed documentation please refer to the
CLHEP documentation#1.

	G4ThreeVector, G4RotationMatrix, G4LorentzVector and
G4LorentzRotation:

Vector classes: defining 3-component (x,y,z) vector entities,
rotation of such objects as 3x3 matrices, 4-component (x,y,z,t)
vector entities and their rotation as 4x4 matrices.

	G4Plane3D, G4Transform3D, G4Normal3D, G4Point3D, G4Scale3D, and
G4Vector3D:

Geometrical classes: defining geometrical entities and
transformations in 3D space.

The HEPRandom module in CLHEP

The HEPRandom module, originally part of the Geant4 kernel, and now
distributed as a module of CLHEP, has been designed and developed
starting from the Random class of MC++, the original CLHEP's
HepRandom module and the Rogue Wave approach in the Math.h++
package. For detailed documentation on the HEPRandom classes see the
CLHEP documentation#2.

Information written in this manual is extracted from the original
manifesto
distributed with the HEPRandom package.

The HEPRandom module consists of classes implementing different random
engines and different random distributions. A distribution
associated to an engine constitutes a random generator. A
distribution class can collect different algorithms and different
calling sequences for each method to define distribution parameters or
range-intervals. An engine implements the basic algorithm for
pseudo-random numbers generation.

There are 3 different ways of shooting random values:

	Using the static generator defined in the HepRandom class: random
values are shot using static methods shoot() defined for each
distribution class. The static generator will use, as default engine,
a MixMaxRng object, and the user can set its properties or
change it with a new instantiated engine object by using the static
methods defined in the HepRandom class.

	Skipping the static generator and specifying an engine object: random
values are shot using static methods shoot(*HepRandomEngine)
defined for each distribution class. The user must instantiate an
engine object and give it as argument to the shoot method. The
generator mechanism will then be by-passed by using the basic
flat() method of the specified engine. The user must take care of
the engine objects he/she instantiates.

	Skipping the static generator and instantiating a distribution
object: random values are shot using fire() methods (NOT static)
defined for each distribution class. The user must instantiate a
distribution object giving as argument to the constructor an engine
by pointer or by reference. By doing so, the engine will be
associated to the distribution object and the generator mechanism
will be by-passed by using the basic flat() method of that
engine.

In this guide, we'll only focus on the static generator (point 1.),
since the static interface of HEPRandom is the only one used within
the Geant4 toolkit.

HEPRandom engines

The class HepRandomEngine is the abstract class defining the interface
for each random engine. It implements the getSeed() and
getSeeds() methods which return the initial seed value and the
initial array of seeds (if any) respectively. Many concrete random
engines can be defined and added to the structure, simply making them
inheriting from HepRandomEngine. Several different engines are
currently implemented in HepRandom, we describe here five of them:

	HepJamesRandom

It implements the algorithm described in F.James, Comp. Phys.
Comm. 60 (1990) 329 for pseudo-random number generation.

	DRand48Engine

Random engine using the drand48() and srand48() system
functions from C standard library to implement the flat() basic
distribution and for setting seeds respectively. DRand48Engine uses
the seed48() function from C standard library to retrieve the
current internal status of the generator, which is represented by 3
short values. DRand48Engine is the only engine defined in
HEPRandom which intrinsically works in 32 bits precision. Copies of
an object of this kind are not allowed.

	MixMaxRng

Random number engine implementing the MixMax Matrix Generator of
Pseudorandom Numbers generator proposed by N.Z.Akopov,
G.K.Saviddy and N.G.Ter-Arutyunian, J.Compt.Phy. 97, (1991) 573 and
G.Savvidy and N.Savvidy, J.Comput.Phys. 97 (1991) 566.
This is the default random engine for the static generator; it will be
invoked by each distribution class unless the user sets a different
one.

	RanluxEngine

The algorithm for RanluxEngine has been taken from the original
implementation in FORTRAN77 by Fred James, part of the MATHLIB
HEP library. The initialisation is carried out using a
Multiplicative Congruential generator using formula constants of
L'Ecuyer as described in F.James, Comp. Phys. Comm. 60 (1990)
329-344. The engine provides five different luxury levels for
quality of random generation. When instantiating a RanluxEngine,
the user can specify the luxury level to the constructor (if not, the
default value 3 is taken). For example:

RanluxEngine theRanluxEngine(seed,4);
// instantiates an engine with `seed' and the best luxury-level
... or
RanluxEngine theRanluxEngine;
// instantiates an engine with default seed value and luxury-level
...

The class provides a getLuxury() method to get the engine luxury
level.

The SetSeed() and SetSeeds() methods to set the initial seeds
for the engine, can be invoked specifying the luxury level. For
example:

// static interface
HepRandom::setTheSeed(seed,4); // sets the seed to `seed' and luxury to 4
HepRandom::setTheSeed(seed); // sets the seed to `seed' keeping
 // the current luxury level

	RanecuEngine

The algorithm for RanecuEngine is taken from the one originally
written in FORTRAN77 as part of the MATHLIB HEP library. The
initialisation is carried out using a Multiplicative Congruential
generator using formula constants of L'Ecuyer as described in
F.James, Comp. Phys. Comm. 60 (1990) 329-344. Handling of seeds
for this engine is slightly different than the other engines in
HEPRandom. Seeds are taken from a seed table given an index, the
getSeed() method returns the current index of seed table. The
setSeeds() method will set seeds in the local SeedTable at a
given position index (if the index number specified exceeds the
table's size, [index%size] is taken). For example:

// static interface
const G4long* table_entry;
table_entry = HepRandom::getTheSeeds();
// it returns a pointer `table_entry' to the local SeedTable
// at the current `index' position. The couple of seeds
// accessed represents the current `status' of the engine itself !
...
G4int index=n;
G4long seeds[2];
HepRandom::setTheSeeds(seeds,index);
// sets the new `index' for seeds and modify the values inside
// the local SeedTable at the `index' position. If the index
// is not specified, the current index in the table is considered.
...

The setSeed() method resets the current `status' of the engine
to the original seeds stored in the static table of seeds in
HepRandom, at the specified index.

Except for the RanecuEngine, for which the internal status is
represented by just a couple of longs, all the other engines have a much
more complex representation of their internal status, which currently
can be obtained only through the methods saveStatus(),
restoreStatus() and showStatus(), which can also be statically
called from HepRandom. The status of the generator is needed for
example to be able to reproduce a run or an event in a run at a given
stage of the simulation.

RanecuEngine is probably the most suitable engine for this kind of
operation, since its internal status can be fetched/reset by simply
using getSeeds()/setSeeds() (getTheSeeds()/setTheSeeds()
for the static interface in HepRandom).

The static interface in the HepRandom class

HepRandom a singleton class and using a MixMaxRng engine as
default algorithm for pseudo-random number generation. HepRandom
defines a static private data member, theGenerator, and a set of
static methods to manipulate it. By means of theGenerator, the user
can change the underlying engine algorithm, get and set the seeds, and
use any kind of defined random distribution. The static methods
setTheSeed() and getTheSeed() will set and get respectively the
initial seed to the main engine used by the static generator. For
example:

HepRandom::setTheSeed(seed); // to change the current seed to 'seed'
int startSeed = HepRandom::getTheSeed(); // to get the current initial seed
HepRandom::saveEngineStatus(); // to save the current engine status on file
HepRandom::restoreEngineStatus(); // to restore the current engine to a previous
 // saved configuration
HepRandom::showEngineStatus(); // to display the current engine status to stdout
...
int index=n;
long seeds[2];
HepRandom::getTheTableSeeds(seeds,index);
 // fills `seeds' with the values stored in the global
 // seedTable at position `index'

Only one random engine can be active at a time, the user can decide at
any time to change it, define a new one (if not done already) and set
it. For example:

RanecuEngine theNewEngine;
HepRandom::setTheEngine(&theNewEngine);
 ...

or simply setting it to an old instantiated engine (the old engine
status is kept and the new random sequence will start exactly from the
last one previously interrupted). For example:

HepRandom::setTheEngine(&myOldEngine);

Other static methods defined in this class are:

	void setTheSeeds(const G4long* seeds, G4int)

	const G4long* getTheSeeds()

To set/get an array of seeds for the generator, in the case of a
RanecuEngine this corresponds also to set/get the current status of
the engine.

	HepRandomEngine* getTheEngine()

To get a pointer to the current engine used by the static generator.

HEPRandom distributions

A distribution-class can collect different algorithms and different
calling sequences for each method to define distribution parameters or
range-intervals; it also collects methods to fill arrays, of specified
size, of random values, according to the distribution. This class
collects either static and not static methods. A set of distribution
classes are defined in HEPRandom. Here is the description of some of
them:

	RandFlat Class to shoot flat random values (integers or double) within a
specified interval. The class provides also methods to shoot just
random bits.

	RandExponential Class to shoot exponential distributed random values, given a mean
(default mean = 1)

	RandGauss Class to shoot Gaussian distributed random values, given a mean
(default = 0) or specifying also a deviation (default = 1). Gaussian
random numbers are generated two at the time, so every other time a
number is shot, the number returned is the one generated the time
before.

	RandBreitWigner Class to shoot numbers according to the Breit-Wigner distribution
algorithms (plain or mean^2).

	RandPoisson Class to shoot numbers according to the Poisson distribution, given a
mean (default = 1) (Algorithm taken from W.H.Press et al.,
Numerical Recipes in C, Second Edition).

The HEPNumerics module

A set of classes implementing numerical algorithms has been developed in
Geant4. Most of the algorithms and methods have been implemented mainly
based on recommendations given in the books:

	B.H. Flowers, An introduction to Numerical Methods In C++,
Clarendon Press, Oxford 1995.

	M. Abramowitz, I. Stegun, Handbook of mathematical functions,
DOVER Publications INC, New York 1965 ; chapters 9, 10, and 22.

This set of classes includes:

	G4ChebyshevApproximation Class creating the Chebyshev approximation for a function pointed by
fFunction data member. The Chebyshev polynomial approximation
provides an efficient evaluation of the minimax polynomial, which
(among all polynomials of the same degree) has the smallest maximum
deviation from the true function.

	G4DataInterpolation Class providing methods for data interpolations and extrapolations:
Polynomial, Cubic Spline, ...

	G4GaussChebyshevQ

	G4GaussHermiteQ

	G4GaussJacobiQ

	G4GaussLaguerreQ Classes implementing the Gauss-Chebyshev, Gauss-Hermite,
Gauss-Jacobi, Gauss-Laguerre and Gauss-Legendre quadrature methods.
Roots of orthogonal polynomials and corresponding weights are
calculated based on iteration method (by bisection Newton algorithm).

	G4Integrator Template class collecting integrator methods for generic functions
(Legendre, Simpson, Adaptive Gauss, Laguerre, Hermite, Jacobi).

	G4SimpleIntegration Class implementing simple numerical methods (Trapezoidal, MidPoint,
Gauss, Simpson, Adaptive Gauss, for integration of functions with
signature: double f(double).

General management classes

The global category defines also a set of utility classes
generally used within the kernel of Geant4. These classes include:

	G4Allocator

A class for fast allocation of objects to the heap through paging
mechanism. It's meant to be used by associating it to the object to
be allocated and defining for it new and delete operators via
MallocSingle() and FreeSingle() methods of G4Allocator.

Note

G4Allocator assumes that objects being allocated have
all the same size for the type they represent. For this reason,
classes which are handled by G4Allocator should avoid to be
used as base-classes for others. Similarly, base-classes of
sub-classes handled through G4Allocator should not define their
(eventually empty) virtual destructors inlined; such measure is
necessary in order also to prevent bad aliasing optimisations by
compilers which may potentially lead to crashes in the attempt to
free allocated chunks of memory when using the base-class pointer or
not.

The list of allocators implicitly defined and used in Geant4 is
reported here:

	events (G4Event): anEventAllocator

	tracks (G4Track): aTrackAllocator

	stacked tracks (G4StackedTrack): aStackedTrackAllocator

	primary particles (G4PrimaryParticle): aPrimaryParticleAllocator

	primary vertices (G4PrimaryVertex): aPrimaryVertexAllocator

	decay products (G4DecayProducts): aDecayProductsAllocator

	digits collections of an event (G4DCofThisEvent): anDCoTHAllocator

	digits collections (G4DigiCollection): aDCAllocator

	hits collections of an event (G4HCofThisEvent): anHCoTHAllocator

	hits collections (G4HitsCollection): anHCAllocator

	touchable histories (G4TouchableHistory): aTouchableHistoryAllocator

	trajectories (G4Trajectory): aTrajectoryAllocator

	trajectory points (G4TrajectoryPoint): aTrajectoryPointAllocator

	trajectory containers (G4TrajectoryContainer): aTrajectoryContainerAllocator

	navigation levels (G4NavigationLevel): aNavigationLevelAllocator

	navigation level nodes (G4NavigationLevelRep): aNavigLevelRepAllocator

	reference-counted handles (G4ReferenceCountedHandle<X>): aRCHAllocator

	counted objects (G4CountedObject<X>): aCountedObjectAllocator

	HEPEvt primary particles (G4HEPEvtParticle): aHEPEvtParticleAllocator

	electron occupancy objects(G4ElectronOccupancy): aElectronOccupancyAllocator

	"rich" trajectories (G4RichTrajectory): aRichTrajectoryAllocator

	"rich" trajectory points (G4RichTrajectoryPoint): aRichTrajectoryPointAllocator

	"smooth" trajectories (G4SmoothTrajectory): aSmoothTrajectoryAllocator

	"smooth" trajectory points (G4SmoothTrajectoryPoint): aSmoothTrajectoryPointAllocator

	"ray" trajectories (G4RayTrajectory): G4RayTrajectoryAllocator

	"ray" trajectory points (G4RayTrajectoryPoint): G4RayTrajectoryPointAllocator

For each of these allocators, accessible from the global namespace,
it is possible to monitor the allocation in their memory pools or
force them to release the allocated memory (for example at the end of
a run):

// Return the size of the total memory allocated for tracks
//
aTrackAllocator.GetAllocatedSize();

// Return allocated storage for tracks to the free store
//
aTrackAllocator.ResetStorage();

	G4ReferenceCountedHandle

Template class acting as a smart pointer and wrapping the type to be
counted. It performs the reference counting during the life-time of
the counted object.

	G4FastVector

Template class defining a vector of pointers, not performing boundary
checking.

	G4PhysicsVector

Defines a physics vector which has values of energy-loss,
cross-section, and other physics values of a particle in matter in a
given range of the energy, momentum, etc. This class serves as the
base class for a vector having various energy scale, for example like
'log' (G4PhysicsLogVector) 'linear' (G4PhysicsLinearVector),
'free' (G4PhysicsFreeVector), etc.

	G4LPhysicsFreeVector

Implements a free vector for low energy physics cross-section data. A
subdivision method is used to find the energy|momentum bin.

	G4PhysicsOrderedFreeVector

A physics ordered free vector inherits from G4PhysicsVector. It
provides, in addition, a method for the user to insert energy/value
pairs in sequence. Methods to retrieve the max and min energies and
values from the vector are also provided.

	G4Timer

Utility class providing methods to measure elapsed user/system
process time. Uses <sys/times.h> and <unistd.h> - POSIX.1.

	G4UserLimits

Class collecting methods for get and set any kind of step limitation
allowed in Geant4.

	G4UnitsTable

Placeholder for the system of units in Geant4.

Footnotes

	#1

	https://proj-clhep.web.cern.ch/proj-clhep/index.html#docu

	#2

	https://proj-clhep.web.cern.ch/proj-clhep/index.html#docu

System of units

Basic units

Geant4 offers the user the possibility to choose and use the preferred
units for any quantity. In fact, Geant4 takes care of the units.
Internally a consistent set on units based on the HepSystemOfUnits
is used:

millimeter (mm)
nanosecond (ns)
Mega electron Volt (MeV)
positron charge (eplus)
degree Kelvin (kelvin)
the amount of substance (mole)
luminous intensity (candela)
radian (radian)
steradian (steradian)

All other units are defined from the basic ones.

For instance:

millimeter = mm = 1;
meter = m = 1000*mm;
...
m3 = m*m*m;
...

In the file $CLHEP_BASE_DIR/include/CLHEP/Units/SystemOfUnits.h from
the CLHEP installation, one can find all units definitions.

One can also change the system of units to be used by the kernel.

Input your data

Avoid 'hard coded' data

The user must give the units for the data to introduce:

G4double Size = 15*km, KineticEnergy = 90.3*GeV, density = 11*mg/cm3;

Geant4 assumes that these specifications for the units are respected, in
order to assure independence from the units chosen in the client
application.

If units are not specified in the client application, data are
implicitly treated in internal Geant4 system units; this practice is
however strongly discouraged.

If the data set comes from an array or from an external file, it is
strongly recommended to set the units as soon as the data are read,
before any treatment. For instance:

for (int j=0, j<jmax, j++) CrossSection[j] *= millibarn;
...
my calculations
...

Interactive commands

Some built-in commands from the User Interface (UI) also require units
to be specified.

For instance:

/gun/energy 15.2 keV
/gun/position 3 2 -7 meter

If units are not specified, or are not valid, the command is refused.

Output your data

You can output your data with the wished units. To do so, it is
sufficient to divide the data by the corresponding unit:

G4cout << KineticEnergy/keV << " keV";
G4cout << density/(g/cm3) << " g/cm3";

Of course, G4cout << KineticEnergy will print the energy in the
internal units system.

There is another way to output the data. Let Geant4 choose the most
appropriate units for the actual numerical value of the data. It is
sufficient to specify to which category the data belong to (Length,
Time, Energy, etc.). For example:

G4cout << G4BestUnit(StepSize, "Length");

StepSize will be printed in km, m, mm, fermi, etc. depending of its
actual value.

Introduce new units

If wished to introduce new units, there are two methods:

	You can extend the file SystemOfUnits.h

#include "SystemOfUnits.h"

static const G4double inch = 2.54*cm;

Using this method, it is not easy to define composed units. It is
better to do the following:

	Instantiate an object of the class G4UnitDefinition. These
objects are owned by the global G4UnitsTable at construction, and
must not be deleted by the user.

new G4UnitDefinition (name, symbol, category, value)

For example: define a few units for speed

new G4UnitDefinition ("km/hour" , "km/h", "Speed", km/(3600*s));
new G4UnitDefinition ("meter/ns", "m/ns", "Speed", m/ns);

The category "Speed" does not exist by default in G4UnitsTable,
but it will be created automatically. The class G4UnitDefinition
is defined in source/global/management/G4UnitsTable.hh.

Print the list of units

You can print the list of units with the static function:
G4UnitDefinition::PrintUnitsTable();
or with the interactive command: /units/list

Footnotes

Run

Basic concept of Run

In Geant4, Run is the largest unit of simulation. A run consists of a
sequence of events. Within a run, the detector geometry, the set up of
sensitive detectors, and the physics processes used in the simulation
should be kept unchanged. A run is represented by a G4Run class
object. A run starts with BeamOn() method of G4RunManager.

Representation of a run

G4Run represents a run. It has a run identification number, which
should be set by the user, and the number of events simulated during the
run. Please note that the run identification number is not used by the
Geant4 kernel, and thus can be arbitrarily assigned at the user's
convenience.

G4Run has pointers to the tables G4VHitsCollection and
G4VDigiCollection. These tables are associated in case sensitive
detectors and digitizer modules are simulated, respectively. The
usage of these tables will be mentioned in Hits and
Digitization.

G4Run has two virtual methods, and thus you can extend G4Run
class. In particular if you use Geant4 in multi-threaded mode and need
to accumulate values, these two virtual method must be overwritten to
specify how such values should be collected firstly for a worker thread,
and then for the entire run. These virtual methods are the following.

	virtual void RecordEvent(const G4Event*)
	Method to be overwritten by the user for recording events in this
(thread-local) run. At the end of the implementation,
G4Run
base-class method for must be invoked for recording data members in
the base class.

	void Merge(const G4Run*)
	Method to be overwritten by the user for merging local Run object to
the global Run object. At the end of the implementation,
G4Run
base-class method for must be invoked for merging data members in
the base class.

Manage the run procedures

G4RunManager manages the procedures of a run. In the constructor of
G4RunManager, all of the manager classes in Geant4 kernel, except
for some static managers, are constructed. These managers are deleted in
the destructor of G4RunManager. G4RunManager must be a singleton
created in the user's main() program; the pointer to this singleton
object can be obtained by other code using the GetRunManager()
static method.

As already mentioned in How to Define the main() Program, all of the user
initialization classes defined by the user should be assigned to
G4RunManager before starting initialization of the Geant4 kernel.
The assignments of these user classes are done by
SetUserInitialization() methods. All user classes defined by the
Geant4 kernel will be summarized in User Actions.

G4RunManager has several public methods, which are listed below.

	Initialize()
	All initializations required by the Geant4 kernel are triggered by
this method. Initializations are:

	construction of the detector geometry and set up of sensitive
detectors and/or digitizer modules,

	construction of particles and physics processes,

	calculation of cross-section tables.

This method is thus mandatory before proceeding to the first run.
This method will be invoked automatically for the second and later
runs in case some of the initialized quantities need to be updated.

	BeamOn(G4int numberOfEvent)
	This method triggers the actual simulation of a run, that is, an
event loop. It takes an integer argument which represents the number
of events to be simulated.

	GetRunManager()
	This static method returns the pointer to the G4RunManager
singleton object.

	GetCurrentEvent()
	This method returns the pointer to the G4Event
object which is currently being simulated. This method is available
only when an event is being processed. At this moment, the
application state of Geant4, which is explained in the following
sub-section, is "EventProc". When Geant4 is in a state other than
"EventProc", this method returns null. Please note that the return
value of this method is const G4Event *
and thus you cannot modify the contents of the object.

	SetNumberOfEventsToBeStored(G4int nPrevious)
	When simulating the "pile up" of more than one event, it is
essential to access more than one event at the same moment. By
invoking this method, G4RunManager keeps nPrevious G4Event
objects. This method must be invoked before proceeding to
BeamOn().

	GetPreviousEvent(G4int i_thPrevious)
	The pointer to the i_thPrevious G4Event object can be obtained
through this method. A pointer to a const object is returned. It
is inevitable that i_thPrevious events must have already been
simulated in the same run for getting the i_thPrevious
event. Otherwise, this method returns null.

	AbortRun()
	This method should be invoked whenever the processing of a run must
be stopped. It is valid for GeomClosed and EventProc
states. Run processing will be safely aborted even in the midst of
processing an event. However, the last event of the aborted run will
be incomplete and should not be used for further analysis.

Run manager classes for multi-threading mode

G4MTRunManager is the replacement of G4RunManager for
multi-threading mode. At the very end of Initialize() method,
G4MTRunManager creates and starts worker threads. The event each
thread is tasked is in first-come-first-served basis, so that event
numbers each thread has are not sequential.

G4WorkerRunManager is the local RunManager automatically
instantiated by G4MTRunManager to take care of initialization and
event handling of a thread. Both G4MTRunManager and
G4WorkerRunManager are derived classes of G4RunManager base
class.

The static method G4RunManager::GetRunManager() returns the
following pointer.

	It returns the pointer to the G4WorkerRunManager
of the local thread when it is invoked from thread-local object.

	It returns the pointer to the G4MTRunManager
when it is invoked from shared object.

	It returns the pointer to the base G4RunManager
if it is used in the sequential mode.

G4RunManager has a method GetRunManagerType() that returns an
enum named RMType to indicate what kind of RunManager it is.
RMType is defined as { sequentialRM, masterRM, workerRM }. From
the thread-local object, a static method
G4MTRunManager::GetMasterRunManager() is available to access to
G4MTRunManager. From a worker thread, the user may access to, for
example, detector construction (it is a shared class) through this
GetMasterRunManager() method.

G4UserRunAction

G4UserRunAction is one of the user action classes from which you
can derive your own concrete class. This base class has three virtual
methods as follows:

	GenerateRun()
	This method is invoked at the beginning of the
BeamOn()
method but after confirmation of the conditions of the Geant4
kernel. This method should be used to instantiate a user-specific
run class object.

	BeginOfRunAction()
	This method is invoked at the beginning of the
BeamOn()
method but after confirmation of the conditions of the Geant4
kernel. Likely uses of this method include:

	setting a run identification number,

	booking histograms,

	setting run specific conditions of the sensitive detectors and/or
digitizer modules (e.g., dead channels).

	EndOfRunAction()
	This method is invoked at the very end of the
BeamOn()
method. Typical use cases of this method are

	store/print histograms,

	manipulate run summaries.

Geant4 as a state machine

Geant4 is designed as a state machine. Some methods in Geant4 are
available for only a certain state(s). G4RunManager controls the
state changes of the Geant4 application. States of Geant4 are
represented by the enumeration G4ApplicationState. It has six states
through the life cycle of a Geant4 application.

	G4State_PreInit state
	A Geant4 application starts with this state. The application needs
to be initialized when it is in this state. The application
occasionally comes back to this state if geometry, physics
processes, and/or cut-off have been changed after processing a run.

	G4State_Init state
	The application is in this state while the Initialize() method of
G4RunManager is being invoked. Methods defined in any
user initialization classes are invoked during this state.

	G4State_Idle state
	The application is ready for starting a run.

	G4State_GeomClosed state
	When BeamOn()
is invoked, the application proceeds to this state to process a run.
Geometry, physics processes, and cut-off cannot be changed during
run processing.

	G4State_EventProc state
	A Geant4 application is in this state when a particular event is
being processed. GetCurrentEvent() and GetPreviousEvent() methods of
G4RunManager are available only at this state.

	G4State_Quit state
	When the destructor of G4RunManager
is invoked, the application comes to this "dead end" state. Managers
of the Geant4 kernel are being deleted and thus the application
cannot come back to any other state.

	G4State_Abort state
	When a G4Exception
occurs, the application comes to this "dead end" state and causes a
core dump. The user still has a hook to do some "safe" operations,
e.g. storing histograms, by implementing a user concrete class of
G4VStateDependent. The user also has a choice to suppress the occurrence of
G4Exception by a UI command /control/suppressAbortion.
When abortion is suppressed, you will still get error messages
issued by G4Exception, and there is NO guarantee of a correct result
after the G4Exception error message.

G4StateManager belongs to the intercoms category.

User's hook for state change

In case the user wants to do something at the moment of state change of
Geant4, the user can create a concrete class of the
G4VStateDependent base class. For example, the user can store
histograms when G4Exception occurs and Geant4 comes to the Abort
state, but before the actual core dump.

The following is an example user code which stores histograms when
Geant4 becomes to the Abort state. This class object should be made
in, for example main(), by the user code. This object will be
automatically registered to G4StateManager at its construction.

Listing 26 Header file of UserHookForAbortState

#ifndef UserHookForAbortState_H
#define UserHookForAbortState_H 1

#include "G4VStateDependent.hh"

class UserHookForAbortState : public G4VStateDependent
{
 public:
 UserHookForAbortState(); // constructor
 ~UserHookForAbortState(); // destructor

 virtual G4bool Notify(G4ApplicationState requiredState);
};

Listing 27 Source file of UserHookForAbortState

#include "UserHookForAbortState.hh"

UserHookForAbortState::UserHookForAbortState() {;}
UserHookForAbortState::~UserHookForAbortState() {;}

G4bool UserHookForAbortState::Notify(G4ApplicationState requiredState)
{
 if(requiredState!=Abort) return true;

 // Do book keeping here

 return true;
}

Customizing the Run Manager

Virtual Methods in the Run Manager

G4RunManager is a concrete class with a complete set of
functionalities for managing the Geant4 kernel. It is the only manager
class in the Geant4 kernel which must be constructed in the main()
method of the user's application. Thus, instead of constructing the
G4RunManager provided by Geant4, you are free to construct your own
RunManager. It is recommended, however, that your RunManager
inherit G4RunManager. For this purpose, G4RunManager has various
virtual methods which provide all the functionalities required to handle
the Geant4 kernel. Hence, your customized run manager need only override
the methods particular to your needs; the remaining methods in
G4RunManager base class can still be used. A summary of the
available methods is presented here:

	public: virtual void Initialize();
	main entry point of Geant4 kernel initialization

	protected: virtual void InitializeGeometry();
	geometry construction

	protected: virtual void InitializePhysics();
	physics processes construction

	public: virtual void BeamOn(G4int n_event);
	main entry point of the event loop

	protected: virtual G4bool ConfirmBeamOnCondition();
	check the kernel conditions for the event loop

	protected: virtual void RunInitialization();
	prepare a run

	protected: virtual void DoEventLoop(G4int n_events);
	manage an event loop

	protected: virtual G4Event* GenerateEvent(G4int i_event);
	generation of G4Event object

	protected: virtual void AnalyzeEvent(G4Event* anEvent);
	storage/analysis of an event

	protected: virtual void RunTermination();
	terminate a run

	public: virtual void DefineWorldVolume(G4VPhysicalVolume * worldVol);
	set the world volume to G4Navigator

	public: virtual void AbortRun();
	abort the run

Customizing the Event Loop

In G4RunManager the event loop is handled by the virtual method
DoEventLoop(). This method is implemented by a for loop
consisting of the following steps:

	construct a G4Event object and assign to it primary vertex(es)
and primary particles. This is done by the virtual
GeneratePrimaryEvent() method.

	send the G4Event object to G4EventManager for the detector
simulation. Hits and trajectories will be associated with the
G4Event object as a consequence.

	perform bookkeeping for the current G4Event object. This is done
by the virtual AnalyzeEvent() method.

DoEventLoop() performs the entire simulation of an event. However,
it is often useful to split the above three steps into isolated
application programs. If, for example, you wish to examine the effects
of changing discriminator thresholds, ADC gate widths and/or trigger
conditions on simulated events, much time can be saved by performing
steps 1 and 2 in one program and step 3 in another. The first program
need only generate the hit/trajectory information once and store it,
perhaps in a database. The second program could then retrieve the stored
G4Event objects and perform the digitization (analysis) using the
above threshold, gate and trigger settings. These settings could then be
changed and the digitization program re-run without re-generating the
G4Events.

Changing the Detector Geometry

The detector geometry defined in your G4VUserDetectorConstruction
concrete class can be changed during a run break (between two runs). Two
different cases are considered.

The first is the case in which you want to delete the entire structure
of your old geometry and build up a completely new set of volumes. For
this case, you need to delete them by yourself, and let RunManager
invokes Construct() and ConstructSDandField() methods of your
detector construction once again when RunManager starts the next
run.

G4RunManager* runManager = G4RunManager::GetRunManager();
runManager->ReinitializeGeometry();

If this ReinitializeGeometry() is invoked,
GeometryHasBeenModified() (discussed next) is automatically invoked.
Presumably this case is rather rare. The second case is more frequent
for the user.

The second case is the following. Suppose you want to move and/or rotate
a particular piece of your detector component. This case can easily
happen for a beam test of your detector. It is obvious for this case
that you need not change the world volume. Rather, it should be said
that your world volume (experimental hall for your beam test) should be
big enough for moving/rotating your test detector. For this case, you
can still use all of your detector geometries, and just use a Set
method of a particular physical volume to update the transformation
vector as you want. Thus, you don't need to re-set your world volume
pointer to RunManager.

If you want to change your geometry for every run, you can implement it
in the BeginOfRunAction() method of G4UserRunAction class, which
will be invoked at the beginning of each run, or, derive the
RunInitialization() method. Please note that, for both of the above
mentioned cases, you need to let RunManager know "the geometry needs
to be closed again". Thus, you need to invoke

runManager->GeometryHasBeenModified();

before proceeding to the next run. An example of changing geometry is
given in a Geant4 tutorial in Geant4 Training kit #2.

Switch physics processes

In the InitializePhysics() method, G4VUserPhysicsList::Construct
is invoked in order to define particles and physics processes in your
application. Basically, you can not add nor remove any particles during
execution, because particles are static objects in Geant4 (see
How to Specify Particles and Particles for details).
In addition, it is very difficult to add and/or remove physics processes
during execution, because registration procedures are very complex,
except for experts (see How to Specify Physics Processes and
Physics Processes). This is why the initializePhysics()
method is assumed to be invoked at once in Geant4 kernel initialization.

However, you can switch on/off physics processes defined in your
G4VUserPhysicsList concrete class and also change parameters in
physics processes during the run break.

You can use ActivateProcess() and InActivateProcess() methods of
G4ProcessManager anywhere outside the event loop to switch on/off
some process. You should be very careful to switch on/off processes
inside the event loop, though it is not prohibited to use these methods
even in the EventProc state.

It is a likely case to change cut-off values in a run. You can change
defaultCutValue in G4VUserPhysicsList during the Idle state.
In this case, all cross section tables need to be recalculated before
the event loop. You should use the CutOffHasBeenModified() method
when you change cut-off values so that the SetCuts method of your
PhysicsList concrete class will be invoked.

Managing worker thread

G4UserWorkerInitialization is an additional user initialization
class to be used only for the multi-threaded mode. The object of this
class can be set to G4MTRunManager, but not to G4RunManager.
G4UserWorkerInitialization class has five virtual methods as the
user hooks which are invoked at several occasions of the life cycle of
each thread.

	virtual void WorkerInitialize() const
	This method is called after the tread is created but before the
G4WorkerRunManager is instantiated.

	virtual void WorkerStart() const
	This method is called once at the beginning of simulation job when
kernel classes and user action classes have already instantiated but
geometry and physics have not been yet initialized. This situation
is identical to "PreInit" state in the sequential mode.

	virtual void WorkerStartRun() const
	This method is called before an event loop. Geometry and physics
have already been set up for the thread. All threads are
synchronized and ready to start the local event loop. This situation
is identical to "Idle" state in the sequential mode.

	virtual void WorkerRunEnd() const
	This method is called for each thread when the local event loop is
done, but before the synchronization over all worker threads.

	virtual void WorkerStop() const
	This method is called once at the end of simulation job.

Footnotes

Event

Representation of an event

G4Event represents an event. An object of this class contains all
inputs and outputs of the simulated event. This class object is
constructed in G4RunManager and sent to G4EventManager. The
event currently being processed can be obtained via the
getCurrentEvent() method of G4RunManager.

Structure of an event

A G4Event object has four major types of information. Get methods
for this information are available in G4Event.

	Primary vertexes and primary particles
	Details are given in Event Generator Interface.

	Trajectories
	Trajectories are stored in G4TrajectoryContainer class objects and
the pointer to this container is stored in G4Event. The contents
of a trajectory are given in Trajectory and Trajectory Point.

	Hits collections
	Collections of hits generated by sensitive detectors are kept in
G4HCofThisEvent class object and the pointer to this container
class object is stored in G4Event. See Hits for
the details.

	Digits collections
	Collections of digits generated by digitizer modules are kept in
G4DCofThisEvent class object and the pointer to this container
class object is stored in G4Event. See Digitization for
the details.

Mandates of G4EventManager

G4EventManager is the manager class to take care of one event. It is
responsible for:

	converting G4PrimaryVertex and G4PrimaryParticle objects
associated with the current G4Event object to G4Track
objects. All of G4Track objects representing the primary
particles are sent to G4StackManager.

	Pop one G4Track object from G4StackManager and send it to
G4TrackingManager. The current G4Track object is deleted by
G4EventManager after the track is simulated by
G4TrackingManager, if the track is marked as "killed".

	In case the primary track is "suspended" or "postponed to next event"
by G4TrackingManager, it is sent back to the G4StackManager.
Secondary G4Track objects returned by G4TrackingManager are
also sent to G4StackManager.

	When G4StackManager returns NULL for the "pop" request,
G4EventManager terminates the current processing event.

	invokes the user-defined methods beginOfEventAction() and
endOfEventAction() from the G4UserEventAction class. See
User Information Classes for details.

Stacking mechanism

G4StackManager has three stacks, named urgent, waiting and
postpone-to-next-event, which are objects of the G4TrackStack
class. By default, all G4Track objects are stored in the urgent
stack and handled in a "last in first out" manner. In this case, the
other two stacks are not used. However, tracks may be routed to the
other two stacks by the user-defined G4UserStackingAction concrete
class.

If the methods of G4UserStackingAction have been overridden by the
user, the postpone-to-next-event and waiting stacks may contain
tracks. At the beginning of an event, G4StackManager checks to see
if any tracks left over from the previous event are stored in the
postpone-to-next-event stack. If so, it attempts to move them to the
urgent stack. But first the PrepareNewEvent() method of
G4UserStackingAction is called. Here tracks may be re-classified by
the user and sent to the urgent or waiting stacks, or deferred again
to the postpone-to-next-event stack. As the event is processed
G4StackManager pops tracks from the urgent stack until it is
empty. At this point the NewStage() method of
G4UserStackingAction is called. In this method tracks from the
waiting stack may be sent to the urgent stack, retained in the
waiting stack or postponed to the next event.

Details of the user-defined methods of G4UserStackingAction and how
they affect track stack management are given in
User Information Classes.

Footnotes

Event Generator Interface

Structure of a primary event

Primary vertex and primary particle

The G4Event class object should have a set of primary particles when
it is sent to G4EventManager via processOneEvent() method. It is
the mandate of your G4VUserPrimaryGeneratorAction concrete class to
send primary particles to the G4Event object.

The G4PrimaryParticle class represents a primary particle with which
Geant4 starts simulating an event. This class object has information on
particle type and its three momenta. The positional and time information
of primary particle(s) are stored in the G4PrimaryVertex class
object and, thus, this class object can have one or more
G4PrimaryParticle class objects which share the same vertex. Primary
vertexes and primary particles are associated with the G4Event
object by a form of linked list.

A concrete class of G4VPrimaryGenerator, the G4PrimaryParticle
object is constructed with either a pointer to G4ParticleDefinition
or an integer number which represents P.D.G. particle code. For the case
of some artificial particles, e.g., geantino, optical photon, etc., or
exotic nuclear fragments, which the P.D.G. particle code does not cover,
the G4PrimaryParticle should be constructed by
G4ParticleDefinition pointer. On the other hand, elementary
particles with very short life time, e.g., weak bosons, or
quarks/gluons, can be instantiated as G4PrimaryParticle objects
using the P.D.G. particle code. It should be noted that, even though
primary particles with such a very short life time are defined, Geant4
will simulate only the particles which are defined as
G4ParticleDefinition class objects. Other primary particles will be
simply ignored by G4EventManager. But it may still be useful to
construct such "intermediate" particles for recording the origin of the
primary event.

Forced decay channel

The G4PrimaryParticle class object can have a list of its daughter
particles. If the parent particle is an "intermediate" particle, which
Geant4 does not have a corresponding G4ParticleDefinition, this
parent particle is ignored and daughters are assumed to start from the
vertex with which their parent is associated. For example, a Z boson is
associated with a vertex and it has positive and negative muons as its
daughters, these muons will start from that vertex.

There are some kinds of particles which should fly some reasonable
distances and, thus, should be simulated by Geant4, but you still want
to follow the decay channel generated by an event generator. A typical
case of these particles is B meson. Even for the case of a primary
particle which has a corresponding G4ParticleDefinition, it can have
daughter primary particles. Geant4 will trace the parent particle until
it comes to decay, obeying multiple scattering, ionization loss,
rotation with the magnetic field, etc. according to its particle type.
When the parent comes to decay, instead of randomly choosing its decay
channel, it follows the "pre-assigned" decay channel. To conserve the
energy and the momentum of the parent, daughters will be Lorentz
transformed according to their parent's frame.

Interface to a primary generator

G4HEPEvtInterface

Unfortunately, almost all event generators presently in use, commonly
are written in FORTRAN. For Geant4, it was decided to not link with any
FORTRAN program or library, even though the C++ language syntax itself
allows such a link. Linking to a FORTRAN package might be convenient in
some cases, but we will lose many advantages of object-oriented features
of C++, such as robustness. Instead, Geant4 provides an ASCII file
interface for such event generators.

G4HEPEvtInterface is one of G4VPrimaryGenerator concrete class
and thus it can be used in your G4VUserPrimaryGeneratorAction
concrete class. G4HEPEvtInterface reads an ASCII file produced by an
event generator and reproduces G4PrimaryParticle objects associated
with a G4PrimaryVertex object. It reproduces a full production chain
of the event generator, starting with primary quarks, etc. In other
words, G4HEPEvtInterface converts information stored in the
/HEPEVT/ common block to an object-oriented data structure. Because
the /HEPEVT/ common block is commonly used by almost all event
generators written in FORTRAN, G4HEPEvtInterface can interface to
almost all event generators currently used in the HEP community. The
constructor of G4HEPEvtInterface takes the file name.
Listing 28 shows an example how to use
G4HEPEvtInterface. Note that an event generator is not assumed to
give a place of the primary particles, the interaction point must be set
before invoking GeneratePrimaryVertex() method.

Listing 28 An example code for G4HEPEvtInterface

#ifndef ExN04PrimaryGeneratorAction_h
#define ExN04PrimaryGeneratorAction_h 1

#include "G4VUserPrimaryGeneratorAction.hh"
#include "globals.hh"

class G4VPrimaryGenerator;
class G4Event;

class ExN04PrimaryGeneratorAction : public G4VUserPrimaryGeneratorAction
{
 public:
 ExN04PrimaryGeneratorAction();
 ~ExN04PrimaryGeneratorAction();

 public:
 void GeneratePrimaries(G4Event* anEvent);

 private:
 G4VPrimaryGenerator* HEPEvt;
};

#endif

#include "ExN04PrimaryGeneratorAction.hh"

#include "G4Event.hh"
#include "G4HEPEvtInterface.hh"

ExN04PrimaryGeneratorAction::ExN04PrimaryGeneratorAction()
{
 HEPEvt = new G4HEPEvtInterface("pythia_event.data");
}

ExN04PrimaryGeneratorAction::~ExN04PrimaryGeneratorAction()
{
 delete HEPEvt;
}

void ExN04PrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{
 HEPEvt->SetParticlePosition(G4ThreeVector(0.*cm,0.*cm,0.*cm));
 HEPEvt->GeneratePrimaryVertex(anEvent);
}

Format of the ASCII file

An ASCII file, which will be fed by G4HEPEvtInterface should have
the following format.

	The first line of each primary event should be an integer which
represents the number of the following lines of primary particles.

	Each line in an event corresponds to a particle in the /HEPEVT/
common. Each line has ISTHEP, IDHEP, JDAHEP(1), JDAHEP(2), PHEP(1),
PHEP(2), PHEP(3), PHEP(5). Refer
to the /HEPEVT/ manual for the meanings of these variables.

Listing 29 shows an example FORTRAN
code to generate an ASCII file.

Listing 29 A FORTRAN example using the /HEPEVT/ common.

 SUBROUTINE HEP2G4
*
* Convert /HEPEVT/ event structure to an ASCII file
* to be fed by G4HEPEvtInterface
*

 PARAMETER (NMXHEP=2000)
 COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP),
 >JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),VHEP(4,NMXHEP)
 DOUBLE PRECISION PHEP,VHEP
*
 WRITE(6,*) NHEP
 DO IHEP=1,NHEP
 WRITE(6,10)
 > ISTHEP(IHEP),IDHEP(IHEP),JDAHEP(1,IHEP),JDAHEP(2,IHEP),
 > PHEP(1,IHEP),PHEP(2,IHEP),PHEP(3,IHEP),PHEP(5,IHEP)
10 FORMAT(4I10,4(1X,D15.8))
 ENDDO
*
 RETURN
 END

Future interface to the new generation generators

Several activities have already been started for developing
object-oriented event generators. Such new generators can be easily
linked and used with a Geant4 based simulation. Furthermore, we need not
distinguish a primary generator from the physics processes used in
Geant4. Future generators can be a kind of physics process plugged-in by
inheriting G4VProcess.

Event overlap using multiple generators

Your G4VUserPrimaryGeneratorAction concrete class can have more than
one G4VPrimaryGenerator concrete class. Each G4VPrimaryGenerator
concrete class can be accessed more than once per event. Using these
class objects, one event can have more than one primary event.

One possible use is the following. Within an event, a
G4HEPEvtInterface class object instantiated with a minimum bias
event file is accessed 20 times and another G4HEPEvtInterface class
object instantiated with a signal event file is accessed once. Thus,
this event represents a typical signal event of LHC overlapping 20
minimum bias events. It should be noted that a simulation of event
overlapping can be done by merging hits and/or digits associated with
several events, and these events can be simulated independently.
Digitization over multiple events will be mentioned in
Digitization.

Footnotes

Event Biasing Techniques

Scoring, Geometrical Importance Sampling and Weight Roulette

Geant4 provides event biasing techniques which may be used to save
computing time in such applications as the simulation of radiation
shielding. These are geometrical splitting and Russian roulette
(also called geometrical importance sampling), and weight roulette.
Scoring is carried out by G4MultiFunctionalDetector (see
G4MultiFunctionalDetector and G4VPrimitiveScorer and Concrete classes of G4VPrimitiveScorer) using the
standard Geant4 scoring technique. Biasing specific scorers have been
implemented and are described within G4MultiFunctionalDetector
documentation. In this chapter, it is assumed that the reader is
familiar with both the usage of Geant4 and the concepts of importance
sampling. More detailed documentation may be found in the documents
'Scoring, geometrical importance sampling and weight roulette'#1.

A detailed description of different use-cases which employ the sampling
and scoring techniques can be found in the document 'Use cases of
importance sampling and scoring in
Geant4'#2.

The purpose of importance sampling is to save computing time by sampling
less often the particle histories entering "less important" geometry
regions, and more often in more "important" regions. Given the same
amount of computing time, an importance-sampled and an analogue-sampled
simulation must show equal mean values, while the importance-sampled
simulation will have a decreased variance.

The implementation of scoring is independent of the implementation of
importance sampling. However both share common concepts. Scoring and
importance sampling apply to particle types chosen by the user, which
should be borne in mind when interpreting the output of any biased
simulation.

Examples on how to use scoring and importance sampling may be found in
examples/extended/biasing.

Geometries

The kind of scoring referred to in this note and the importance sampling
apply to spatial cells provided by the user.

A cell is a physical volume (further specified by it's replica
number, if the volume is a replica). Cells may be defined in two kinds
of geometries:

	mass geometry: the geometry setup of the experiment to be
simulated. Physics processes apply to this geometry.

	parallel-geometry: a geometry constructed to define the physical
volumes according to which scoring and/or importance sampling is
applied.

The user has the choice to score and/or sample by importance the
particles of the chosen type, according to mass geometry or to parallel
geometry. It is possible to utilize several parallel geometries in
addition to the mass geometry. This provides the user with a lot of
flexibility to define separate geometries for different particle types
in order to apply scoring or/and importance sampling.

Note

Parallel geometries should be constructed using the implementation
as described in Parallel Geometries. There are a few conditions for
parallel geometries:

	The world volume for parallel and mass geometries must be
identical copies.

	Scoring and importance cells must not share boundaries with the
world volume.

Changing the Sampling

Samplers are higher level tools which perform the necessary changes of
the Geant4 sampling in order to apply importance sampling and weight
roulette.

Variance reduction (and scoring through the
G4MultiFunctionalDetector) may be combined arbitrarily for chosen
particle types and may be applied to the mass or to parallel geometries.

The G4GeometrySampler can be applied equally to mass or parallel
geometries with an abstract interface supplied by G4VSampler.
G4VSampler provides Prepare... methods and a Configure
method:

class G4VSampler
{
 public:
 G4VSampler();
 virtual ~G4VSampler();
 virtual void PrepareImportanceSampling(G4VIStore *istore,
 const G4VImportanceAlgorithm
 *ialg = 0) = 0;
 virtual void PrepareWeightRoulett(G4double wsurvive = 0.5,
 G4double wlimit = 0.25,
 G4double isource = 1) = 0;
 virtual void PrepareWeightWindow(G4VWeightWindowStore *wwstore,
 G4VWeightWindowAlgorithm *wwAlg = 0,
 G4PlaceOfAction placeOfAction =
 onBoundary) = 0;
 virtual void Configure() = 0;
 virtual void ClearSampling() = 0;
 virtual G4bool IsConfigured() const = 0;
};

The methods for setting up the desired combination need specific
information:

	Importance sampling: message PrepareImportanceSampling with a
G4VIStore and optionally a
G4VImportanceAlgorithm

	Weight window: message PrepareWeightWindow with the arguments:

	*wwstore: a G4VWeightWindowStore
for retrieving the lower weight bounds for the energy-space cells

	*wwAlg: a G4VWeightWindowAlgorithm
if a customized algorithm should be used

	placeOfAction: a G4PlaceOfAction
specifying where to perform the biasing

	Weight roulette: message PrepareWeightRoulett with the optional
parameters:

	wsurvive: survival weight

	wlimit: minimal allowed value of weight * source importance / cell
importance

	isource: importance of the source cell

Each object of a sampler class is responsible for one particle type. The
particle type is given to the constructor of the sampler classes via the
particle type name, e.g. "neutron". Depending on the specific purpose,
the Configure() of a sampler will set up specialized processes
(derived from G4VProcess) for transportation in the parallel
geometry, importance sampling and weight roulette for the given particle
type. When Configure() is invoked the sampler places the processes
in the correct order independent of the order in which user invoked the
Prepare... methods.

Note

	The Prepare...() functions may each only be invoked once.

	To configure the sampling the function Configure() must be
called after the G4RunManager has been initialized and the
PhysicsList has been instantiated.

The interface and framework are demonstrated in the
examples/extended/biasing directory, with the main changes being to
the G4GeometrySampler class and the fact that in the parallel case the
WorldVolume is a copy of the Mass World. The parallel geometry now has
to inherit from G4VUserParallelWorld which also has the
GetWorld() method in order to retrieve a copy of the mass geometry
WorldVolume.

class B02ImportanceDetectorConstruction : public G4VUserParallelWorld
ghostWorld = GetWorld();

The constructor for G4GeometrySampler takes a pointer to the
physical world volume and the particle type name (e.g. "neutron") as
arguments. In a single mass geometry the sampler is created as follows:

G4GeometrySampler mgs(detector->GetWorldVolume(),"neutron");
mgs.SetParallel(false);

Whilst the following lines of code are required in order to set up the
sampler for the parallel geometry case:

G4VPhysicalVolume* ghostWorld = pdet->GetWorldVolume();

G4GeometrySampler pgs(ghostWorld,"neutron");

pgs.SetParallel(true);

Also note that the preparation and configuration of the samplers has to
be carried out after the instantiation of the UserPhysicsList. With
the modular reference PhysicsList the following set-up is required
(first is for biasing, the second for scoring):

physicsList->RegisterPhysics(new G4ImportanceBiasing(&pgs,parallelName));
physicsList->RegisterPhysics(new G4ParallelWorldPhysics(parallelName));

If the a UserPhysicsList is being implemented, then the following should
be used to give the pointer to the GeometrySampler to the PhysicsList:

physlist->AddBiasing(&pgs,parallelName);

Then to instantiate the biasing physics process the following should be
included in the UserPhysicsList and called from ConstructProcess():

AddBiasingProcess(){
 fGeomSampler->SetParallel(true); // parallelworld
 G4IStore* iStore = G4IStore::GetInstance(fBiasWorldName);
 fGeomSampler->SetWorld(iStore->GetParallelWorldVolumePointer());
 // fGeomSampler->PrepareImportanceSampling(G4IStore::
 // GetInstance(fBiasWorldName), 0);
 static G4bool first = true;
 if(first) {
 fGeomSampler->PrepareImportanceSampling(iStore, 0);

 fGeomSampler->Configure();
 G4cout << " GeomSampler Configured!!! " << G4endl;
 first = false;
 }

#ifdef G4MULTITHREADED
 fGeomSampler->AddProcess();
#else
 G4cout << " Running in singlethreaded mode!!! " << G4endl;
#endif

pgs.PrepareImportanceSampling(G4IStore::GetInstance(pdet->GetName()), 0);
pgs.Configure();

Due to the fact that biasing is a process and has to be inserted after
all the other processes have been created.

Importance Sampling

Importance sampling acts on particles crossing boundaries between
"importance cells". The action taken depends on the importance values
assigned to the cells. In general a particle history is either split or
Russian roulette is played if the importance increases or decreases,
respectively. A weight assigned to the history is changed according to
the action taken.

The tools provided for importance sampling require the user to have a
good understanding of the physics in the problem. This is because the
user has to decide which particle types require importance sampled,
define the cells, and assign importance values to the cells. If this is
not done properly the results cannot be expected to describe a real
experiment.

The assignment of importance values to a cell is done using an
importance store described below.

An "importance store" with the interface G4VIStore is used to store
importance values related to cells. In order to do importance sampling
the user has to create an object (e.g. of class G4IStore) of type
G4VIStore. The samplers may be given a G4VIStore. The user fills
the store with cells and their importance values. The store is now a
singleton class so should be created using a GetInstance method:

G4IStore *aIstore = G4IStore::GetInstance();

Or if a parallel world is used:

G4IStore *aIstore = G4IStore::GetInstance(pdet->GetName());

An importance store has to be constructed with a reference to the world
volume of the geometry used for importance sampling. This may be the
world volume of the mass or of a parallel geometry. Importance stores
derive from the interface G4VIStore:

class G4VIStore
{
 public:
 G4VIStore();
 virtual ~G4VIStore();
 virtual G4double GetImportance(const G4GeometryCell &gCell) const = 0;
 virtual G4bool IsKnown(const G4GeometryCell &gCell) const = 0;
 virtual const G4VPhysicalVolume &GetWorldVolume() const = 0;
};

A concrete implementation of an importance store is provided by the
class G4VStore. The public part of the class is:

class G4IStore : public G4VIStore
{
 public:
 explicit G4IStore(const G4VPhysicalVolume &worldvolume);
 virtual ~G4IStore();
 virtual G4double GetImportance(const G4GeometryCell &gCell) const;
 virtual G4bool IsKnown(const G4GeometryCell &gCell) const;
 virtual const G4VPhysicalVolume &GetWorldVolume() const;
 void AddImportanceGeometryCell(G4double importance,
 const G4GeometryCell &gCell);
 void AddImportanceGeometryCell(G4double importance,
 const G4VPhysicalVolume &,
 G4int aRepNum = 0);
 void ChangeImportance(G4double importance,
 const G4GeometryCell &gCell);
 void ChangeImportance(G4double importance,
 const G4VPhysicalVolume &,
 G4int aRepNum = 0);
 G4double GetImportance(const G4VPhysicalVolume &,
 G4int aRepNum = 0) const ;
 private:
};

The member function AddImportanceGeometryCell() enters a cell and an
importance value into the importance store. The importance values may be
returned either according to a physical volume and a replica number or
according to a G4GeometryCell. The user must be aware of the
interpretation of assigning importance values to a cell. If scoring is
also implemented then this is attached to logical volumes, in which case
the physical volume and replica number method should be used for
assigning importance values. See examples/extended/biasing
B01 and B02 for examples of this.

Note

An importance value must be assigned to every cell.

The different cases:

	Cell is not in store

Not filling a certain cell in the store will cause an exception.

	Importance value = zero

Tracks of the chosen particle type will be killed.

	importance values > 0

Normal allowed values

	Importance value smaller zero

Not allowed!

The Importance Sampling Algorithm

Importance sampling supports using a customized importance sampling
algorithm. To this end, the sampler interface
Changing the Sampling may be given a pointer
to the interface G4VImportanceAlgorithm:

class G4VImportanceAlgorithm
{
 public:
 G4VImportanceAlgorithm();
 virtual ~G4VImportanceAlgorithm();
 virtual G4Nsplit_Weight Calculate(G4double ipre,
 G4double ipost,
 G4double init_w) const = 0;
};

The method Calculate() takes the arguments:

	ipre, ipost : importance of the previous cell and the importance of the
current cell, respectively.

	init_w: the particle's weight

It returns the struct:

class G4Nsplit_Weight
{
 public:

 G4int fN;
 G4double fW;
};

	fN: the calculated number of particles to exit the importance sampling

	fW: the weight of the particles

The user may have a customized algorithm used by providing a class
inheriting from G4VImportanceAlgorithm.

If no customized algorithm is given to the sampler the default
importance sampling algorithm is used. This algorithm is implemented in
G4ImportanceAlgorithm.

The Weight Window Technique

The weight window technique is a weight-based alternative to importance
sampling:

	applies splitting and Russian roulette depending on space (cells) and
energy

	user defines weight windows in contrast to defining importance values
as in importance sampling

In contrast to importance sampling this technique is not weight blind.
Instead the technique is applied according to the particle weight with
respect to the current energy-space cell.

Therefore the technique is convenient to apply in combination with other
variance reduction techniques such as cross-section biasing and implicit
capture.

A weight window may be specified for every cell and for several energy
regions: space-energy cell.

[image: ../_images/wwconcept.jpg]

Fig. 6 Weight window concept

Weight window concept

The user specifies a lower weight bound W_L for every space-energy
cell.

	The upper weight bound W_U and the survival weight W_S are
calculated as:

W_U = C_U W_L and

W_S = C_S W_L.

	The user specifies C_S and C_U once for the whole problem.

	The user may give different sets of energy bounds for every cell or
one set for all geometrical cells

	Special case: if C_S = C_U = 1 for all energies then weight window
is equivalent to importance sampling

	The user can choose to apply the technique: at boundaries, on
collisions or on boundaries and collisions

The energy-space cells are realized by G4GeometryCell as in
importance sampling. The cells are stored in a weight window store
defined by G4VWeightWindowStore:

class G4VWeightWindowStore {
 public:
 G4VWeightWindowStore();
 virtual ~G4VWeightWindowStore();
 virtual G4double GetLowerWeitgh(const G4GeometryCell &gCell,
 G4double partEnergy) const = 0;
 virtual G4bool IsKnown(const G4GeometryCell &gCell) const = 0;
 virtual const G4VPhysicalVolume &GetWorldVolume() const = 0;
};

A concrete implementation is provided:

class G4WeightWindowStore: public G4VWeightWindowStore {
 public:
 explicit G4WeightWindowStore(const G4VPhysicalVolume &worldvolume);
 virtual ~G4WeightWindowStore();
 virtual G4double GetLowerWeitgh(const G4GeometryCell &gCell,
 G4double partEnergy) const;
 virtual G4bool IsKnown(const G4GeometryCell &gCell) const;
 virtual const G4VPhysicalVolume &GetWorldVolume() const;
 void AddLowerWeights(const G4GeometryCell &gCell,
 const std::vector<G4double> &lowerWeights);
 void AddUpperEboundLowerWeightPairs(const G4GeometryCell &gCell,
 const G4UpperEnergyToLowerWeightMap&
 enWeMap);
 void SetGeneralUpperEnergyBounds(const
 std::set<G4double, std::less<G4double> > & enBounds);

 private::
 ...
};

The user may choose equal energy bounds for all cells. In this case a
set of upper energy bounds must be given to the store using the method
SetGeneralUpperEnergyBounds. If a general set of energy bounds have
been set AddLowerWeights can be used to add the cells.

Alternatively, the user may chose different energy regions for different
cells. In this case the user must provide a mapping of upper energy
bounds to lower weight bounds for every cell using the method
AddUpperEboundLowerWeightPairs.

Weight window algorithms implementing the interface class
G4VWeightWindowAlgorithm can be used to define a customized
algorithm:

class G4VWeightWindowAlgorithm {
 public:
 G4VWeightWindowAlgorithm();
 virtual ~G4VWeightWindowAlgorithm();
 virtual G4Nsplit_Weight Calculate(G4double init_w,
 G4double lowerWeightBound) const = 0;
};

A concrete implementation is provided and used as a default:

class G4WeightWindowAlgorithm : public G4VWeightWindowAlgorithm {
 public:
 G4WeightWindowAlgorithm(G4double upperLimitFaktor = 5,
 G4double survivalFaktor = 3,
 G4int maxNumberOfSplits = 5);
 virtual ~G4WeightWindowAlgorithm();
 virtual G4Nsplit_Weight Calculate(G4double init_w,
 G4double lowerWeightBound) const;
 private:
 ...
};

The constructor takes three parameters which are used to: calculate the
upper weight bound (upperLimitFaktor), calculate the survival weight
(survivalFaktor), and introduce a maximal number (maxNumberOfSplits) of
copies to be created in one go.

In addition, the inverse of the maxNumberOfSplits is used to specify the
minimum survival probability in case of Russian roulette.

The Weight Roulette Technique

Weight roulette (also called weight cutoff) is usually applied if
importance sampling and implicit capture are used together. Implicit
capture is not described here but it is useful to note that this
procedure reduces a particle weight in every collision instead of
killing the particle with some probability.

Together with importance sampling the weight of a particle may become so
low that it does not change any result significantly. Hence tracking a
very low weight particle is a waste of computing time. Weight roulette
is applied in order to solve this problem.

The weight roulette concept

Weight roulette takes into account the importance "Ic" of the current
cell and the importance "Is" of the cell in which the source is located,
by using the ratio "R=Is/Ic".

Weight roulette uses a relative minimal weight limit and a relative
survival weight. When a particle falls below the weight limit Russian
roulette is applied. If the particle survives, tracking will be
continued and the particle weight will be set to the survival weight.

The weight roulette uses the following parameters with their default
values:

	wsurvival: 0.5

	wlimit: 0.25

	isource: 1

The following algorithm is applied:

If a particle weight "w" is lower than R*wlimit:

	the weight of the particle will be changed to "ws = wsurvival*R"

	the probability for the particle to survive is "p = w/ws"

Physics Based Biasing

Geant4 supports physics based biasing through a number of general use,
built in biasing techniques. A utility class, G4WrapperProcess, is also
available to support user defined biasing.

Built in Biasing Options

Primary Particle Biasing

Primary particle biasing can be used to increase the number of primary
particles generated in a particular phase space region of interest. The
weight of the primary particle is modified as appropriate. A general
implementation is provided through the G4GeneralParticleSource
class. It is possible to bias position, angular and energy
distributions.

G4GeneralParticleSource is a concrete implementation of
G4VPrimaryGenerator. To use, instantiate G4GeneralParticleSource
in the G4VUserPrimaryGeneratorAction class, as demonstrated below.

MyPrimaryGeneratorAction::MyPrimaryGeneratorAction() {
 generator = new G4GeneralParticleSource;
}

void
MyPrimaryGeneratorAction::GeneratePrimaries(G4Event*anEvent){
 generator->GeneratePrimaryVertex(anEvent);
}

The biasing can be configured through interactive commands, as described
in General Particle Source. Examples are also distributed with the Geant4
distribution in examples/extended/eventgenerator/exgps.

Hadronic Leading Particle Biasing

One hadronic leading particle biasing technique is implemented in the
G4HadLeadBias utility. This method keeps only the most important part of
the event, as well as representative tracks of each given particle type.
So the track with the highest energy as well as one of each of Baryon,
pi0, mesons and leptons. As usual, appropriate weights are assigned to
the particles. Setting the SwitchLeadBiasOn environmental variable
will activate this utility.

Hadronic Cross Section Biasing

Cross section biasing artificially enhances/reduces the cross section of
a process. This may be useful for studying thin layer interactions or
thick layer shielding. The built in hadronic cross section biasing
applies to photon inelastic, electron nuclear and positron nuclear
processes.

The biasing is controlled through the BiasCrossSectionByFactor
method in G4HadronicProcess, as demonstrated below.

void MyPhysicsList::ConstructProcess()
{
 ...
 G4ElectroNuclearReaction * theElectroReaction =
 new G4ElectroNuclearReaction;

 G4ElectronNuclearProcess theElectronNuclearProcess;
 theElectronNuclearProcess.RegisterMe(theElectroReaction);
 theElectronNuclearProcess.BiasCrossSectionByFactor(100);

 pManager->AddDiscreteProcess(&theElectronNuclearProcess);
 ...
}

Radioactive Decay Biasing

The G4RadioactiveDecay (GRDM) class simulates the decay of
radioactive nuclei and implements the following biasing options:

	Increase the sampling rate of radionuclides within observation times
through a user defined probability distribution function

	Nuclear splitting, where the parent nuclide is split into a user
defined number of nuclides

	Branching ratio biasing where branching ratios are sampled with equal
probability

G4RadioactiveDecay is a process which must be registered with a process
manager, as demonstrated below.

void MyPhysicsList::ConstructProcess()
{
 ...
 G4RadioactiveDecay* theRadioactiveDecay =
 new G4RadioactiveDecay();

 G4ProcessManager* pmanager = ...
 pmanager ->AddProcess(theRadioactiveDecay);
 ...
}

Biasing can be controlled either in compiled code or through interactive
commands. Radioactive decay biasing examples are also distributed with
the Geant4 distribution in examples/extended/radioactivedecay/exrdm.

To select biasing as part of the process registration, use

theRadioactiveDecay->SetAnalogueMonteCarlo(false);

or the equivalent macro command:

/grdm/analogeMC [true|false]

In both cases, true specifies that the unbiased (analogue) simulation
will be done, and false selects biasing.

Limited Radionuclides

Radioactive decay may be restricted to only specific nuclides, in order
(for example) to avoid tracking extremely long-lived daughters in decay
chains which are not of experimental interest. To limit the range of
nuclides decayed as part of the process registration (above), use

G4NucleusLimits limits(aMin, aMax, zMin, zMax);
theRadioactiveDecay->SetNucleusLimits(limits);

or via the macro command

/grdm/nucleusLimits [aMin] [aMax] [zMin] [zMax]

Geometric Biasing

Radioactive decays may be generated throughout the user's detector
model, in one or more specified volumes, or nowhere. The detector
geometry must be defined before applying these geometric biases.

Volumes may be selected or deselected programmatically using

theRadioactiveDecay->SelectAllVolumes();
theRadioactiveDecay->DeselectAllVolumes();

G4LogicalVolume* aLogicalVolume; // Acquired by the user
theRadioactiveDecay->SelectVolume(aLogicalVolume);
theRadioactiveDecay->DeselectVolume(aLogicalVolume);

or with the equivalent macro commands

/grdm/allVolumes
/grdm/noVolumes
/grdm/selectVolume [logicalVolume]
/grdm/deselectVolume [logicalVolume]

In macro commands, the volumes are specified by name, and found by
searching the G4LogicalVolumeStore.

Decay Time Biasing

The decay time function (normally an exponential in the natural
lifetime) of the primary particle may be replaced with a time profile
F(t), as discussed in Section 40.6 of the Physics Reference Manual.
The profile function is represented as a two-column ASCII text file with
up to 100 time points (first column) with fractions (second column).

theRadioactiveDecay->SetSourceTimeProfile(fileName);
theRadioactiveDecay->SetDecayBias(fileName);

/grdm/sourceTimeProfile [fileName]
/grdm/decayBiasProfile [fileName]

Branching Fraction Biasing

Radionuclides with rare decay channels may be biased by forcing all
channels to be selected uniformly (BRBias = true below), rather
than according to their natural branching fractions (false).

theRadioactiveDecay->SetBRBias(true);

/grdm/BRbias [true|false]

Nuclear Splitting

The statistical efficiency of generated events may be increased by
generating multiple "copies" of nuclei in an event, each of which is
decayed independently, with an assigned weight of 1/Nsplit. Scoring the
results of tracking the decay daughters, using their corresponding
weights, can improve the statistical reach of a simulation while
preserving the shape of the resulting distributions.

theRadioactiveDecay->SetSplitNuclei(Nsplit);

/grdm/splitNucleus [Nsplit]

G4WrapperProcess

G4WrapperProcess can be used to implement user defined event biasing.
G4WrapperProcess, which is a process itself, wraps an existing process.
By default, all function calls are forwarded to the wrapped process. It
is a non-invasive way to modify the behaviour of an existing process.

To use this utility, first create a derived class inheriting from
G4WrapperProcess. Override the methods whose behaviour you would like to
modify, for example, PostStepDoIt, and register the derived class in
place of the process to be wrapped. Finally, register the wrapped
process with G4WrapperProcess. The code snippets below demonstrate its
use.

class MyWrapperProcess : public G4WrapperProcess {
...
 G4VParticleChange* PostStepDoIt(const G4Track& track,
 const G4Step& step) {
 // Do something interesting
 }
};

void MyPhysicsList::ConstructProcess()
{
...
 G4eBremsstrahlung* bremProcess =
 new G4eBremsstrahlung();

 MyWrapperProcess* wrapper = new MyWrapperProcess();
 wrapper->RegisterProcess(bremProcess);

 processManager->AddProcess(wrapper, -1, -1, 3);
}

Adjoint/Reverse Monte Carlo

Another powerful biasing technique available in Geant4 is the Reverse
Monte Carlo (RMC) method, also known as the Adjoint Monte Carlo method.
In this method particles are generated on the external boundary of the
sensitive part of the geometry and then are tracked backward in the
geometry till they reach the external source surface, or exceed an
energy threshold. By this way the computing time is focused only on
particle tracks that are contributing to the tallies. The RMC method is
much rapid than the Forward MC method when the sensitive part of the
geometry is small compared to the rest of the geometry and to the
external source, that has to be extensive and not beam like. At the
moment the RMC method is implemented in Geant4 only for some
electromagnetic processes (see
Reverse processes). An example illustrating the
use of the Reverse MC method in Geant4 is distributed within the Geant4
toolkit in examples/extended/biasing/ReverseMC01.

Treatment of the Reverse MC method in Geant4

Different G4Adjoint classes have been implemented into the Geant4
toolkit in order to run an adjoint/reverse simulation in a Geant4
application. This implementation is illustrated in
Fig. 7. An adjoint run is
divided in a series of alternative adjoint and forward tracking of
adjoint and normal particles. One Geant4 event treats one of this
tracking phase.

[image: ../_images/ReverseMC_tracking.png]

Fig. 7 Schematic view of an adjoint/reverse simulation in Geant4.

Adjoint tracking phase

Adjoint particles (adjoint_e-, adjoint_gamma,...) are generated one by
one on the so called adjoint source with random position, energy (1/E
distribution) and direction. The adjoint source is the external surface
of a user defined volume or of a user defined sphere. The adjoint source
should contain one or several sensitive volumes and should be small
compared to the entire geometry. The user can set the minimum and
maximum energy of the adjoint source. After its generation the adjoint
primary particle is tracked backward in the geometry till a user defined
external surface (spherical or boundary of a volume) or is killed before
if it reaches a user defined upper energy limit that represents the
maximum energy of the external source. During the reverse tracking,
reverse processes take place where the adjoint particle being tracked
can be either scattered or transformed in another type of adjoint
particle. During the reverse tracking the G4AdjointSimulationManager
replaces the user defined primary, run, stepping, ... actions, by its
own actions. A reverse tracking phase corresponds to one Geant4 event.

Forward tracking phase

When an adjoint particle reaches the external surface its weight, type,
position, and direction are registered and a normal primary particle,
with a type equivalent to the last generated primary adjoint, is
generated with the same energy, position but opposite direction and is
tracked in the forward direction in the sensitive region as in a forward
MC simulation. During this forward tracking phase the event, stacking,
stepping, tracking actions defined by the user for his forward
simulation are used. By this clear separation between adjoint and
forward tracking phases, the code of the user developed for a forward
simulation should be only slightly modified to adapt it for an adjoint
simulation (see How to update a G4 application to use the reverse Monte Carlo mode). Indeed the
computation of the signals is done by the same actions or classes that
the one used in the forward simulation mode. A forward tracking phase
corresponds to one G4 event.

Reverse processes

During the reverse tracking, reverse processes act on the adjoint
particles. The reverse processes that are at the moment available in
Geant4 are the:

	Reverse discrete ionization for e-, proton and ions

	Continuous gain of energy by ionization and bremsstrahlung for e- and
by ionization for protons and ions

	Reverse discrete e- bremsstrahlung

	Reverse photo-electric effect

	Reverse Compton scattering

	Approximated multiple scattering (see comment in Reverse multiple scattering)

It is important to note that the electromagnetic reverse processes are
cut dependent as their equivalent forward processes. The implementation
of the reverse processes is based on the forward processes implemented
in the G4 standard electromagnetic package.

Nb of adjoint particle types and nb of G4 events of an adjoint simulation

The list of type of adjoint and forward particles that are generated on
the adjoint source and considered in the simulation is a function of the
adjoint processes declared in the physics list. For example if only the
e- and gamma electromagnetic processes are considered, only adjoint e-
and adjoint gamma will be considered as primaries. In this case an
adjoint event will be divided in four G4 event consisting in the reverse
tracking of an adjoint e-, the forward tracking of its equivalent
forward e-, the reverse tracking of an adjoint gamma, and the forward
tracking of its equivalent forward gamma. In this case a run of 100
adjoint events will consist into 400 Geant4 events. If the proton
ionization is also considered adjoint and forward protons are also
generated as primaries and 600 Geant4 events are processed for 100
adjoint events.

How to update a G4 application to use the reverse Monte Carlo mode

Some modifications are needed to an existing Geant4 application in order
to adapt it for the use of the reverse simulation mode (see also the G4
example examples/extended/biasing/ReverseMC01). It consists into
the:

	Creation of the adjoint simulation manager in the main code

	Optional declaration of user actions that will be used during the
adjoint tracking phase

	Use of a special physics lists that combine the adjoint and forward
processes

	Modification of the user analysis part of the code

Creation of G4AdjointSimManager in the main

The class G4AdjointSimManager represents the manager of an adjoint
simulation. This static class should be created somewhere in the main
code. The way to do that is illustrated below

int main(int argc,char** argv) {
 ...
 G4AdjointSimManager* theAdjointSimManager = G4AdjointSimManager::GetInstance();
 ...
}

By doing this the G4 application can be run in the reverse MC mode as
well as in the forward MC mode. It is important to note that
G4AdjointSimManager is not a new G4RunManager and that the creation of
G4RunManager in the main and the declaration of the geometry, physics
list, and user actions to G4RunManager is still needed. The definition
of the adjoint and external sources and the start of an adjoint
simulation can be controlled by G4UI commands in the directory
/adjoint.

Optional declaration of adjoint user actions

During an adjoint simulation the user stepping, tracking, stacking and
event actions declared to G4RunManager are used only during the G4
events dedicated to the forward tracking of normal particles in the
sensitive region, while during the events where adjoint particles are
tracked backward the following happen concerning these actions:

	The user stepping action is replaced by G4AdjointSteppingAction that
is responsible to stop an adjoint track when it reaches the external
source, exceed the maximum energy of the external source, or cross
the adjoint source surface. If needed the user can declare its own
stepping action that will be called by G4AdjointSteppingAction after
the check of stopping track conditions. This stepping action can be
different that the stepping action used for the forward simulation.
It is declared to G4AdjointSimManager by the following lines of code:

G4AdjointSimManager* theAdjointSimManager = G4AdjointSimManager::GetInstance();
theAdjointSimManager->SetAdjointSteppingAction(aUserDefinedSteppingAction);

	No stacking, tracking and event actions are considered by default. If
needed the user can declare to G4AdjointSimManager stacking, tracking
and event actions that will be used only during the adjoint tracking
phase. The following lines of code show how to declare these adjoint
actions to G4AdjointSimManager:

G4AdjointSimManager* theAdjointSimManager = G4AdjointSimManager::GetInstance();
theAdjointSimManager->SetAdjointEventAction(aUserDefinedEventAction);
theAdjointSimManager->SetAdjointStackingAction(aUserDefinedStackingAction);
theAdjointSimManager->SetAdjointTrackingAction(aUserDefinedTrackingAction);

By default no user run action is considered in an adjoint simulation but
if needed such action can be declared to G4AdjointSimManager as such:

G4AdjointSimManager* theAdjointSimManager = G4AdjointSimManager::GetInstance();
theAdjointSimManager->SetAdjointRunAction(aUserDefinedRunAction);

Physics list for reverse and forward electromagnetic processes

To run an adjoint simulation a specific physics list should be used
where existing G4 adjoint electromagnetic processes and their forward
equivalent have to be declared. An example of such physics list is
provided by the class G4AdjointPhysicsLits in the G4 example
extended/biasing/ReverseMC01.

Modification in the analysis part of the code

The user code should be modified to normalize the signals computed
during the forward tracking phase to the weight of the last adjoint
particle that reaches the external surface. This weight represents the
statistical weight that the last full adjoint tracks (from the adjoint
source to the external source) would have in a forward simulation. If
multiplied by a signal and registered in function of energy and/or
direction the simulation results will give an answer matrix of this
signal. To normalize it to a given spectrum it has to be furthermore
multiplied by a directional differential flux corresponding to this
spectrum The weight, direction, position , kinetic energy and type of
the last adjoint particle that reaches the external source, and that
would represents the primary of a forward simulation, can be gotten from
G4AdjointSimManager by using for example the following line of codes

G4AdjointSimManager* theAdjointSimManager = G4AdjointSimManager::GetInstance();
G4String particle_name = theAdjointSimManager->GetFwdParticleNameAtEndOfLastAdjointTrack();
G4int PDGEncoding= theAdjointSimManager->GetFwdParticlePDGEncodingAtEndOfLastAdjointTrack();
G4double weight = theAdjointSimManager->GetWeightAtEndOfLastAdjointTrack();
G4double Ekin = theAdjointSimManager->GetEkinAtEndOfLastAdjointTrack();
G4double Ekin_per_nuc=theAdjointSimManager->GetEkinNucAtEndOfLastAdjointTrack(); // for ions
G4ThreeVector dir = theAdjointSimManager->GetDirectionAtEndOfLastAdjointTrack();
G4ThreeVector pos = theAdjointSimManager->GetPositionAtEndOfLastAdjointTrack();

In order to have a code working for both forward and adjoint simulation
mode, the extra code needed in user actions or analysis manager for the
adjoint simulation mode can be separated to the code needed only for the
normal forward simulation by using the following public method of
G4AdjointSimManager:

G4bool GetAdjointSimMode();

that returns true if an adjoint simulation is running and false if not.

The following code example shows how to normalize a detector signal and
compute an answer matrix in the case of an adjoint simulation.

Listing 30 Normalization in the case of an adjoint simulation. The detector signal S computed during the forward tracking phase is normalized to a primary source of e- with a differential directional flux given by the function F. An answer matrix of the signal is also computed.

G4double S = ...; // signal in the sensitive volume computed during a forward tracking phase

//Normalization of the signal for an adjoint simulation
G4AdjointSimManager* theAdjSimManager = G4AdjointSimManager::GetInstance();
if (theAdjSimManager->GetAdjointSimMode()) {
 G4double normalized_S=0.; //normalized to a given e- primary spectrum
 G4double S_for_answer_matrix=0.; //for e- answer matrix

 if (theAdjSimManager->GetFwdParticleNameAtEndOfLastAdjointTrack() == "e-") {
 G4double ekin_prim = theAdjSimManager->GetEkinAtEndOfLastAdjointTrack();
 G4ThreeVector dir_prim = theAdjointSimManager->GetDirectionAtEndOfLastAdjointTrack();
 G4double weight_prim = theAdjSimManager->GetWeightAtEndOfLastAdjointTrack();
 S_for_answer_matrix = S*weight_prim;
 normalized_S = S_for_answer_matrix*F(ekin_prim,dir);
 // F(ekin_prim,dir_prim) gives the differential directional flux of primary e-
 }
 //follows the code where normalized_S and S_for_answer_matrix are registered or whatever

}

//analysis/normalization code for forward simulation
else {

}
....

Control of an adjoint simulation

The G4UI commands in the directory
/adjoint. allow the
user to :

	Define the adjoint source where adjoint primaries are generated

	Define the external source till which adjoint particles are tracked

	Start an adjoint simulation

Known issues in the Reverse MC mode

Occasional wrong high weight in the adjoint simulation

In rare cases an adjoint track may get a wrong high weight when reaching
the external source. While this happens not often it may corrupt the
simulation results significantly. This happens in some tracks where both
reverse photo-electric and bremsstrahlung processes take place at low
energy. We still need some investigations to remove this problem at the
level of physical adjoint/reverse processes. However this problem can be
solved at the level of event actions or analysis in the user code by
adding a test on the normalized signal during an adjoint simulation. An
example of such test has been implemented in the Geant4 example
extended/biasing/ReverseMC01. In this implementation an event is
rejected when the relative error of the computed normalized energy
deposited increases during one event by more than 50% while the computed
precision is already below 10%.

Reverse bremsstrahlung

A difference between the differential cross sections used in the adjoint
and forward bremsstrahlung models is the source of a higher flux of >100
keV gamma in the reverse simulation compared to the forward simulation
mode. In principle the adjoint processes/models should make use of the
direct differential cross section to sample the adjoint secondaries and
compute the adjoint cross section. However due to the way the effective
differential cross section is considered in the forward model
G4eBremsstrahlungModel this was not possible to achieve for the reverse
bremsstrahlung. Indeed the differential cross section used in
G4AdjointeBremstrahlungModel is obtained by the numerical derivation
over the cut energy of the direct cross section provided by
G4eBremsstrahlungModel. This would be a correct procedure if the
distribution of secondary in G4eBremsstrahlungModel would match this
differential cross section. Unfortunately it is not the case as
independent parameterization are used in G4eBremsstrahlungModel for both
the cross sections and the sampling of secondaries. (It means that in
the forward case if one would integrate the effective differential cross
section considered in the simulation we would not find back the used
cross section). In the future we plan to correct this problem by using
an extra weight correction factor after the occurrence of a reverse
bremsstrahlung. This weight factor should be the ratio between the
differential CS used in the adjoint simulation and the one effectively
used in the forward processes. As it is impossible to have a simple and
direct access to the forward differential CS in G4eBremsstrahlungModel
we are investigating the feasibility to use the differential CS
considered in G4Penelope models.

Reverse multiple scattering

For the reverse multiple scattering the same model is used than in the
forward case. This approximation makes that the discrepancy between the
adjoint and forward simulation cases can get to a level of ~ 10-15%
relative differences in the test cases that we have considered. In the
future we plan to improve the adjoint multiple scattering models by
forcing the computation of multiple scattering effect at the end of an
adjoint step.

Generic Biasing

The generic biasing scheme provides facilities for:

	physics-based biasing, to alter the behavior of existing physics
processes:

	biasing of physics process interaction occurrence,

	biasing of physics process final state production;

	non-physics-based biasing, to introduce or remove particles in the
simulation but without affecting the existing physics processes, with
techniques like, but not limited to

	splitting,

	Russian roulette (killing).

Decisions on what techniques to apply are taken on a step by step and
intra-step basis, hence providing a lot of flexibility.

The scheme has been introduced in 10.0, with new features and some
non-backward compatible changes introduced in 10.1 and 10.2; these are
documented in
Changes from 10.0 to 10.1 and
Changes from 10.1 to 10.2. Parallel
geometry capability has been introduced in 10.3.

Overview

The generic biasing scheme relies on two abstract classes, that are
meant to model the biasing problems. You have to inherit from them to
create your own concrete classes, or use some of the concrete instances
provided (see Existing biasing operations, operator and interaction laws), if they respond to
your case. A dedicated process provides the interface between these
biasing classes and the tracking. In case of parallel geometry usage, an
other process handles the navigation in these geometries.

The two abstract classes are:

	G4VBiasingOperation: which represents a simple, or "atomic"
biasing operation, like
changing a process interaction occurrence probability, or changing its
final state production, or making a splitting operation, etc.
For the occurrence biasing case, the biasing is handled with an other
class, ``G4VBiasingInteractionLaw``, which holds the properties
of the biased interaction law. An object of this class type must be
provided by the occurrence biasing operation returned.

	G4VBiasingOperator: which purpose is to make decisions on the
above biasing operations
to be applied. It is attached to a G4LogicalVolume and is the pilot
of the biasing in this volume. An operator may
decide to delegate to other operators.
An operator acts only in the G4LogicalVolume it is attached to.
In volumes with no biasing operator attached, the usual tracking is
applied.

The process acting as interface between the biasing classes and the
tracking is:

	G4BiasingProcessInterface: it is a concrete G4VProcess
implementation. It interrogates the current biasing operator, if any,
for biasing operations to be applied.
The G4BiasingProcessInterface can either:

	hold a physics process that it wraps and controls: in this case it
asks the operator for physics-based biasing operations (only) to
be applied to the wrapped process,

	not hold a physics process: in this case it asks the operator for
non-physics-based biasing operations (only): splitting, killing,
etc.

	The G4BiasingProcessInterface
class provides many information that can be used by the biasing
operator.
Each G4BiasingProcessInterface provides its identity to the
biasing operator it calls, so that the operator has this information
but also information of the underneath wrapped physics process, if it
is the case.

The G4BiasingProcessInterface can be asked for all other
G4BiasingProcessInterface instances at play on the current track.
In particular, this allows the operator to get all cross-sections at
the current point (feature available since 10.1). The code is
organized in such a way that these cross-sections are all available
at the first call to the operator in the current step.

	To make G4BiasingProcessInterface
instances wrapping physics processes, or to insert instances not
holding a physics process, the physics list has to be modified -the
generic biasing approach is hence invasive to the physics list-. The
way to configure your physics list and related helper tools are
described below.

The process handling parallel geometries is:

	G4ParallelGeometriesLimiterProcess, it is a concrete
G4VProcess implementation, which takes care of limiting the step on the
boundaries of parallel geometries.

	A single instance of G4ParallelGeometriesLimiterProcess
handles all parallel geometries to be considered for a particle type.
It collects these geometries by means of
myLimiterProcess->AddParallelWorld("myParallelGeometry") calls.

Given such a process is attached to a particle type, parallel
geometries are hence specified per particle type.

	Attaching an instance of this process to a given particle type, and
specifying the parallel geometries to be considered is eased by the
helper tools as explained below.

Getting Started

Examples

Seven "Generic Biasing (GB)" examples are proposed (they have been
introduced in 10.0, 10.1, 10.3 and 10.6):

	examples/extended/biasing/GB01:

	which shows how biasing of process cross-section can be done.

	This example uses the physics-based biasing operation
G4BOptnChangeCrossSection
defined in
geant4/source/processes/biasing/generic. This operation
performs the actual process cross-section change.
In the example a first
G4VBiasingOperator, GB01BOptrChangeCrossSection,
configures and selects this operation. This operator applies to
only one particle type.

	To allow several particle types to be biased, a second
G4VBiasingOperator, GB01BOptrMultiParticleChangeCrossSection,
is implemented, and which holds a
GB01BOptrChangeCrossSection
operator for each particle type to be biased. This second operator
then delegates to the first one the handling of the biasing
operations.

	examples/extended/biasing/GB02:

	which shows how a "force collision" scheme very close to the MCNP
one can be activated.

	This second example has a quite similar approach than the
GB01 one, with a G4VBiasingOperator,
QGB02BOptrMultiParticleForceCollision,
that holds as many operators than particle types to be biased,
this operators being of G4BOptrForceCollision type.

	This G4BOptrForceCollision operator is defined in
source/processes/biasing/generic.
It combines several biasing operations to build-up the needed
logic (see Setting up the application).
It can be in particular looked at to see how it collects and
makes use of physics process cross-sections.

	examples/extended/biasing/GB03:

	which implements a kind of importance geometry biasing, using the
generic biasing classes.

	The example uses a simple sampling calorimeter. On the boundary of
the absorber parts, it does splitting (killing) if the track is
moving forward (backward). As the splitting can be too strong in
some cases, falling into an over-splitting situation, even with a
splitting by a factor 2, a technique is introduced to alleviate
the problem : a probability to apply the splitting (killing) is
introduced, and with proper tuning of this probability, the
over-splitting can be avoided.

	examples/extended/biasing/GB04:

	which implements a bremsstrahlung splitting. Bremsstrahlung
splitting exists in the EM package. In the present example, it is
shown how to implement a similar technique, using the generic
biasing classes.

	A biasing operator,
GB04BOptrBremSplitting, sends a final state biasing operation,
GB04BOptnBremSplitting, for the bremsstrahlung process.
Splitting factor, and options to
control the biasing are available through command line.

	examples/extended/biasing/GB05:

	which illustrates a technique that uses physics cross-sections to
determine the splitting[killing] rate in a shielding problem, it
is applied to neutrons. This technique is supposed to be an
invention, to illustrate a technique combining physics-based
information with splitting/killing.

	In the classical treatment of the shielding problem, the shield is
divided in slices at the boundaries of which particles are
splitted[killed] if moving forward[backward]. In the present
technique, we collect the cross-sections of "absorbing/destroying"
processes : decay, capture, inelastic. We then use the generic
biasing facilities to create an equivalent of a splitting process,
that has a "cross-section" which is the sum of the previous ones.
This process is competing with other processes, as a regular one.
When this process wins the competition, it splits the track, with
a splitting factor 2. This splitting is hence occurring at the same
rate than the absorption, resulting in an expected maintained
(unweighted) flux.

	GB05BOptrSplitAndKillByCrossSection and
GB05BOptnSplitAndKillByCrossSection
are respectively the biasing operator and operation. The operator
collects the absorbing cross-sections at the beginning of the
step, passes them to the operation, requests it to sample the
distance to its next interaction, and returns this operation to
the calling G4BiasingProcessInterface
as the operation to be applied in the step.

	The operation interaction distance is then proposed by the calling
G4BiasingProcessInterface
and, if being the shortest of the interaction distances, the
operation final state generation (the splitting) is applied by the
process.

	examples/extended/biasing/GB06:

	which demonstrates the use of parallel geometries in generic
biasing, on a classical shield problem, using geometry-based
importance biasing.

	The mass geometry consists of a single block of concrete; it is
overlayed by a parallel geometry defining the slices used for
splitting/killing.

	The navigation capability in the parallel geometry is activated in
the main program, by means of the physics list constructor.

	examples/extended/biasing/GB07:

	which demonstrates the use of the leading particle biasing
technique in generic biasing.

	The mass geometry consists of a block of concrete in which the
biasing is applied. A thin volume then follows to score (simple
printing) the particles leaving the block of concrete.

Setting up the application

For making an existing G4VBiasingOperator used by your application,
you have to do two things:

	Attach the operator to the G4LogicalVolume
where the biasing should take place:
You have to make this attachment in your ConstructSDandField()
method (to make your application both sequential and MT-compliant):

Listing 31 Attachment of a G4BiasingOperator to a G4LogicalVolume. We assume such a volume has been created with name "volumeWithBiasing", and we assume that a biasing operator class MyBiasingOperator has been created, inheriting from G4VBiasingOperator:

// Fetch the logical volume pointer by name (it is an example, not a mandatory way):
G4LogicalVolume* biasingVolume = G4LogicalVolumeStore::GetInstance()->GetVolume("volumeWithBiasing");
// Create the biasing operator:
MyBiasingOperator* myBiasingOperator = new MyBiasingOperator("ExampleOperator");
// Attach it to the volume:
myBiasingOperator->AttachTo(biasingVolume);

	Setup the physics list you use to properly include the needed
G4BiasingProcessInterface
instances. You have several options for this.

	The easiest way is if you use a pre-packaged physics list (e.g.
FTFP_BERT, QGSP...). As such a physics list is of
G4VModularPhysicsList type, you can alter it with a
G4VPhysicsConstructor. The constructor
G4GenericBiasingPhysics is meant for this. It can be used,
typically in your main program, as:

Listing 32 Use of the G4GenericBiasingPhysics physics constructor to setup a pre-packaged physics list (of G4VModularPhysicsList type). Here we assume the FTFP_BERT physics list, and we assume that runManager is a pointer on a created G4RunManager or G4RMTunManager object.

// Instantiate the physics list:
FTFP_BERT* physicsList = new FTFP_BERT;
// Create the physics constructor for biasing:
G4GenericBiasingPhysics* biasingPhysics = new G4GenericBiasingPhysics();
// Tell what particle types have to be biased:
biasingPhysics->Bias("gamma");
biasingPhysics->Bias("neutron");
// Register the physics constructor to the physics list:
physicsList->RegisterPhysics(biasingPhysics);
// Set this physics list to the run manager:
runManager->SetUserInitialization(physicsList);

Doing so, all physics processes will be wrapped, and, for example,
the gamma conversion process, "conv", will appear as
"biasWrapper(conv)" when dumping the processes
(/particle/process/dump). An additional "biasWrapper(0)"
process, for non-physics-based biasing is also inserted.

Other methods to specifically chose some physics processes to be
biased or to insert only G4BiasingProcessInterface instances
for non-physics-based biasing also exist.

	The second way is useful if you write your own physics list, and
if this one is not a modular physics list, but inherits directly
from the lowest level abstract class G4VUserPhysicsList. In
this case, the above solution with G4GenericBiasingPhysics
does not apply. Instead you can use the G4BiasingHelper
utility class (this one is indeed used by
G4GenericBiasingPhysics).

Listing 33 Use of the G4BiasingHelper utility class to setup a physics list for biasing in case this physics list is not of G4VModularPhysicsList type but inherits directly from G4VUserPhysicsList.

// Get physics list helper:
G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper();
...
// Assume "particle" is a pointer on a G4ParticleDefinition object
G4String particleName = particle->GetParticleName();
if (particleName == "gamma")
{
ph->RegisterProcess(new G4PhotoElectricEffect , particle);
ph->RegisterProcess(new G4ComptonScattering , particle);
ph->RegisterProcess(new G4GammaConversion , particle);
G4ProcessManager* pmanager = particle->GetProcessManager();
G4BiasingHelper::ActivatePhysicsBiasing(pmanager, "phot");
G4BiasingHelper::ActivatePhysicsBiasing(pmanager, "compt");
G4BiasingHelper::ActivatePhysicsBiasing(pmanager, "conv");
G4BiasingHelper::ActivateNonPhysicsBiasing(pmanager);
}

	A last way to setup the physics list is by direct insertion of
the G4BiasingProcessInterface instances, but this requires
solid expertise in physics list creation.

In case you also use parallel geometries, you have to make the generic
biasing sensitive to these. Assuming you have created three parallel
geometries with names "parallelWorld1", "parallelWorld2" and
"parallelWorld3" that you want to be active for neutrons, the
additional calls you have to make compared to example
EvtBias.GenericBiasing.Overview.UsePhysConstructor
above are simply:

Listing 34 Calls to activate parallel geometry navigation

// -- activate parallel geometries for neutrons:
biasingPhysics->AddParallelGeometry("neutron","parallelWorld1");
biasingPhysics->AddParallelGeometry("neutron","parallelWorld2");
biasingPhysics->AddParallelGeometry("neutron","parallelWorld3");

It is also possible, even though less convenient, to use the
G4BiasingHelper utility class making calls to the static method
limiter = G4BiasingHelper::AddLimiterProcess(pmanager,"limiterProcessName")
in addition to the ones of example
EvtBias.GenericBiasing.Overview.UseBiasingHelper
above. This call returns a pointer limiter on the constructed
G4ParallelGeometriesLimiterProcess process, setting its name as
"limiterProcessName", this pointer has then to be used to specify
the parallel geometries to the process :
limiter->AddParallelWorld("parallelWorld1")...

Existing biasing operations, operator and interaction laws

Below are the set of available concrete biasing operations, operators and
interaction laws. These are defined in
source/processes/biasing/generic. Please note that several examples
(Examples)
also implement dedicated operators and operations.

	Concrete implementation classes of G4VBiasingOperation:

	G4BOptnCloning: a non-physics-based biasing operation that
clones the current track. Each of the two copies is given freely a weight.

	G4BOptnChangeCrossSection: a physics-based biasing operation
to change one process cross-section

	G4BOptnForceFreeFlight: a physics-based biasing operation to
force a flight with no
interaction through the current volume. This operation is better
said a "silent flight": the flight is conducted under a zero
weight, and the track weight is restored at the end of the free
flight, taking into account the cumulative weight change for the
non-interaction flight. This special feature is because this class
in used in the MCNP-like force collision scheme
G4BOptrForceCollision.

	G4BOptnForceCommonTruncatedExp:
a physics-based biasing operation to force a collision inside
the current volume. It is "common" as several processes may be
forced together, driving the related interaction law by the sum of
these processes cross-section. The relative natural occurrence of
processes is conserved. This operation makes use of a "truncated
exponential" law, which is the exponential law limited to a
segment [0,L], where L is the distance to exit the current volume.

	G4BOptnLeadingParticle: a non-physics-based biasing operation
that implements a Leading Particle Biasing scheme. The technique
can be applied to hadronic, electromagnetic et decay processes.
At each interaction point, are kept:

	the leading particle (highest energy track),

	one particle of each species (considering particles and
anti-particles as of same species, and all particles
with Z >= 2 as one species).

A Russian roulette is additionnally played on the surviving non-leading
tracks. This is specially of interest for electromagnetic processes as
these have low multiplicities, making unaffected the final state if
applying the above algorithm. The default killing probability is 2/3,
but can be changed by the void SetFurtherKillingProbability(G4double p)
method.

	Concrete implementation class of G4VBiasingOperator:

	G4BOptrForceCollision:
a biasing operator that implements a force collision scheme
quite close to the one provided by MCNP. It handles the scheme
though the following sequence:

	The operator starts by using a
G4BOptnCloning
cloning operation, making a copy of the primary entering the
volume. The primary is given a zero weight.

	The primary is then transported through to the volume, without
interactions. This is done with the operator requesting forced
free flight G4BOptnForceFreeFlight
operations to all physics processes. The weight is zero to
prevent the primary to contribute to scores. This flight
purpose is to accumulate the probability to fly through the
volume without interaction. When the primary reaches the volume
boundary, the first free flight operation restores the primary
weight to its initial weight and all operations multiply this
weight by their weight for non-interaction flight. The operator
then abandons here the primary track, letting it back to normal
tracking.

	The copy of the primary track starts and the track is forced to
interact in the volume, using the
G4BOptnForceCommonTruncatedExp
operation, itself using the total cross-section to compute the
forced interaction law (exponential law limited to path length
in the volume). One of the physics processes is randomly
selected (on the basis of cross-section values) for the
interaction.

	Other processes are receiving a forced free flight operation,
from the operator.

	The copy of the primary is transported up to its interaction
point. With these operations configured, the
G4BiasingProcessInterface
instances have all needed information to automatically compute
the weight of the primary track and of its interaction
products.

As this operation starts on the volume boundary, a single force
interaction occurs: if the track survives the interaction (e.g
Compton process), as it moved apart the boundary, the operator
does not consider it further.

	G4VBiasingInteractionLaw
classes. These classes describe the interaction law in term of a
non-interaction probability over a segment of length l, and an
"effective" cross-section for an interaction at distance l (see
Physics Reference Manual, section generic biasing). An
interaction law can also be sampled.

	G4InteractionLawPhysical:
the usual exponential law, driven by a cross-section constant
over a step. The effective cross-section is the cross-section.

	G4ILawForceFreeFlight:
an "interaction" law for, precisely, a non-interacting track,
with non-interaction probability always 1, and zero effective
cross-section. It is a limit case of the modeling.

	G4ILawTruncatedExp:
an exponential interaction law limited to a segment [0,L]. The
non-interaction probability and effective cross-section depend on
l, the distance travelled, and become zero and infinite,
respectively, at l=L.

Changes from 10.0 to 10.1

The G4VBiasingOperation class has been evolved to simplify the
interface. The changes regard physics-based biasing (occurrence biasing
and final state biasing) and are:

	Suppression of the method
virtual G4ForceCondition ProposeForceCondition(const G4ForceCondition
wrappedProcessCondition)

	The functionality has been kept, absorbing the
ProposeForceCondition(...)
method by the
ProvideOccurenceBiasingInteractionLaw(...)
one, which has now the signature:

virtual const G4VBiasingInteractionLaw*
ProvideOccurenceBiasingInteractionLaw (const
G4BiasingProcessInterface* callingProcess, G4ForceCondition&
proposeForceCondition) = 0;

	The value of proposeForceCondition
passed to the method is the
G4ForceCondition
value of the wrapped process, as this was the case with deprecated
method ProposeForceCondition(...) .

	Suppression of the virtual method
"G4bool DenyProcessPostStepDoIt(const G4BiasingProcessInterface*
callingProcess, const G4Track* track, const G4Step* step, G4double&
proposedTrackWeight)":

	This method was used to prevent the wrapped process hold by
callingProcess to have its PostStepDoIt(...)
called, providing a weight for this non-call.

	The method has been removed, but the functionality still exists,
and has been merged and generalized with the change of the pure
virtual ApplyFinalStateBiasing(...)
described just after.

	Extra argument
G4bool& forceBiasedFinalState
added as last argument of virtual G4VParticleChange*
ApplyFinalStateBiasing(const
G4BiasingProcessInterface* callingProcess, const G4Track* track,
const G4Step* step, G4bool& forceBiasedFinalState) = 0

	This method is meant to return a final state interaction through
the G4VParticleChange. The final state may be the
analog wrapped process one, or a
biased one, which comes with its weight correction for biasing
the final state. If an occurrence biasing is also at play in the
same step, the weight correction for this biasing is applied to
the final state before this one is returned to the stepping. This
is the default behavior. This behavior can be controlled by
forceBiasedFinalState:

	If forceBiasedFinalState
is left false, the above default behavior is applied.

	If forceBiasedFinalState is set to true, the
G4VParticleChange final state will be
returned as is
to the stepping, and that,
regardless
there is an occurrence at play. Hence, when setting
forceBiasedFinalState to true, the biasing operation
takes full responsibility
for the total weight (occurrence + final state) calculation.

	Deletion of G4ILawCommonTruncatedExp, which could be eliminated
after better implementation of
G4BOptnForceCommonTruncatedExp operation.

Changes from 10.1 to 10.2

Changes in 10.2 derive from the introduction of the track feature
G4VAuxiliaryTrackInformation. They regard essentially the force
collision operator G4BOptrForceCollision and related features. These
changes are transparent to the user if using G4BOptrForceCollision
and following examples/extended/biasing/GB02. The information below
are provided for developers of biasing classes.

The G4VAuxiliaryTrackInformation functionality allows to extend the
G4Track attributes with an instance of a concrete class deriving
from G4VAuxiliaryTrackInformation. Such an object is registered to
the G4Track using an ID that has to be previously obtained from
the G4PhysicsModelCatalog. The G4VBiasingOperator class defines
two new virtual methods, Configure() and ConfigureForWorker(),
to help with the creation of these ID's at the proper time (see
G4BOptrForceCollision as an example).

Before 10.2, the G4BOptrForceCollision class was using state
variables to make the bookkeeping of the tracks handled by the scheme.
Now this bookkeeping is handled using a
G4VAuxiliaryTrackInformation, G4BOptrForceCollisionTrackData.

To help with the bookkeeping, the base class G4VBiasingOperator was
defining a set of methods
(GetBirthOperation(..), RememberSecondaries(..),
ForgetTrack(..)), these have been removed in 10.2 and are easy to
overpass with a dedicated G4VAuxiliaryTrackInformation.

Footnotes

	#1

	http://geant4-internal.web.cern.ch/node/211

	#2

	http://geant4-internal.web.cern.ch/node/212

Detector Definition and Response

	Geometry
	Introduction

	Solids

	Logical Volumes

	Physical Volumes

	Touchables: Uniquely Identifying a Volume

	Creating an Assembly of Volumes

	Reflecting Hierarchies of Volumes

	The Geometry Navigator

	Converting Geometries from Geant3.21

	Detecting Overlapping Volumes

	Dynamic Geometry Setups

	Importing XML Models Using GDML

	Importing ASCII Text Models

	Saving geometry tree objects in binary format

	Material
	General considerations

	Introduction to the Classes

	Recipes for Building Elements and Materials

	The Tables

	Electromagnetic Field
	An Overview of Propagation in a Field

	Practical Aspects

	Spin Tracking

	Alternative Integration Methods

	Quantum State Simulation

	Bulirsch-Stoer

	Symplectic Integration

	Hits
	Hit

	Sensitive detector

	G4SDManager

	G4MultiFunctionalDetector and G4VPrimitiveScorer

	Concrete classes of G4VPrimitiveScorer

	G4VSDFilter and its derived classes

	Multiple sensitive detectors associated to a single logical-volume

	Utilities

	Digitization
	Digi

	Digitizer module

	Birks Quenching

	Object Persistency
	Persistency in Geant4

	Using Root-I/O for persistency of Geant4 objects

	Parallel Geometries
	A parallel world

	Defining a parallel world

	Layered mass geometry

	Command-based scoring
	Introduction

	Defining a scoring volume in the tracking world

	Defining a scoring mesh

	Defining a scoring probe

	Defining primitive scorers to a scoring volume

	Drawing scores for a scoring mesh

	Writing scores to a file

	Filling 1-D histogram

	List of available primitive scorers

Footnotes

Geometry

	Introduction

	Solids
	Constructed Solid Geometry (CSG) Solids

	Solids made by Boolean operations

	Multi-Union Structures

	Tessellated Solids

	Unified Solids

	Logical Volumes
	Sub-detector Regions

	Physical Volumes
	Placements: single positioned copy

	Repeated volumes

	Touchables: Uniquely Identifying a Volume
	Introduction to Touchables

	What can a Touchable do?

	Touchable history holds stack of geometry data

	Creating an Assembly of Volumes
	Filling an assembly volume with its "daughters"

	Assembly volume placement

	Destruction of an assembly volume

	Example

	Reflecting Hierarchies of Volumes

	The Geometry Navigator
	Navigation and Tracking

	Using the navigator to locate points

	Navigation in parallel geometries

	Fast navigation in regular patterned geometries and phantoms

	Run-time commands

	Setting Geometry Tolerance to be relative

	Converting Geometries from Geant3.21
	Approach

	Importing converted geometries into Geant4

	Current Status

	Detecting Overlapping Volumes
	The problem of overlapping volumes

	Dynamic Geometry Setups

	Importing XML Models Using GDML

	Importing ASCII Text Models

	Saving geometry tree objects in binary format

Footnotes

Introduction

The detector definition requires the representation of its geometrical
elements, their materials and electronics properties, together with
visualization attributes and user defined properties. The geometrical
representation of detector elements focuses on the definition of solid
models and their spatial position, as well as their logical relations to
one another, such as in the case of containment.

Geant4 uses the concept of "Logical Volume" to manage the representation
of detector element properties. The concept of "Physical Volume" is used
to manage the representation of the spatial positioning of detector
elements and their logical relations. The concept of "Solid" is used to
manage the representation of the detector element solid modeling.
Volumes and solids must be dynamically allocated using 'new' in the user
program; they must not be declared as local objects. Volumes and solids
are automatically registered on creation to dedicated stores; these
stores will delete all objects at the end of the job.

Footnotes

Solids

The Geant4 geometry modeller implements Constructive Solid Geometry
(CSG) representations for geometrical primitives. CSG representations
are easy to use and normally give superior performance.

All solids must be allocated using 'new' in the user's program; they get
registered to a G4SolidStore at construction, which will also take
care to deallocate them at the end of the job, if not done already in
the user's code.

All constructed solids can stream out their contents via appropriate
methods and streaming operators.

For all solids it is possible to estimate the geometrical volume and the
surface area by invoking the methods:

G4double GetCubicVolume()
G4double GetSurfaceArea()

which return an estimate of the solid volume and total area in internal
units respectively. For elementary solids the functions compute the
exact geometrical quantities, while for composite or complex solids an
estimate is made using Monte Carlo techniques.

For all solids it is also possible to generate pseudo-random points
lying on their surfaces, by invoking the method

G4ThreeVector GetPointOnSurface() const

which returns the generated point in local coordinates relative to the
solid. To be noted that this function is not meant to provide a uniform
distribution of points on the surfaces of the solids.

Since release 10.3, solids can be scaled in their dimensions along the
Cartesian axes X, Y or Z, by providing a scale
transformation associated to the original solid.

G4ScaledSolid(const G4String& pName,
 G4VSolid* pSolid ,
 const G4Scale3D& pScale)

Note

Geant4 does not impose any restriction on the name assigned to solids;
names can be shared. It is however good practice to specify unique names for
each constructed solid, to allow for easier retrivial from stores for
post-processing use.

Constructed Solid Geometry (CSG) Solids

CSG solids are defined directly as three-dimensional primitives. They
are described by a minimal set of parameters necessary to define the
shape and size of the solid. CSG solids are Boxes, Tubes and their
sections, Cones and their sections, Spheres, Wedges, and Toruses.

Box:

To create a box one can use the constructor:

	G4Box(const G4String& pName,
 G4double pX,
 G4double pY,
 G4double pZ)

	

[image: ../../_images/aBox.jpg]

In the picture:

pX = 30, pY = 40, pZ = 60

by giving the box a name and its half-lengths along the X, Y and Z axis:

	pX

	half length in X

	pY

	half length in Y

	pZ

	half length in Z

This will create a box that extends from -pX to +pX in X, from
-pY to +pY in Y, and from -pZ to +pZ in Z.

For example to create a box that is 2 by 6 by 10 centimeters in full
length, and called BoxA one should use the following code:

G4Box* aBox = new G4Box("BoxA", 1.0*cm, 3.0*cm, 5.0*cm);

Cylindrical Section or Tube:

Similarly to create a cylindrical section or tube, one would use
the constructor:

	G4Tubs(const G4String& pName,
 G4double pRMin,
 G4double pRMax,
 G4double pDz,
 G4double pSPhi,
 G4double pDPhi)

	

[image: ../../_images/aTubs.jpg]

In the picture:

pRMin = 10, pRMax = 15, pDz = 20

giving its name pName and its parameters which are:

	pRMin

	Inner radius

	pRMax

	Outer radius

	pDz

	Half length in Z

	pSPhi

	Starting phi angle in radians

	pDPhi

	Angle of the segment in radians

	

Cylindrical Cut Section or Cut Tube:

A cut in Z can be applied to a cylindrical section to obtain a cut
tube. The following constructor should be used:

	G4CutTubs(const G4String& pName,
 G4double pRMin,
 G4double pRMax,
 G4double pDz,
 G4double pSPhi,
 G4double pDPhi,
 G4ThreeVector pLowNorm,
 G4ThreeVector pHighNorm)

	

[image: ../../_images/aCutTube.jpg]

In the picture:

pRMin = 12, pRMax = 20, pDz = 30, pSPhi = 0, pDPhi = 1.5*pi,
pLowNorm = (0,-0.7,-0.71), pHighNorm = (0.7,0,0.71)

giving its name pName and its parameters which are:

	pRMin

	Inner radius

	pRMax

	Outer radius

	pDz

	Half length in Z

	pSPhi

	Starting phi angle in radians

	pDPhi

	Angle of the segment in radians

	pLowNorm

	Outside Normal at -Z

	pHighNorm

	Outside Normal at +Z

	

Cone or Conical section:

Similarly to create a cone, or conical section, one would use
the constructor

	G4Cons(const G4String& pName,
 G4double pRmin1,
 G4double pRmax1,
 G4double pRmin2,
 G4double pRmax2,
 G4double pDz,
 G4double pSPhi,
 G4double pDPhi)

	

[image: ../../_images/aCons.jpg]

In the picture:

pRmin1 = 5, pRmax1 = 10,
pRmin2 = 20, pRmax2 = 25,
pDz = 40, pSPhi = 0, pDPhi = 4/3*Pi

giving its name pName, and its parameters which are:

	pRmin1

	inside radius at -pDz

	pRmax1

	outside radius at -pDz

	pRmin2

	inside radius at +pDz

	pRmax2

	outside radius at +pDz

	pDz

	half length in Z

	pSPhi

	starting angle of the segment in radians

	pDPhi

	the angle of the segment in radians

	

Parallelepiped:

A parallelepiped is constructed using:

	G4Para(const G4String& pName,
 G4double dx,
 G4double dy,
 G4double dz,
 G4double alpha,
 G4double theta,
 G4double phi)

	

[image: ../../_images/aPara.jpg]

In the picture:

dx = 30, dy = 40, dz = 60

giving its name pName and its parameters which are:

	dx,dy,dz

	Half-length in x,y,z

	alpha

	Angle formed by the Y axis and by the plane joining the centre of the faces parallel to the Z-X plane at -dy and +dy

	theta

	Polar angle of the line joining the centres of the faces at -dz and +dz in Z

	phi

	Azimuthal angle of the line joining the centres of the faces at -dz and +dz in Z

Trapezoid:

To construct a trapezoid use:

	G4Trd(const G4String& pName,
 G4double dx1,
 G4double dx2,
 G4double dy1,
 G4double dy2,
 G4double dz)

	

[image: ../../_images/aTrd.jpg]

In the picture:

dx1 = 30, dx2 = 10,
dy1 = 40, dy2 = 15,
dz = 60

to obtain a solid with name pName and parameters

	dx1

	Half-length along X at the surface positioned at -dz

	dx2

	Half-length along X at the surface positioned at +dz

	dy1

	Half-length along Y at the surface positioned at -dz

	dy2

	Half-length along Y at the surface positioned at +dz

	dz

	Half-length along Z axis

Generic Trapezoid:

To build a generic trapezoid, the G4Trap class is provided.
G4Trap is a solid with six trapezoidal faces, it has two bases parallel to
the XY-plane and four lateral faces. The bases are located at the same
distance from the XY-plane, but on opposite sides from it.
Each of the bases has two edges parallel the X-axis. Let's call the line
joining middle point of these edges - the centre line of the base, and the
middle point of this line - the centre of the base.
An important property of G4Trap is that the line joining the centres of
the bases goes through the origin of the local coordinate system.

G4Trap has three main constructors; for a Right Angular Wedge,
for a general trapezoid and a constructor from eight points:

	G4Trap(const G4String& pName,
 G4double pZ,
 G4double pY,
 G4double pX,
 G4double pLTX)

G4Trap(const G4String& pName,
 G4double pDz, G4double pTheta,
 G4double pPhi, G4double pDy1,
 G4double pDx1, G4double pDx2,
 G4double pAlp1, G4double pDy2,
 G4double pDx3, G4double pDx4,
 G4double pAlp2)

G4Trap(const G4String& pName,
 const G4ThreeVector pt[8])

	

[image: ../../_images/aTrap.jpg]

In the picture:

pDx1 = 30, pDx2 = 40, pDy1 = 40,
pDx3 = 10, pDx4 = 14, pDy2 = 16,
pDz = 60, pTheta = 20*Degree,
pPhi = 5*Degree, pAlp1 = pAlp2 = 10*Degree

[image: ../../_images/wTrap.jpg]

to obtain a Right Angular Wedge with name pName and parameters:

	pZ

	Length along Z

	pY

	Length along Y

	pX

	Length along X at the wider side

	pLTX

	Length along X at the narrower side (plTX<=pX)

The angle between the Y-axis and the centre lines of the bases in case of
Right Angular Wedge is defined by the following expression:

tan(alpha) = 0.5 * (pLTX - pX) / pY

or, to obtain the general trapezoid:

	pDz

	Half Z length - distance from the origin to the bases

	pTheta

	Polar angle of the line joining the centres of the bases at -/+pDz

	pPhi

	Azimuthal angle of the line joining the centre of the base at -pDz to the centre of the base at +pDz

	pDy1

	Half Y length of the base at -pDz

	pDy2

	Half Y length of the base at +pDz

	pDx1

	Half X length at smaller Y of the base at -pDz

	pDx2

	Half X length at bigger Y of the base at -pDz

	pDx3

	Half X length at smaller Y of the base at +pDz

	pDx4

	Half X length at bigger y of the base at +pDz

	pAlp1

	Angle between the Y-axis and the centre line of the base at -pDz (lower endcap)

	pAlp2

	Angle between the Y-axis and the centre line of the base at +pDz (upper endcap)

Note

The angle pAlph1 and pAlph2 have to be the same due to the
planarity condition.

or, to obtain from eight points with name pName:

	pt | Coordinates of the vertices

	pt[0], pt[1] | Edge with smaller Y of the base at -z

	pt[2], pt[3] | Edge with bigger Y of the base at -z

	pt[4], pt[5] | Edge with smaller Y of the base at +z

	pt[6], pt[7] | Edge with bigger Y of the base at +z

Array of vertices is given as a sequence of four edges parallel to the X-axis,
first two edges define the base at -z, next two edges define the base at +z.
First point in edge should have smaller X.

Note

The following properties of G4Trap should be respected:
(a) Lateral faces should be planar;
(b) The line joining the centers of the bases should go through the origin

Sphere or Spherical Shell Section:

To build a sphere, or a spherical shell section, use:

	G4Sphere(const G4String& pName,
 G4double pRmin,
 G4double pRmax,
 G4double pSPhi,
 G4double pDPhi,
 G4double pSTheta,
 G4double pDTheta)

	

[image: ../../_images/aSphere.jpg]

In the picture:

pRmin = 100, pRmax = 120,
pSPhi = 0*Degree, pDPhi = 180*Degree,
pSTheta = 0 Degree, pDTheta = 180*Degree

to obtain a solid with name pName and parameters:

	pRmin

	Inner radius

	pRmax

	Outer radius

	pSPhi

	Starting Phi angle of the segment in radians

	pDPhi

	Delta Phi angle of the segment in radians

	pSTheta

	Starting Theta angle of the segment in radians

	pDTheta

	Delta Theta angle of the segment in radians

Full Solid Sphere:

To build a full solid sphere use:

	G4Orb(const G4String& pName,
 G4double pRmax)

	

[image: ../../_images/aOrb.jpg]

In the picture:

pRmax = 100

The Orb can be obtained from a Sphere with: pRmin = 0, pSPhi =
0, pDPhi = [image: 2*\pi], pSTheta = 0, pDTheta = [image: \pi]

	pRmax

	Outer radius

Torus:

To build a torus use:

	G4Torus(const G4String& pName,
 G4double pRmin,
 G4double pRmax,
 G4double pRtor,
 G4double pSPhi,
 G4double pDPhi)

	

[image: ../../_images/aTorus.jpg]

In the picture:

pRmin = 40, pRmax = 60, pRtor = 200,
pSPhi = 0, pDPhi = 90*degree

to obtain a solid with name pName and parameters:

	pRmin

	Inside radius

	pRmax

	Outside radius

	pRtor

	Swept radius of torus

	pSPhi

	Starting Phi angle in radians (fSPhi+fDPhi<=2PI, fSPhi>-2PI)

	pDPhi

	Delta angle of the segment in radians

In addition, the Geant4 Design Documentation shows in the Solids Class
Diagram the complete list of CSG classes.

Specific CSG Solids

Polycons:

Polycons (PCON) are implemented in Geant4 through the G4Polycone
class:

	G4Polycone(const G4String& pName,
 G4double phiStart,
 G4double phiTotal,
 G4int numZPlanes,
 const G4double zPlane[],
 const G4double rInner[],
 const G4double rOuter[])

	

[image: ../../_images/aBREPSolidPCone.jpg]

In the picture:

phiStart = 1/4*Pi, phiTotal = 3/2*Pi, numZPlanes = 9,
rInner = { 0, 0, 0, 0, 0, 0, 0, 0, 0},
rOuter = { 0, 10, 10, 5 , 5, 10 , 10 , 2, 2},
z = { 5, 7, 9, 11, 25, 27, 29, 31, 35 }

where:

	phiStart

	Initial Phi starting angle

	phiTotal

	Total Phi angle

	numZPlanes

	Number of Z planes

	numRZ

	Number of corners in r,Z space

	zPlane

	Position of Z planes, with Z in increasing order

	rInner

	Tangent distance to inner surface

	rOuter

	Tangent distance to outer surface

	r

	r coordinate of corners

	z

	Z coordinate of corners

A Polycone where Z planes position can also decrease is implemented
through the G4GenericPolycone class:

	G4GenericPolycone(const G4String& pName,
 G4double phiStart,
 G4double phiTotal,
 G4int numRZ,
 const G4double r[],
 const G4double z[])

where:

	phiStart

	Initial Phi starting angle

	phiTotal

	Total Phi angle

	numRZ

	Number of corners in r,Z space

	r

	r coordinate of corners

	z

	Z coordinate of corners

Polyhedra (PGON):

Polyhedra (PGON) are implemented through G4Polyhedra:

	G4Polyhedra(const G4String& pName,
 G4double phiStart,
 G4double phiTotal,
 G4int numSide,
 G4int numZPlanes,
 const G4double zPlane[],
 const G4double rInner[],
 const G4double rOuter[])

G4Polyhedra(const G4String& pName,
 G4double phiStart,
 G4double phiTotal,
 G4int numSide,
 G4int numRZ,
 const G4double r[],
 const G4double z[])

	

[image: ../../_images/aBREPSolidPolyhedra.jpg]

In the picture:

phiStart = -1/4*Pi, phiTotal= 5/4*Pi,
numSide = 3, nunZPlanes = 7,
rInner = { 0, 0, 0, 0, 0, 0, 0 },
rOuter = { 0, 15, 15, 4, 4, 10, 10 },
z = { 0, 5, 8, 13 , 30, 32, 35 }

where:

	phiStart

	Initial Phi starting angle

	phiTotal

	Total Phi angle

	numSide

	Number of sides

	numZPlanes

	Number of Z planes

	numRZ

	Number of corners in r,Z space

	zPlane

	Position of Z planes

	rInner

	Tangent distance to inner surface

	rOuter

	Tangent distance to outer surface

	r

	r coordinate of corners

	z

	Z coordinate of corners

Tube with an elliptical cross section:

A tube with an elliptical cross section (ELTU) with elliptical
semimajor and semiminor axes along the X and Y cartesian axes can be defined
as follows:

	G4EllipticalTube(const G4String& pName,
 G4double xSemiAxis,
 G4double ySemiAxis,
 G4double Dz)

	

[image: ../../_images/aEllipticalTube.jpg]

In the picture

xSemiAxis = 5, semiAxisY = 10, Dz = 20

The tube extends in Z from -Dz to +Dz and the equation of the surface
in the x/y plane is:

(x/xSemiAxis)**2+(y/ySemiAxis)**2 = 1.0

where:

	xSemiAxis

	Half length of axis along X

	ySemiAxis

	Half length of axis along Y

	Dz

	Half length Z

General Ellipsoid:

The general ellipsoid with possible cut in Z can be defined as
follows:

	G4Ellipsoid(const G4String& pName,
 G4double xSemiAxis,
 G4double ySemiAxis,
 G4double zSemiAxis,
 G4double zBottomCut=0,
 G4double zTopCut=0)

	

[image: ../../_images/aEllipsoid.jpg]

In the picture:

xSemiAxis = 10, ySemiAxis = 20, zSemiAxis = 50,
zBottomCut = -10, pzTopCut = 40

A general (or triaxial) ellipsoid is a quadratic surface which is given
in Cartesian coordinates by:

1.0 = (x/xSemiAxis)**2 + (y/ySemiAxis)**2 + (z/zSemiAxis)**2

where:

	xSemiAxis

	Semiaxis in X

	ySemiAxis

	Semiaxis in Y

	zSemiAxis

	Semiaxis in Z

	zBottomCut

	lower cut plane level, Z

	zTopCut

	upper cut plane level, Z

Cone with Elliptical Cross Section:

A cone with an elliptical cross section can be defined as follows:

	G4EllipticalCone(const G4String& pName,
 G4double xSemiAxis,
 G4double ySemiAxis,
 G4double zHeight,
 G4double zTopCut)

	

[image: ../../_images/aEllipticalCone.jpg]

In the picture:

xSemiAxis = 30/75, ySemiAxis = 60/75,
zHeight = 50, zTopCut = 25

where:

	xSemiAxis

	A scalar value, it defines the scaling along X-axis

	ySemiAxis

	A scalar value, it defines the scaling along Y-axis

	zHeight

	Z-coordinate if the apex

	zTopCut

	Upper cut plane level

Value of zTopCut cannot exceed zHeight; the bases of an elliptical
cone are located at -zTopCut and +zTopCut.

The lateral surface of an elliptical cone is described by the equation:

(x/xSemiAxis)**2 + (y/ySemiAxis)**2 = (zHeight - z)**2

Values of xSemiAxis and ySemiAxis can be figured out from the
equations for the semimajor axes of the elliptical section at z=0:

dx = xSemiAxis * zHeight
dy = ySemiAxis * zHeight

Paraboloid, a solid with parabolic profile:

A solid with parabolic profile and possible cuts along the Z
axis can be defined as follows:

	G4Paraboloid(const G4String& pName,
 G4double Dz,
 G4double R1,
 G4double R2)

The equation for the solid is:

rho**2 <= k1 * z + k2;
 -dz <= z <= dz
r1**2 = k1 * (-dz) + k2
r2**2 = k1 * (dz) + k2

	

[image: ../../_images/aParaboloid.jpg]

In the picture:

R1 = 20, R2 = 35, Dz = 20

	Dz

	Half length Z

	R1

	Radius at -Dz

	R2

	Radius at +Dz greater than R1

Tube with Hyperbolic Profile:

A tube with a hyperbolic profile (HYPE) can be defined as follows:

	G4Hype(const G4String& pName,
 G4double innerRadius,
 G4double outerRadius,
 G4double innerStereo,
 G4double outerStereo,
 G4double halfLenZ)

	

[image: ../../_images/aHyperboloid.jpg]

In the picture:

innerStereo = 0.7, outerStereo = 0.7,
halfLenZ = 50,
innerRadius = 20, outerRadius = 30

G4Hype is shaped with curved sides parallel to the Z-axis, has a
specified half-length along the Z axis about which it is centred,
and a given minimum and maximum radius.

A minimum radius of 0 defines a filled Hype (with hyperbolic inner
surface), i.e. inner radius = 0 AND inner stereo angle = 0.

The inner and outer hyperbolic surfaces can have different stereo
angles. A stereo angle of 0 gives a cylindrical surface:

	innerRadius

	Inner radius

	outerRadius

	Outer radius

	innerStereo

	Inner stereo angle in radians

	outerStereo

	Outer stereo angle in radians

	halfLenZ

	Half length in Z

Tetrahedra:

A tetrahedra solid can be defined as follows:

	G4Tet(const G4String& pName,
 G4ThreeVector anchor,
 G4ThreeVector p2,
 G4ThreeVector p3,
 G4ThreeVector p4,
 G4bool* degeneracyFlag=nullptr)

	

[image: ../../_images/aTet.jpg]

In the picture:

anchor = {0, 0, sqrt(3)},
p2 = { 0, 2*sqrt(2/3), -1/sqrt(3) },
p3 = { -sqrt(2), -sqrt(2/3),-1/sqrt(3) },
p4 = { sqrt(2), -sqrt(2/3) , -1/sqrt(3) }

The solid is defined by 4 points in space:

	anchor

	Anchor point

	p2

	Point 2

	p3

	Point 3

	p4

	Point 4

	degeneracyFlag

	Flag indicating degeneracy of points

Extruded Polygon:

The extrusion of an arbitrary polygon (extruded solid) with fixed
outline in the defined Z sections can be defined as follows (in a
general way, or in a simplified construct with only two Z sections).
G4ExtrudedSolid is constructed by moving a 2D polygonal contour along
a 3D polyline. During movement the polygonal contour can be scaled.

	G4ExtrudedSolid(const G4String& pName,
 std::vector<G4TwoVector> polygon,
 std::vector<ZSection> zsections)

G4ExtrudedSolid(const G4String& pName,
 std::vector<G4TwoVector> polygon,
 G4double halfZ,
 G4TwoVector off1, G4double scale1,
 G4TwoVector off2, G4double scale2)

	

[image: ../../_images/aExtrudedSolid.jpg]

In the picture:

polygon = {-30,-30},{-30,30},{30,30},{30,-30},
{15,-30},{15,15},{-15,15},{-15,-30}

zsections = [-60,{0,30},0.8], [-15, {0,-30},1.],
[10,{0,0},0.6], [60,{0,30},1.2]

The Z-sides of the solid are the scaled versions of the same polygon.

	polygon

	2D polygonal contour; the vertices of the outlined polygon defined in clock-wise order

	zsections

	3D polyline with scale factors; the Z-sections defined by Z position in increasing order

	halfZ

	Half length in Z; distance from the origin to the sections

	off1, scale1

	(X, Y) position of the polygon and scale factor at -halfZ

	off2, scale2

	(X, Y) position of the polygon and scale factor at +halfZ

Each node in the 3D polyline is defined as a ZSection object:

struct ZSection
{
 G4double fZ; // Z coordinate of the node
 G4TwoVector fOffset; // (X, Y) coordinates of the node
 G4double fScale; // Scale factor that should be applied to the 2D polygon at the node
}

Very often an extruded solid is constructed by shifting a polygon
in the perpendicular direction to its plane. In such case off1, off2
should be specified as G4TwoVector(0,0) and scale1, scale2 should be
equal to 1.

Box Twisted:

A box twisted along one axis can be defined as follows:

	G4TwistedBox(const G4String& pName,
 G4double twistedangle,
 G4double pDx,
 G4double pDy,
 G4double pDz)

	

[image: ../../_images/aTwistedBox.jpg]

In the picture:

twistedangle = 30*Degree, pDx = 30, pDy =40, pDz = 60

G4TwistedBox is a box twisted along the z-axis. The twist angle
cannot be greater than 90 degrees:

	twistedangle

	Twist angle

	pDx

	Half x length

	pDy

	Half y length

	pDz

	Half z length

Trapezoid Twisted along One Axis:

trapezoid twisted along one axis can be defined as follows:

	G4TwistedTrap(const G4String& pName,
 G4double twistedangle,
 G4double pDxx1,
 G4double pDxx2,
 G4double pDy,
 G4double pDz)

G4TwistedTrap(const G4String& pName,
 G4double twistedangle,
 G4double pDz,
 G4double pTheta,
 G4double pPhi,
 G4double pDy1,
 G4double pDx1,
 G4double pDx2,
 G4double pDy2,
 G4double pDx3,
 G4double pDx4,
 G4double pAlph)

	

[image: ../../_images/aTwistedTrap.jpg]

In the picture:

pDx1 = 30, pDx2 = 40, pDy1 = 40,
pDx3 = 10, pDx4 = 14, pDy2 = 16,
pDz = 60,
pTheta = 20*Degree, pDphi = 5*Degree,
pAlph = 10*Degree, twistedangle = 30*Degree

The first constructor of G4TwistedTrap produces a regular trapezoid
twisted along the Z-axis, where the caps of the trapezoid are of the
same shape and size.

The second constructor produces a generic trapezoid with polar,
azimuthal and tilt angles.

The twist angle cannot be greater than 90 degrees:

	twistedangle

	Twisted angle

	pDx1

	Half X length at y=-pDy

	pDx2

	Half X length at y=+pDy

	pDy

	Half Y length

	pDz

	Half Z length

	pTheta

	Polar angle of the line joining the centres of the faces at -/+pDz

	pDy1

	Half Y length at -pDz

	pDx1

	Half X length at -pDz, y=-pDy1

	pDx2

	Half X length at -pDz, y=+pDy1

	pDy2

	Half Y length at +pDz

	pDx3

	Half X length at +pDz, y=-pDy2

	pDx4

	Half X length at +pDz, y=+pDy2

	pAlph

	Angle with respect to the Y axis from the centre of the side

Twisted Trapezoid with X and Y dimensions varying along Z:

A twisted trapezoid with the X and Y dimensions varying
along Z can be defined as follows:

	G4TwistedTrd(const G4String& pName,
 G4double pDx1,
 G4double pDx2,
 G4double pDy1,
 G4double pDy2,
 G4double pDz,
 G4double twistedangle)

	

[image: ../../_images/aTwistedTrd.jpg]

In the picture:

dx1 = 30, dx2 = 10,
dy1 = 40, dy2 = 15,
dz = 60, twistedangle = 30*Degree

where:

	pDx1

	Half X length at the surface positioned at -dz

	pDx2

	Half X length at the surface positioned at +dz

	pDy1

	Half Y length at the surface positioned at -dz

	pDy2

	Half Y length at the surface positioned at +dz

	pDz

	Half Z length

	twistedangle

	Twisted angle

Generic trapezoid with optionally collapsing vertices:

An arbitrary trapezoid with up to 8 vertices standing on two
parallel planes perpendicular to the Z axis can be defined as
follows:

	G4GenericTrap(const G4String& pName,
 G4double pDz,
 const std::vector<G4TwoVector>& vertices)

	
[image: ../../_images/aGenericTrap1.jpg]

	In the picture:

pDz = 25
vertices = {-30, -30}, {-30, 30}, {30, 30}, {30, -30}
{-5, -20}, {-20, 20}, {20, 20}, {20, -20}

	

	
[image: ../../_images/aGenericTrap2.jpg]

	
In the picture:

pDz = 25
vertices = {-30,-30}, {-30,30}, {30,30}, {30,-30}
{-20,-20},{-20, 20}, {20,20}, {20, 20}

	

	
[image: ../../_images/aGenericTrap3.jpg]

	In the picture:

pDz = 25
vertices = {-30,-30}, {-30,30}, {30,30}, {30,-30}
{0,0}, {0,0}, {0,0}, {0,0}

where:

	pDz

	Half Z length

	vertices

	The (X,Y) coordinates of vertices

The order of specification of the coordinates for the vertices in
G4GenericTrap is important. The first four points are the vertices
sitting on the -hz plane; the last four points are the vertices
sitting on the +hz plane.

The order of defining the vertices of the solid is the following:

point 0 is connected with points 1,3,4
point 1 is connected with points 0,2,5
point 2 is connected with points 1,3,6
point 3 is connected with points 0,2,7
point 4 is connected with points 0,5,7
point 5 is connected with points 1,4,6
point 6 is connected with points 2,5,7
point 7 is connected with points 3,4,6

Points can be identical in order to create shapes with less than 8
vertices; the only limitation is to have at least one triangle at
+hz or -hz; the lateral surfaces are not necessarily planar. Not
planar lateral surfaces are represented by a surface that linearly
changes from the edge on -hz to the corresponding edge on +hz;
it represents a sweeping surface with twist angle linearly dependent
on Z, but it is not a real twisted surface mathematically described
by equations as for the other twisted solids described in this
chapter.

Tube Section Twisted along Its Axis:

A tube section twisted along its axis can be defined as follows:

	G4TwistedTubs(const G4String& pName,
 G4double twistedangle,
 G4double endinnerrad,
 G4double endouterrad,
 G4double halfzlen,
 G4double dphi)

	

[image: ../../_images/aTwistedTubs.jpg]

In the picture:

endinnerrad = 10, endouterrad = 15,
halfzlen = 20, dphi = 90*Degree,
twistedangle = 60*Degree

G4TwistedTubs is a sort of twisted cylinder which, placed along the
Z-axis and divided into phi-segments is shaped like an
hyperboloid, where each of its segmented pieces can be tilted with a
stereo angle.

It can have inner and outer surfaces with the same stereo angle:

	twistedangle

	Twisted angle

	endinnerrad

	Inner radius at endcap

	endouterrad

	Outer radius at endcap

	halfzlen

	Half Z length

	dphi

	Phi angle of a segment

Additional constructors are provided, allowing the shape to be specified
either as:

	the number of segments in phi and the total angle for all
segments, or

	a combination of the above constructors providing instead the inner
and outer radii at z=0 with different Z-lengths along
negative and positive Z-axis.

Solids made by Boolean operations

Simple solids can be combined using Boolean operations. For example, a
cylinder and a half-sphere can be combined with the union Boolean
operation.

Creating such a new Boolean solid, requires:

	Two solids

	A Boolean operation: union, intersection or subtraction.

	Optionally a transformation for the second solid.

The solids used should be either CSG solids (for examples a box, a
spherical shell, or a tube) or another Boolean solid: the product of a
previous Boolean operation. An important purpose of Boolean solids is to
allow the description of solids with peculiar shapes in a simple and
intuitive way, still allowing an efficient geometrical navigation inside
them.

Note

The constituent solids of a Boolean operation should possibly
avoid be composed by sharing all or part of their surfaces. This
precaution is necessary in order to avoid the generation of 'fake'
surfaces due to precision loss, or errors in the final visualization
of the Boolean shape. In particular, if any one of the subtractor
surfaces is coincident with a surface of the subtractee, the
result is undefined. Moreover, the final Boolean solid should
represent a single 'closed' solid, i.e. a Boolean operation between
two solids which are disjoint or far apart each other, is not a
valid Boolean composition.

Note

The tracking cost for navigating in a Boolean solid is proportional
to the number of constituent solids.
So care must be taken to avoid extensive, unnecessary use of Boolean
solids in performance-critical areas of a geometry description,
where each solid is created from Boolean combinations of many other
solids.

Examples of the creation of the simplest Boolean solids are given below:

G4Box* box =
 new G4Box("Box",20*mm,30*mm,40*mm);
G4Tubs* cyl =
 new G4Tubs("Cylinder",0,50*mm,50*mm,0,twopi); // r: 0 mm -> 50 mm
 // z: -50 mm -> 50 mm
 // phi: 0 -> 2 pi
G4UnionSolid* union =
 new G4UnionSolid("Box+Cylinder", box, cyl);
G4IntersectionSolid* intersection =
 new G4IntersectionSolid("Box*Cylinder", box, cyl);
G4SubtractionSolid* subtraction =
 new G4SubtractionSolid("Box-Cylinder", box, cyl);

where the union, intersection and subtraction of a box and cylinder are
constructed.

The more useful case where one of the solids is displaced from the
origin of coordinates also exists. In this case the second solid is
positioned relative to the coordinate system (and thus relative to the
first). This can be done in two ways:

	Either by giving a rotation matrix and translation vector that are
used to transform the coordinate system of the second solid to the
coordinate system of the first solid. This is called the passive
method.

	Or by creating a transformation that moves the second solid from its
desired position to its standard position, e.g., a box's standard
position is with its centre at the origin and sides parallel to the
three axes. This is called the active method.

In the first case, the translation is applied first to move the origin
of coordinates. Then the rotation is used to rotate the coordinate
system of the second solid to the coordinate system of the first.

G4RotationMatrix* yRot = new G4RotationMatrix; // Rotates X and Z axes only
yRot->rotateY(M_PI/4.*rad); // Rotates 45 degrees
G4ThreeVector zTrans(0, 0, 50);

G4UnionSolid* unionMoved =
 new G4UnionSolid("Box+CylinderMoved", box, cyl, yRot, zTrans);
//
// The new coordinate system of the cylinder is translated so that
// its centre is at +50 on the original Z axis, and it is rotated
// with its X axis halfway between the original X and Z axes.

// Now we build the same solid using the alternative method
//
G4RotationMatrix invRot = yRot->invert();
G4Transform3D transform(invRot, zTrans);
G4UnionSolid* unionMoved =
 new G4UnionSolid("Box+CylinderMoved", box, cyl, transform);

Note that the first constructor that takes a pointer to the
rotation-matrix (G4RotationMatrix*), does NOT copy it. Therefore
once used a rotation-matrix to construct a Boolean solid, it must NOT be
modified.

In contrast, with the alternative method shown, a G4Transform3D is
provided to the constructor by value, and its transformation is stored
by the Boolean solid. The user may modify the G4Transform3D and
eventually use it again.

When positioning a volume associated to a Boolean solid, the relative
center of coordinates considered for the positioning is the one related
to the first of the two constituent solids.

Multi-Union Structures

Since release 10.4, the possibility to define multi-union structures
is part of the standard set of constructs in Geant4. A G4MultiUnion
structure allows for the description of a Boolean union of many displaced
solids at once, therefore representing volumes with the same associated
material. An example on how to define a simple MultiUnion structure is
given here:

#include "G4MultiUnion.hh"

// Define two -G4Box- shapes
//
G4Box* box1 = new G4Box("Box1", 5.*mm, 5.*mm, 10.*mm);
G4Box* box2 = new G4Box("Box2", 5.*mm, 5.*mm, 10.*mm);

// Define displacements for the shapes
//
G4RotationMatrix rotm = G4RotationMatrix();
G4ThreeVector position1 = G4ThreeVector(0.,0.,1.);
G4ThreeVector position2 = G4ThreeVector(0.,0.,2.);
G4Transform3D tr1 = G4Transform3D(rotm,position1);
G4Transform3D tr2 = G4Transform3D(rotm,position2);

// Initialise a MultiUnion structure
//
G4MultiUnion* munion_solid = new G4MultiUnion("Boxes_Union");

// Add the shapes to the structure
//
munion_solid->AddNode(*box1,tr1);
munion_solid->AddNode(*box2,tr2);

// Finally close the structure
//
munion_solid->Voxelize();

// Associate it to a logical volume as a normal solid
//
G4LogicalVolume* lvol =
new G4LogicalVolume(munion_solid, // its solid
 munion_mat, // its material
 "Boxes_Union_LV"); // its name

Fast detection of intersections in tracking is assured by the
adoption of a specialised optimisation applied to the 3D structure
itself and generated at initialisation.

Tessellated Solids

In Geant4 it is also implemented a class G4TessellatedSolid which
can be used to generate a generic solid defined by a number of facets
(G4VFacet). Such constructs are especially important for conversion
of complex geometrical shapes imported from CAD systems bounded with
generic surfaces into an approximate description with facets of defined
dimension (see Fig. 8).

[image: ../../_images/cad-tess-combined.jpg]

Fig. 8 Example of geometries imported from CAD system and converted to tessellated solids.

They can also be used to generate a solid bounded with a generic surface
made of planar facets. It is important that the supplied facets shall
form a fully enclosed space to represent the solid, and that adjacent facets
always share a complete edge (no vertex on one facet can lie between
vertices on an adjacent facet).

Two types of facet can be used for the construction of a
G4TessellatedSolid: a triangular facet (G4TriangularFacet) and a
quadrangular facet (G4QuadrangularFacet).

An example on how to generate a simple tessellated shape is given below.

Listing 35 Example of geometries imported from CAD system and converted to tessellated solids.

// First declare a tessellated solid
//
G4TessellatedSolid solidTarget = new G4TessellatedSolid("Solid_name");

// Define the facets which form the solid
//
G4double targetSize = 10*cm ;
G4TriangularFacet *facet1 = new
G4TriangularFacet (G4ThreeVector(-targetSize,-targetSize, 0.0),
 G4ThreeVector(+targetSize,-targetSize, 0.0),
 G4ThreeVector(0.0, 0.0,+targetSize),
 ABSOLUTE);
G4TriangularFacet *facet2 = new
G4TriangularFacet (G4ThreeVector(+targetSize,-targetSize, 0.0),
 G4ThreeVector(+targetSize,+targetSize, 0.0),
 G4ThreeVector(0.0, 0.0,+targetSize),
 ABSOLUTE);
G4TriangularFacet *facet3 = new
G4TriangularFacet (G4ThreeVector(+targetSize,+targetSize, 0.0),
 G4ThreeVector(-targetSize,+targetSize, 0.0),
 G4ThreeVector(0.0, 0.0,+targetSize),
 ABSOLUTE);
G4TriangularFacet *facet4 = new
G4TriangularFacet (G4ThreeVector(-targetSize,+targetSize, 0.0),
 G4ThreeVector(-targetSize,-targetSize, 0.0),
 G4ThreeVector(0.0, 0.0,+targetSize),
 ABSOLUTE);
G4QuadrangularFacet *facet5 = new
G4QuadrangularFacet (G4ThreeVector(-targetSize,-targetSize, 0.0),
 G4ThreeVector(-targetSize,+targetSize, 0.0),
 G4ThreeVector(+targetSize,+targetSize, 0.0),
 G4ThreeVector(+targetSize,-targetSize, 0.0),
 ABSOLUTE);

// Now add the facets to the solid
//
solidTarget->AddFacet((G4VFacet*) facet1);
solidTarget->AddFacet((G4VFacet*) facet2);
solidTarget->AddFacet((G4VFacet*) facet3);
solidTarget->AddFacet((G4VFacet*) facet4);
solidTarget->AddFacet((G4VFacet*) facet5);

Finally declare the solid is complete
//
solidTarget->SetSolidClosed(true);

The G4TriangularFacet class is used for the construction of
G4TessellatedSolid. It is defined by three vertices, which shall be
supplied in anti-clockwise order looking from the outside of the solid
where it belongs. Its constructor looks like:

G4TriangularFacet (const G4ThreeVector Pt0,
 const G4ThreeVector vt1,
 const G4ThreeVector vt2,
 G4FacetVertexType fType)

i.e., it takes 4 parameters to define the three vertices:

	G4FacetVertexType

	ABSOLUTE in which case Pt0, vt1 and vt2 are the
three vertices in anti-clockwise order looking from the outside.

	G4FacetVertexType

	RELATIVE in which case the first vertex is Pt0, the second
vertex is Pt0+vt1 and the third vertex is Pt0+vt2, all in
anti-clockwise order when looking from the outside.

The G4QuadrangularFacet class can be used for the construction of
G4TessellatedSolid as well. It is defined by four vertices, which
shall be in the same plane and be supplied in anti-clockwise order
looking from the outside of the solid where it belongs. Its constructor
looks like:

G4QuadrangularFacet (const G4ThreeVector Pt0,
 const G4ThreeVector vt1,
 const G4ThreeVector vt2,
 const G4ThreeVector vt3,
 G4FacetVertexType fType)

i.e., it takes 5 parameters to define the four vertices:

	G4FacetVertexType

	ABSOLUTE in which case Pt0, vt1, vt2 and vt3
are the four vertices required in anti-clockwise order when looking from the outside.

	G4FacetVertexType

	RELATIVE in which case the first vertex is Pt0, the second vertex is
Pt0+vt, the third vertex is Pt0+vt2 and the fourth vertex is Pt0+vt3, in
anti-clockwise order when looking from the outside.

Importing CAD models as tessellated shapes

Tessellated solids can also be used to import geometrical models from
CAD systems (see fig-geom-solid-1). In order to do
this, it is required to convert first the CAD shapes into tessellated
surfaces. A way to do this is to save the shapes in the geometrical
model as STEP files and convert them to tessellated (faceted surfaces)
solids, using a tool which allows such conversion.
This strategy allows to import any shape with some degree of
approximation; the converted CAD models can then be imported through
GDML (Geometry Description Markup Language)#1
into Geant4 and be represented as G4TessellatedSolid shapes.

Tools which can be used to generate meshes to be then imported in
Geant4 as tessellated solids are:

	FASTRAD#2 - 3D tool for radiation
shielding analysis; exports meshes to GDML.

	InStep#3 - A free STL to
GDML conversion tool.

	SALOME#4 - Open-source software
allowing to import STEP/BREP/IGES/STEP/ACIS formats, mesh them and
export to STL.

	ESABASE2#5 - Space environment analysis CAD,
basic modules free for academic non-commercial use. Can import STEP
files and export to GDML shapes or complete geometries.

	CADMesh#6 - Tool based on the
VCG Library#7 to read
STL files and import in Geant4.

	Cogenda#8 - Commercial TCAD software for
generation of 3D meshes through the module Gds2Mesh and final
export to GDML.

	EDGE#9 - A commercial GDML editor,
able to import/export STEP/STL geometries.

	CadMC#10 - Tool to convert FreeCAD
geometries to Geant4 (tessellated and CSG shapes).

	pyg4ometry#11 - A python library
to manipulate GDML geometery. Has an interface from OpenCASCADE and Geant4 tessellated

Unified Solids

An alternative implementation for most of the cited geometrical
primitives is provided since release 10.0 of Geant4. With release 10.6,
all primitives shapes except the twisted specific solids, can be replaced.

The code for the new geometrical primitives originated as part of the AIDA
Unified Solids Library#12 and is
now integrated in the VecGeom
library#13 (the vectorized
geometry library for particle-detector simulation); it is provided as
alternative use and can be activated in place of the original
primitives defined in Geant4, by selecting the appropriate compilation
flag when configuring the Geant4 libraries installation. The
installation allows to build against an external system installation of
the VecGeom library, therefore the appropriate installation path must
also be provided during the installation configuration:

-DGEANT4_USE_USOLIDS="all" // to replace all available shapes
-DGEANT4_USE_USOLIDS="box;tubs" // to replace only individual shapes

The original API for all geometrical primitives is preserved.

Footnotes

	#1

	http://cern.ch/gdml/

	#2

	http://www.fastrad.net/

	#3

	http://www.solveering.com/instep.htm

	#4

	http://www.salome-platform.org/

	#5

	http://esabase2.net/

	#6

	https://github.com/christopherpoole/CADMesh

	#7

	https://sourceforge.net/projects/vcg

	#8

	http://www.cogenda.com/

	#9

	https://www.space-suite.com/edge/

	#10

	http://polar.psi.ch/cadmc/

	#11

	https://bitbucket.org/jairhul/pyg4ometry/src/develop/

	#12

	https://cern.ch/aidasoft/USolids

	#13

	https://gitlab.cern.ch/VecGeom/VecGeom

Logical Volumes

The Logical Volume manages the information associated with detector
elements represented by a given Solid and Material, independently from
its physical position in the detector.

G4LogicalVolumes must be allocated using 'new' in the user's
program; they get registered to a G4LogicalVolumeStore at
construction, which will also take care to deallocate them at the end of
the job, if not done already in the user's code.

A Logical Volume knows which physical volumes are contained within it.
It is uniquely defined to be their mother volume. A Logical Volume thus
represents a hierarchy of unpositioned volumes whose positions relative
to one another are well defined. By creating Physical Volumes, which are
placed instances of a Logical Volume, this hierarchy or tree can be
repeated.

A Logical Volume also manages the information relative to the
Visualization attributes (Visualization Attributes) and user-defined
parameters related to tracking, electro-magnetic field or cuts (through
the G4UserLimits interface).

By default, tracking optimization of the geometry (voxelization) is
applied to the volume hierarchy identified by a logical volume. It is
possible to change the default behavior by choosing not to apply
geometry optimization for a given logical volume. This feature does not
apply to the case where the associated physical volume is a
parameterised volume; in this case, optimization is always applied.

G4LogicalVolume(G4VSolid* pSolid,
 G4Material* pMaterial,
 const G4String& Name,
 G4FieldManager* pFieldMgr=0,
 G4VSensitiveDetector* pSDetector=0,
 G4UserLimits* pULimits=0,
 G4bool Optimise=true)

Note

Geant4 does not impose any restriction on the name assigned to logical
volumes; names can be shared. It is however good practice to specify unique
names for each logical volume, to allow for easier retrivial from stores for
post-processing use.

Through the logical volume it is also possible to tune the granularity
of the optimisation algorithm to be applied to the sub-tree of volumes
represented. This is possible using the methods:

G4double GetSmartless() const
void SetSmartless(G4double s)

The default smartless value is 2 and controls the average number of
slices per contained volume which are used in the optimisation. The
smaller the value, the less fine grained optimisation grid is generated;
this will translate in a possible reduction of memory consumed for the
optimisation of that portion of geometry at the price of a slight CPU
time increase at tracking time. Manual tuning of the optimisation is in
general not required, since the optimal granularity level is computed
automatically and adapted to the specific geometry setup; however, in
some cases (like geometry portions with 'dense' concentration of volumes
distributed in a non-uniform way), it may be necessary to adopt manual
tuning for helping the optimisation process in dealing with the most
critical areas. By setting the verbosity to 2 through the following UI
run-time command:

/run/verbose 2

a statistics of the memory consumed for the allocated optimisation nodes
will be displayed volume by volume, allowing to easily identify the
critical areas which may eventually require manual intervention.

The logical volume provides a way to estimate the mass of a tree of
volumes defining a detector or sub-detector. This can be achieved by
calling the method:

G4double GetMass(G4bool forced=false)

The mass of the logical volume tree is computed from the estimated
geometrical volume of each solid and material associated with the
logical volume and its daughters. Note that this computation may require
a considerable amount of time, depending on the complexity of the
geometry tree. The returned value is cached by default and can be used
for successive calls, unless recomputation is forced by providing
true for the Boolean argument forced in input. Computation
should be forced if the geometry setup has changed after the previous
call.

Finally, the Logical Volume manages the information relative to the
Envelopes hierarchy required for fast Monte Carlo parameterisations
(Parameterisation).

Sub-detector Regions

In complex geometry setups, such as those found in large detectors in
particle physics experiments, it is useful to think of specific Logical
Volumes as representing parts (sub-detectors) of the entire detector
setup which perform specific functions. In such setups, the processing
speed of a real simulation can be increased by assigning specific
production cuts to each of these detector parts. This allows a more
detailed simulation to occur only in those regions where it is required.

The concept of detector Region is introduced to address this need.
Once the final geometry setup of the detector has been defined, a region
can be specified by constructing it with:

G4Region(const G4String& rName)

where:

	rName

	String identifier for the detector region

G4Regions must be allocated using 'new' in the user's program;
they get registered to a G4RegionStore at construction, which will
also take care to deallocate them at the end of the job, if not done
already in the user's code.

A G4Region must then be assigned to a logical volume, in order to
make it a Root Logical Volume:

G4Region* emCalorimeter = new G4Region("EM-Calorimeter");
emCalorimeterLV->SetRegion(emCalorimeter);
emCalorimeter->AddRootLogicalVolume(emCalorimeterLV);

A root logical volume is the first volume at the top of the hierarchy to
which a given region is assigned. Once the region is assigned to the
root logical volume, the information is automatically propagated to the
volume tree, so that each daughter volume shares the same region.
Propagation on a tree branch will be interrupted if an already existing
root logical volume is encountered.

Note

It is recommended to assign unique names to logical volumes specified
as root logical volumes, as this will guarantee proper retrievial from
the store for post-processing use in persistency. The same applies for
names assigned to regions.

A specific Production Cut can be assigned to the region, by defining
and assigning to it a G4ProductionCut object

emCalorimeter->SetProductionCuts(emCalCuts);

Set production threshold (SetCut methods) describes how to define a production cut.
The same region can be assigned to more than one root logical volume,
and root logical volumes can be removed from an existing region. A
logical volume can have only one region assigned to it. Regions will
be automatically registered in a store which will take care of
destroying them at the end of the job. A default region with a default
production cut is automatically created and assigned to the world
volume.

Regions can also become 'envelopes' for fast-simulation; can be assigned
user-limits or generic user-information (G4VUserRegionInformation);
can be associated to specific stepping-actions
(G4UserSteppingAction) or have assigned a local magnetic-field
(local fields specifically associated to logical volumes take precedence
anyhow).

Footnotes

Physical Volumes

Physical volumes represent the spatial positioning of the volumes
describing the detector elements. Several techniques can be used. They
range from the simple placement of a single copy to the repeated
positioning using either a simple linear formula or a user specified
function.

Any physical volume must be allocated using 'new' in the user's program;
they get registered to a G4PhysicalVolumeStore at construction,
which will also take care to deallocate them at the end of the job, if
not done already in the user's code.

The simple placement involves the definition of a transformation matrix
for the volume to be positioned. Repeated positioning is defined using
the number of times a volume should be replicated at a given distance
along a given direction. Finally it is possible to define a
parameterised formula to specify the position of multiple copies of a
volume. Details about these methods are given below.

Note

For geometries which vary between runs and for which
components of the old geometry setup are explicitly -deleted-, it is
required to consider the proper order of deletion (which is the exact
inverse of the actual construction, i.e., first delete physical volumes
and then logical volumes). Deleting a logical volume does NOT delete its
daughter volumes.

It is not necessary to delete the geometry setup at the end of a job,
the system will take care to free the volume and solid stores at the end
of the job. The user has to take care of the deletion of any additional
transformation or rotation matrices allocated dynamically in his/her own
application.

Note

Geant4 does not impose any restriction on the name assigned to volumes;
names can be shared. It is however good practice to specify unique names for
each physical node in a tree, to allow for easier retrivial from stores for
post-processing use.

Placements: single positioned copy

In this case, the Physical Volume is created by associating a Logical
Volume with a Transformation that defines the position of the current
volume in the mother volume. The solid itself is moved by rotating and
translating it to bring it into the system of coordinates of the mother
volume. The decomposition of the Transformation must contain only
rotation and translation (reflection and scaling are not allowed).

To create a Placement one must construct it using:

G4PVPlacement(G4Transform3D solidTransform,
 G4LogicalVolume* pCurrentLogical,
 const G4String& pName,
 G4LogicalVolume* pMotherLogical,
 G4bool pMany,
 G4int pCopyNo,
 G4bool pSurfChk=false)

where:

	solidTransform

	Position in its mother volume

	pCurrentLogical

	The associated Logical Volume

	pName

	String identifier for this placement

	pMotherLogical

	The associated mother volume

	pMany

	For future use. Can be set to false

	pCopyNo

	Integer which identifies this placement

	pSurfChk

	if true activates check for overlaps with existing volumes

Currently Boolean operations are not implemented at the level of
physical volume. So pMany must be false. However, an alternative
implementation of Boolean operations exists. In this approach a solid
can be created from the union, intersection or subtraction of two
solids. See Solids made by Boolean operations above for an explanation
of this.

The mother volume must be specified for all volumes except the world
volume.

An alternative way to specify a Placement is to use a Rotation Matrix and a Translation
Vector. If compared with the previous construct, the Rotation Matrix is the inverse of
the rotation from the decomposition of the transformation, but the Translation Vector is
the same. The Rotation Matrix represents the rotation of the reference frame of the
considered volume relatively to its mother volume's reference frame. The Translation
Vector represents the translation of the current volume in the reference frame of its
mother volume. This passive method can be utilized using the following constructor:

G4PVPlacement(G4RotationMatrix* pRot,
 const G4ThreeVector& tlate,
 G4LogicalVolume* pCurrentLogical,
 const G4String& pName,
 G4LogicalVolume* pMotherLogical,
 G4bool pMany,
 G4int pCopyNo,
 G4bool pSurfChk=false)

where:

	pRot

	Rotation with respect to its mother volume

	tlate

	Translation with respect to its mother volume

	pCurrentLogical

	The associated Logical Volume

	pName

	String identifier for this placement

	pMotherLogical

	The associated mother volume

	pMany

	For future use. Can be set to false

	pCopyNo

	Integer which identifies this placement

	pSurfChk

	if true activates check for overlaps with existing volumes

Care must be taken because the rotation matrix is not copied by a
G4PVPlacement. So the user must not modify it after creating a
Placement that uses it. However the same rotation matrix can be re-used
for many volumes.

An alternative method to specify the mother volume is to specify its
placed physical volume. It can be used in either of the above methods of
specifying the placement's position and rotation. The effect will be
exactly the same as for using the mother logical volume.

Note that a Placement Volume can still represent multiple detector
elements. This can happen if several copies exist of the mother logical
volume. Then different detector elements will belong to different
branches of the tree of the hierarchy of geometrical volumes.

An example demonstrating various ways of placement and constructing the rotation
matrix is provided in examples/extended/geometry/transforms.

Repeated volumes

In this case, a single Physical Volume represents multiple copies of a
volume within its mother volume, allowing to save memory. This is
normally done when the volumes to be positioned follow a well defined
rotational or translational symmetry along a Cartesian or cylindrical
coordinate. The Repeated Volumes technique is available for most volumes
described by CSG solids.

Replicas

Replicas are repeated volumes in the case when the multiple copies of
the volume are all identical. The coordinate axis and the number of
replicas need to be specified for the program to compute at run time the
transformation matrix corresponding to each copy.

G4PVReplica(const G4String& pName,
 G4LogicalVolume* pCurrentLogical,
 G4LogicalVolume* pMotherLogical, // OR G4VPhysicalVolume*
 const EAxis pAxis,
 const G4int nReplicas,
 const G4double width,
 const G4double offset=0)

where:

	pName

	String identifier for the replicated volume

	pCurrentLogical

	The associated Logical Volume

	pMotherLogical

	The associated mother volume

	pAxis

	The axis along with the replication is applied

	nReplicas

	The number of replicated volumes

	width

	The width of a single replica along the axis of replication

	offset

	Possible offset associated to mother offset along the axis of replication

G4PVReplica represents nReplicas volumes differing only in their
positioning, and completely filling the containing mother volume.
Consequently if a G4PVReplica is 'positioned' inside a given mother
it MUST be the mother's only daughter volume. Replica's correspond
to divisions or slices that completely fill the mother volume and have
no offsets. For Cartesian axes, slices are considered perpendicular to
the axis of replication.

The replica's positions are calculated by means of a linear formula.
Replication may occur along:

	Cartesian axes (kXAxis,kYAxis,kZAxis)

The replications, of specified width have coordinates of form
(-width*(nReplicas-1)*0.5+n*width,0,0) where n=0.. nReplicas-1
for the case of kXAxis, and are unrotated.

	Radial axis (cylindrical polar) (kRho)

The replications are cons/tubs sections, centred on the origin and
are unrotated.

They have radii of width*n+offset to width*(n+1)+offset where
n=0..nReplicas-1

	Phi axis (cylindrical polar) (kPhi)

The replications are phi sections or wedges, and of cons/tubs
form.

They have phi of offset+n*width to offset+(n+1)*width
where n=0..nReplicas-1

The coordinate system of the replicas is at the centre of each replica
for the Cartesian axis. For the radial case, the coordinate system is
unchanged from the mother. For the phi axis, the new coordinate
system is rotated such that the X axis bisects the angle made by each
wedge, and Z remains parallel to the mother's Z axis.

The solid associated via the replicas' logical volume should have the
dimensions of the first volume created and must be of the correct
symmetry/type, in order to assist in good visualisation.

ex. For X axis replicas in a box, the solid should be another box with
the dimensions of the replications. (same Y & Z dimensions as mother
box, X dimension = mother's X dimension/nReplicas).

Replicas may be placed inside other replicas, provided the above rule is
observed. Normal placement volumes may be placed inside replicas,
provided that they do not intersect the mother's or any previous
replica's boundaries. Parameterised volumes may not be placed inside.

Because of these rules, it is not possible to place any other volume
inside a replication in radius.

The world volume cannot act as a replica, therefore it cannot be
sliced.

During tracking, the translation + rotation associated with each
G4PVReplica object is modified according to the currently 'active'
replication. The solid is not modified and consequently has the wrong
parameters for the cases of phi and r replication and for when
the cross-section of the mother is not constant along the replication.

Example

Listing 36 An example of simple replicated volumes with G4PVReplica.

G4PVReplica repX("Linear Array",
 pRepLogical,
 pContainingMotherBox,
 kXAxis, 5, 10*mm);

G4PVReplica repR("RSlices",
 pRepRLogical,
 pContainingMotherTub,
 kRho, 5, 10*mm, 0);

G4PVReplica repZ("ZSlices",
 pRepZLogical,
 pContainingMotherTub,
 kZAxis, 5, 10*mm);

G4PVReplica repPhi("PhiSlices",
 pRepPhiLogical,
 pContainingMotherTub,
 kPhi, 4, M_PI*0.5*rad, 0);

RepX is an array of 5 replicas of width 10*mm, positioned inside
and completely filling the volume pointed by pContainingMotherBox.
The mother's X length must be 5*10*mm=50*mm (for example, if the
mother's solid were a Box of half lengths [25,25,25] then the replica's
solid must be a box of half lengths [25,25,5]).

If the containing mother's solid is a tube of radius 50*mm and half Z
length of 25*mm, RepR divides the mother tube into 5 cylinders
(hence the solid associated with pRepRLogical must be a tube of
radius 10*mm, and half Z length 25*mm); repZ divides the tube into
5 shorter cylinders (the solid associated with pRepZLogical must be
a tube of radius 10*mm, and half Z length 5*mm); finally, repPhi
divides the tube into 4 tube segments with full angle of 90 degrees (the
solid associated with pRepPhiLogical must be a tube segment of
radius 10*mm, half Z length 5*mm and delta phi of M_PI*0.5*rad).

No further volumes may be placed inside these replicas. To do so would
result in intersecting boundaries due to the r replications.

Parameterised Volumes

Parameterised Volumes are repeated volumes in the case in which the
multiple copies of a volume can be different in size, solid type, or
material. The solid's type, its dimensions, the material and the
transformation matrix can all be parameterised in function of the copy
number, both when a strong symmetry exist and when it does not. The user
implements the desired parameterisation function and the program
computes and updates automatically at run time the information
associated to the Physical Volume.

An example of creating a parameterised volume (by dimension and
position) exists in basic example B2b. The implementation is provided in
the two classes B2b::DetectorConstruction and
B2b::ChamberParameterisation.

To create a parameterised volume, one must first create its logical
volume like trackerChamberLV below. Then one must create his own
parameterisation class (B2b::ChamberParameterisation) and instantiate an
object of this class (chamberParam). We will see how to create the
parameterisation below.

Listing 37 An example of Parameterised volumes.

// Tracker segments

// An example of Parameterised volumes
// Dummy values for G4Tubs -- modified by parameterised volume

G4Tubs* chamberS
 = new G4Tubs("tracker",0, 100*cm, 100*cm, 0.*deg, 360.*deg);
fLogicChamber
 = new G4LogicalVolume(chamberS,fChamberMaterial,"Chamber",0,0,0);

G4double firstPosition = -trackerSize + chamberSpacing;
G4double firstLength = trackerLength/10;
G4double lastLength = trackerLength;

G4VPVParameterisation* chamberParam =
 new ChamberParameterisation(NbOfChambers, // NoChambers
 firstPosition, // Z of center of first
 chamberSpacing, // Z spacing of centers
 chamberWidth, // chamber width
 firstLength, // initial length
 lastLength); // final length

// dummy value : kZAxis -- modified by parameterised volume

new G4PVParameterised("Chamber", // their name
 fLogicChamber, // their logical volume
 trackerLV, // Mother logical volume
 kZAxis, // Are placed along this axis
 NbOfChambers, // Number of chambers
 chamberParam, // The parametrisation
 fCheckOverlaps); // checking overlaps

The general constructor is:

G4PVParameterised(const G4String& pName,
 G4LogicalVolume* pCurrentLogical,
 G4LogicalVolume* pMotherLogical, // OR G4VPhysicalVolume*
 const EAxis pAxis,
 const G4int nReplicas,
 G4VPVParameterisation* pParam,
 G4bool pSurfChk=false)

Note that for a parameterised volume the user must always specify a
mother volume. So the world volume can never be a parameterised
volume, nor it can be sliced. The mother volume can be specified either
as a physical or a logical volume.

pAxis specifies the tracking optimisation algorithm to apply: if a
valid axis (the axis along which the parameterisation is performed) is
specified, a simple one-dimensional voxelisation algorithm is applied;
if "kUndefined" is specified instead, the default three-dimensional
voxelisation algorithm applied for normal placements will be activated.
In the latter case, more voxels will be generated, therefore a greater
amount of memory will be consumed by the optimisation algorithm.

pSurfChk if true activates a check for overlaps with existing
volumes or paramaterised instances.

The parameterisation mechanism associated to a parameterised volume is
defined in the parameterisation class and its methods. Every
parameterisation must create two methods:

	ComputeTransformation defines where one of the copies is placed,

	ComputeDimensions defines the size of one copy, and

	a constructor that initializes any member variables that are
required.

An example is B2b::ChamberParameterisation that parameterises a series
of tubes of different sizes

Listing 38 An example of Parameterised tubes of different sizes.

namespace B2b
{

class ChamberParameterisation : public G4VPVParameterisation
{
 ...
 void ComputeTransformation(const G4int copyNo,
 G4VPhysicalVolume *physVol) const;

 void ComputeDimensions(G4Tubs& trackerLayer,
 const G4int copyNo,
 const G4VPhysicalVolume *physVol) const;
 ...
}

}

These methods works as follows:

The ComputeTransformation method is called with a copy number for
the instance of the parameterisation under consideration. It must
compute the transformation for this copy, and set the physical volume to
utilize this transformation:

void ChamberParameterisation::ComputeTransformation
(const G4int copyNo, G4VPhysicalVolume *physVol) const
{
 // Note: copyNo will start with zero!
 G4double Zposition = fStartZ + copyNo * fSpacing;
 G4ThreeVector origin(0,0,Zposition);
 physVol->SetTranslation(origin);
 physVol->SetRotation(0);
}

Note that the translation and rotation given in this scheme are those
for the frame of coordinates (the passive method). They are not
for the active method, in which the solid is rotated into the mother
frame of coordinates.

Similarly the ComputeDimensions method is used to set the size of
that copy.

void ChamberParameterisation::ComputeDimensions
(G4Tubs& trackerChamber, const G4int copyNo, const G4VPhysicalVolume*) const
{
 // Note: copyNo will start with zero!
 G4double rmax = fRmaxFirst + copyNo * fRmaxIncr;
 trackerChamber.SetInnerRadius(0);
 trackerChamber.SetOuterRadius(rmax);
 trackerChamber.SetZHalfLength(fHalfWidth);
 trackerChamber.SetStartPhiAngle(0.*deg);
 trackerChamber.SetDeltaPhiAngle(360.*deg);
}

The user must ensure that the type of the first argument of this method
(in this example G4Tubs &) corresponds to the type of object the
user give to the logical volume of parameterised physical volume.

More advanced usage allows the user:

	to change the type of solid by creating a ComputeSolid method, or

	to change the material of the volume by creating a
ComputeMaterial method. This method can also utilise information
from a parent or other ancestor volume (see the Nested
Parameterisation below.)

for the parameterisation.

Example examples/extended/runAndEvent/RE02 shows a simple
parameterisation by material. A more complex example is provided in
examples/extended/medical/DICOM, where a phantom grid of cells is
built using a parameterisation by material defined through a map.

Note

Currently for many cases it is not possible to add daughter volumes
to a parameterised volume. Only parameterised volumes all of whose
solids have the same size are allowed to contain daughter volumes.
When the size or type of solid varies, adding daughters is not
supported. So the full power of parameterised volumes can be used
only for "leaf" volumes, which contain no other volumes.

Note

A hierarchy of volumes included in a parameterised volume cannot
vary. Therefore, it is not possible to implement a parameterisation
which can modify the hierarchy of volumes included inside a specific
parameterised copy.

Note

For parameterisations of tubes or cons, where the starting Phi
and its DeltaPhi angles vary, it is possible to optimise the
regeneration of the trigonometric parameters of the shape, by
invoking
SetStartPhiAngle(newPhi, false); SetDeltaPhiAngle (newDPhi),
i.e. by specifying with false flag to skip the computation of
the parameters which will be later on properly initialised with the
call for DeltaPhi.

Note

Parameterisations of composed solids like Boolean, Reflected or
Displaced solids are not recommended, given the complexity in handling
transformations that this might imply, and limitations in making
persistent representations (i.e. GDML) of the geometry itself.

Note

For multi-threaded applications, one must be careful in the
implementation of the parameterisation functions for the geometrical
objects being created in the parameterisation. In particular, when
parameterising by the type of a solid, it is assumed that the solids
being parameterised are being declared thread-local in the user's
parameterisation class and allocated just once.

Advanced parameterisations for 'nested' parameterised volumes

A different type of parameterisation enables a user to have the
daughter's material also depend on the copy number of the parent when a
parameterised volume (daughter) is located inside another (parent)
repeated volume. The parent volume can be a replica, a parameterised
volume, or a division if the key feature of modifying its contents is
utilised. (Note: a 'nested' parameterisation inside a placement volume
is not supported, because all copies of a placement volume must be
identical at all levels.)

In such a " nested" parameterisation , the user must provide a
ComputeMaterial method that utilises the new argument that
represents the touchable history of the parent volume:

// Sample Parameterisation
class SampleNestedParameterisation : public G4VNestedParameterisation
{
 public:
 // .. other methods ...
 // Mandatory method, required and reason for this class
 virtual G4Material* ComputeMaterial(G4VPhysicalVolume *currentVol,
 const G4int no_lev,
 const G4VTouchable *parentTouch);
 private:
 G4Material *material1, *material2;
};

The implementation of the method can utilise any information from a
parent or other ancestor volume of its parameterised physical volume,
but typically it will use only the copy number:

G4Material*
SampleNestedParameterisation::ComputeMaterial(G4VPhysicalVolume *currentVol,
 const G4int no_lev,
 const G4VTouchable *parentTouchable)
{
 G4Material *material=0;

 // Get the information about the parent volume
 G4int no_parent= parentTouchable->GetReplicaNumber();
 G4int no_total= no_parent + no_lev;
 // A simple 'checkerboard' pattern of two materials
 if(no_total / 2 == 1) material= material1;
 else material= material2;
 // Set the material to the current logical volume
 G4LogicalVolume* currentLogVol= currentVol->GetLogicalVolume();
 currentLogVol->SetMaterial(material);
 return material;
}

Nested parameterisations are suitable for the case of regular, 'voxel'
geometries in which a large number of 'equal' volumes are required, and
their only difference is in their material. By creating two (or more)
levels of parameterised physical volumes it is possible to divide space,
while requiring only limited additional memory for very fine-level
optimisation. This provides fast navigation. Alternative
implementations, taking into account the regular structure of such
geometries in navigation are under study.

Note

You can also switch the colour of individual volumes by changing
the vis attributes in your ComputeMaterial - see
examples//extended/medical/DICOM or
examples/advanced/ICRP110_HumanPhantoms.

Note

The number of parameterised volumes can become very large, in the
10's of millions for a medical phantom, for example. This can give
the graphics system a headache. See Visualization of a parameterised volume
for economical ways of visualising such parameterisations.

Divisions of Volumes

Divisions in Geant4 are repeated volumes and are implemented as a
specialized type of parameterised volumes.

They serve to divide a volume into identical copies along one of its
axes, providing the possibility to define an offset, and without the
limitation that the daughters have to fill the mother volume as it is
the case for the replicas. In the case, for example, of a tube divided
along its radial axis, the copies are not strictly identical, but have
increasing radii, although their widths are constant.

To divide a volume it will be necessary to provide:

	the axis of division, and

	either

	the number of divisions (so that the width of each division will
be automatically calculated), or

	the division width (so that the number of divisions will be
automatically calculated to fill as much of the mother as
possible), or

	both the number of divisions and the division width (this is
especially designed for the case where the copies do not fully
fill the mother).

An offset can be defined so that the first copy will start at some
distance from the mother wall. The dividing copies will be then
distributed to occupy the rest of the volume.

There are three constructors, corresponding to the three input
possibilities described above:

	Giving only the number of divisions:

G4PVDivision(const G4String& pName,
 G4LogicalVolume* pCurrentLogical,
 G4LogicalVolume* pMotherLogical,
 const EAxis pAxis,
 const G4int nDivisions,
 const G4double offset)

	Giving only the division width:

G4PVDivision(const G4String& pName,
 G4LogicalVolume* pCurrentLogical,
 G4LogicalVolume* pMotherLogical,
 const EAxis pAxis,
 const G4double width,
 const G4double offset)

	Giving the number of divisions and the division width:

G4PVDivision(const G4String& pName,
 G4LogicalVolume* pCurrentLogical,
 G4LogicalVolume* pMotherLogical,
 const EAxis pAxis,
 const G4int nDivisions,
 const G4double width,
 const G4double offset)

where:

	pName

	String identifier for the replicated volume

	pCurrentLogical

	The associated Logical Volume

	pMotherLogical

	The associated mother Logical Volume

	pAxis

	The axis along which the division is applied

	nDivisions

	The number of divisions

	width

	The width of a single division along the axis

	offset

	Possible offset associated to the mother along the axis of division

The parameterisation is calculated automatically using the values
provided in input. Therefore the dimensions of the solid associated with
pCurrentLogical will not be used, but recomputed through the
G4VParameterisation::ComputeDimension() method.

Since G4VPVParameterisation may have different
ComputeDimension() methods for each solid type, the user must
provide a solid that is of the same type as of the one associated to the
mother volume.

As for any replica, the coordinate system of the divisions is related to
the centre of each division for the Cartesian axis. For the radial axis,
the coordinate system is the same of the mother volume. For the phi
axis, the new coordinate system is rotated such that the X axis bisects
the angle made by each wedge, and Z remains parallel to the mother's Z
axis.

As divisions are parameterised volumes with constant dimensions, they
may be placed inside other divisions, except in the case of divisions
along the radial axis.

It is also possible to place other volumes inside a volume where a
division is placed.

The list of volumes that currently support divisioning and the possible
division axis are summarised below:

	G4Box

	kXAxis, kYAxis, kZAxis

	G4Tubs

	kRho, kPhi, kZAxis

	G4Cons

	kRho, kPhi, kZAxis

	G4Trd

	kXAxis, kYAxis, kZAxis

	G4Para

	kXAxis, kYAxis, kZAxis

	G4Polycone

	kRho, kPhi, kZAxis

	G4Polyhedra

	kRho, kPhi, kZAxis (*)

(*) - G4Polyhedra:

	kPhi - the number of divisions has to be the same as solid sides,
(i.e. numSides), the width will not be taken into account.

In the case of division along kRho of G4Cons, G4Polycone,
G4Polyhedra, if width is provided, it is taken as the width at the
-Z radius; the width at other radii will be scaled to this one.

Examples are given below in listings
Listing 37 and
Listing 39.

Listing 39 An example of a box division along different axes, with or without offset.

 G4Box* motherSolid = new G4Box("motherSolid", 0.5*m, 0.5*m, 0.5*m);
 G4LogicalVolume* motherLog = new G4LogicalVolume(motherSolid, material, "mother",0,0,0);
 G4Para* divSolid = new G4Para("divSolid", 0.512*m, 1.21*m, 1.43*m);
 G4LogicalVolume* childLog = new G4LogicalVolume(divSolid, material, "child",0,0,0);

 G4PVDivision divBox1("division along X giving nDiv",
 childLog, motherLog, kXAxis, 5, 0.);

 G4PVDivision divBox2("division along X giving width and offset",
 childLog, motherLog, kXAxis, 0.1*m, 0.45*m);

 G4PVDivision divBox3("division along X giving nDiv, width and offset",
 childLog, motherLog, kXAxis, 3, 0.1*m, 0.5*m);

	divBox1 is a division of a box along its X axis in 5 equal
copies. Each copy will have a dimension in meters of
[0.2, 1., 1.].

	divBox2 is a division of the same box along its X axis with a
width of 0.1 meters and an offset of 0.5 meters. As the
mother dimension along X of 1 meter (0.5*m of
halflength), the division will be sized in total 1 - 0.45 = 0.55
meters. Therefore, there's space for 5 copies, the first extending
from -0.05 to 0.05 meters in the mother's frame and the last
from 0.35 to 0.45 meters.

	divBox3 is a division of the same box along its X axis in 3
equal copies of width 0.1 meters and an offset of 0.5 meters.
The first copy will extend from 0. to 0.1 meters in the
mother's frame and the last from 0.2 to 0.3 meters.

Listing 40 An example of division of a polycone.

G4double* zPlanem = new G4double[3];
 zPlanem[0]= -1.*m;
 zPlanem[1]= -0.25*m;
 zPlanem[2]= 1.*m;
G4double* rInnerm = new G4double[3];
 rInnerm[0]=0.;
 rInnerm[1]=0.1*m;
 rInnerm[2]=0.5*m;
G4double* rOuterm = new G4double[3];
 rOuterm[0]=0.2*m;
 rOuterm[1]=0.4*m;
 rOuterm[2]=1.*m;
G4Polycone* motherSolid = new G4Polycone("motherSolid", 20.*deg, 180.*deg,
 3, zPlanem, rInnerm, rOuterm);
G4LogicalVolume* motherLog = new G4LogicalVolume(motherSolid, material, "mother",0,0,0);

G4double* zPlaned = new G4double[3];
 zPlaned[0]= -3.*m;
 zPlaned[1]= -0.*m;
 zPlaned[2]= 1.*m;
G4double* rInnerd = new G4double[3];
 rInnerd[0]=0.2;
 rInnerd[1]=0.4*m;
 rInnerd[2]=0.5*m;
G4double* rOuterd = new G4double[3];
 rOuterd[0]=0.5*m;
 rOuterd[1]=0.8*m;
 rOuterd[2]=2.*m;
G4Polycone* divSolid = new G4Polycone("divSolid", 0.*deg, 10.*deg,
 3, zPlaned, rInnerd, rOuterd);
G4LogicalVolume* childLog = new G4LogicalVolume(divSolid, material, "child",0,0,0);

G4PVDivision divPconePhiW("division along phi giving width and offset",
 childLog, motherLog, kPhi, 30.*deg, 60.*deg);

G4PVDivision divPconeZN("division along Z giving nDiv and offset",
 childLog, motherLog, kZAxis, 2, 0.1*m);

	divPconePhiW is a division of a polycone along its phi axis
in equal copies of width 30 degrees with an offset of 60 degrees. As
the mother extends from 0 to 180 degrees, there's space for 4 copies.
All the copies have a starting angle of 20 degrees (as for the
mother) and a phi extension of 30 degrees. They are rotated
around the Z axis by 60 and 30 degrees, so that the first copy
will extend from 80 to 110 and the last from 170 to 200 degrees.

	divPconeZN is a division of the same polycone along its Z
axis. As the mother polycone has two sections, it will be divided in
two one-section polycones, the first one extending from -1 to -0.25
meters, the second from -0.25 to 1 meters. Although specified, the
offset will not be used.

Replicated Slices

A special kind of divided volume is represented by G4ReplicatedSlice,
a division allowing for gaps inbetween divided volumes.

Three constructors, corresponding to three input possibilities are
provided:

	Giving only the number of divisions:

G4ReplicatedSlice(const G4String& pName,
 G4LogicalVolume* pCurrentLogical,
 G4LogicalVolume* pMotherLogical,
 const EAxis pAxis,
 const G4int nDivisions,
 const G4double half_gap,
 const G4double offset)

	Giving only the division width:

G4ReplicatedSlice(const G4String& pName,
 G4LogicalVolume* pCurrentLogical,
 G4LogicalVolume* pMotherLogical,
 const EAxis pAxis,
 const G4double width,
 const G4double half_gap,
 const G4double offset)

	Giving the number of divisions and the division width:

G4ReplicatedSlice(const G4String& pName,
 G4LogicalVolume* pCurrentLogical,
 G4LogicalVolume* pMotherLogical,
 const EAxis pAxis,
 const G4int nDivisions,
 const G4double width,
 const G4double half_gap,
 const G4double offset)

where:

	pName

	String identifier for the replicated volume

	pCurrentLogical

	The associated Logical Volume

	pMotherLogical

	The associated mother Logical Volume

	pAxis

	The axis along which the division is applied

	nDivisions

	The number of divisions

	width

	The width of a single division along the axis

	half_gap

	The half width of the gap to be considered inbetween division slices

	offset

	Possible offset associated to the mother along the axis of division

As for G4PVDivision, the parameterisation is calculated automatically
using the values provided in input.

Footnotes

Touchables: Uniquely Identifying a Volume

Introduction to Touchables

A touchable for a volume serves the purpose of providing a unique
identification for a detector element. This can be useful for
description of the geometry alternative to the one used by the Geant4
tracking system, such as a Sensitive Detectors based read-out geometry,
or a parameterised geometry for fast Monte Carlo. In order to create a
touchable volume, several techniques can be implemented: for example,
in Geant4 touchables are implemented as solids associated to a
transformation-matrix in the global reference system, or as a hierarchy
of physical volumes up to the root of the geometrical tree.

A touchable is a geometrical entity (volume or solid) which has a unique
placement in a detector description. It is represented by an abstract
base class which can be implemented in a variety of ways. Each way must
provide the capabilities of obtaining the transformation and solid that
is described by the touchable.

What can a Touchable do?

All G4VTouchable implementations must respond to the two following
"requests", where in all cases, by depth it is meant the number of
levels up in the tree to be considered (the default and current one is
0):

	GetTranslation(depth)

	GetRotation(depth)

that return the components of the volume's transformation.

Additional capabilities are available from implementations with more
information. These have a default implementation that causes an
exception.

Several capabilities are available from touchables with physical
volumes:

	GetSolid(depth)
gives the solid associated to the touchable.

	GetVolume(depth)
gives the physical volume.

	GetReplicaNumber(depth) or GetCopyNumber(depth)
which return the copy number of the physical volume (replicated or
not).

Touchables that store volume hierarchy (history) have the whole stack of
parent volumes available. Thus it is possible to add a little more state
in order to extend its functionality. We add a "pointer" to a level and
a member function to move the level in this stack. Then calling the
above member functions for another level the information for that level
can be retrieved.

The top of the history tree is, by convention, the world volume.

	GetHistoryDepth() gives the depth of the history tree.

	MoveUpHistory(num) moves the current pointer inside the touchable
to point num levels up the history tree. Thus, e.g., calling it
with num=1 will cause the internal pointer to move to the mother
of the current volume.

Warning

this function changes the state of the touchable and can
cause errors in tracking if applied to Pre/Post step touchables.

These methods are valid only for the touchable-history type, as
specified also below.

An update method, with different arguments is available, so that the
information in a touchable can be updated:

	UpdateYourself(vol, history) takes a physical volume pointer and
can additionally take a NavigationHistory pointer.

Touchable history holds stack of geometry data

As shown in Sections Logical Volumes and
Physical Volumes, a logical volume represents unpositioned
detector elements, and a physical volume can represent multiple detector
elements. On the other hand, touchables provide a unique identification
for a detector element. In particular, the Geant4 transportation process
and the tracking system exploit touchables as implemented in
G4TouchableHistory. The touchable history is the minimal set of
information required to specify the full genealogy of a given physical
volume (up to the root of the geometrical tree). These touchable volumes
are made available to the user at every step of the Geant4 tracking in
G4VUserSteppingAction.

To create/access a G4TouchableHistory the user must message
G4Navigator which provides the method
CreateTouchableHistoryHandle():

G4TouchableHistoryHandle CreateTouchableHistoryHandle() const;

this will return a handle to the touchable.

The methods that differentiate the touchable-history from other
touchables (since they have meaning only for this type...), are:

G4int GetHistoryDepth() const;
G4int MoveUpHistory(G4int num_levels = 1);

The first method is used to find out how many levels deep in the
geometry tree the current volume is. The second method asks the
touchable to eliminate its deepest level.

As mentioned above, MoveUpHistory(num) significantly modifies the
state of a touchable.

Footnotes

Creating an Assembly of Volumes

G4AssemblyVolume is a helper class which allows several logical
volumes to be combined together in an arbitrary way in 3D space. The
result is a placement of a normal logical volume, but where final
physical volumes are many.

However, an assembly volume does not act as a real mother volume,
being an envelope for its daughter volumes. Its role is over at the time
the placement of the logical assembly volume is done. The physical
volume objects become independent copies of each of the assembled
logical volumes.

This class is particularly useful when there is a need to create a
regular pattern in space of a complex component which consists of
different shapes and can't be obtained by using replicated volumes or
parametrised volumes (see also Fig. 9.
Careful usage of G4AssemblyVolume must be considered though, in order
to avoid cases of "proliferation" of physical volumes all placed in the
same mother.

[image: ../../_images/avex1and2.jpg]

Fig. 9 Examples of assembly of volumes.

Filling an assembly volume with its "daughters"

Participating logical volumes are represented as a triplet of <logical
volume, translation, rotation> (G4AssemblyTriplet class).

The adopted approach is to place each participating logical volume with
respect to the assembly's coordinate system, according to the specified
translation and rotation.

Assembly volume placement

An assembly volume object is composed of a set of logical volumes;
imprints of it can be made inside a mother logical volume.

Since the assembly volume class generates physical volumes during each
imprint, the user has no way to specify identifiers for these. An
internal counting mechanism is used to compose uniquely the names of the
physical volumes created by the invoked MakeImprint(...) method(s).

The name for each of the physical volume is generated with the following
format:

av_WWW_impr_XXX_YYY_ZZZ

where:

WWW - assembly volume instance number
XXX - assembly volume imprint number
YYY - the name of the placed logical volume
ZZZ - the logical volume index inside the assembly volume

It is however possible to access the constituent physical volumes of an
assembly and eventually customise ID and copy-number.

The setting of the copy-numbers can be complex, depending on how
complex is the structure being built. Each assembly (G4AssemblyVolume)
instance gets automatically assigned a number, assemblyID, which
starts from zero and gets incremented based on the number of imprints
being made. Each assembly is being stored in a G4AssemblyStore and
can always been retrieved at any time.
G4AssemblyVolume allows to define a base copy-number for each
imprint (call to MakeImprint()), by specifying it as a parameter,
copyNumBase, which is set to zero by default.
The computation of the effective copy-number of each volume in the
assembly is done using such parameter, i.e. based on the number of
triplets (number of volumes added in the assembly), each volume
copy number is assigned as:

numberOfDaughters + i

where i goes from zero to the number of volumes in the assembly;
numberOfDaughters is either set to the number of daughter volumes
in the mother where the assembly must be placed (if copyNumBase is
zero, i.e. not being specified at the time the imprint is made), or
the specified copyNumBase.

In case the assembly includes another assembly inside, the call
to makeImprint() is made recursively, and the base copy-number
in this case is being set to:

i*100+copyNumBase

so, shifted by 100 times the index of the triplet in the original
assembly.

Destruction of an assembly volume

At destruction all the generated physical volumes and associated
rotation matrices of the imprints will be destroyed. A list of physical
volumes created by MakeImprint() method is kept, in order to be able
to cleanup the objects when not needed anymore. This requires the user
to keep the assembly objects in memory during the whole job or during
the life-time of the G4Navigator, logical volume store and physical
volume store may keep pointers to physical volumes generated by the
assembly volume.

The MakeImprint() method will operate correctly also on
transformations including reflections and can be applied also to
recursive assemblies (i.e., it is possible to generate imprints of
assemblies including other assemblies). Giving true as the last
argument of the MakeImprint() method, it is possible to activate the
volumes overlap check for the assembly's constituents (the default is
false).

Each assembly structure is registered at construction in a specialised
store, G4AssemblyStore, which can then be used to identify all
structures defined in a geometry setup, as well as the volumes belonging
to each imprint.

At destruction of a G4AssemblyVolume, all its generated physical
volumes and rotation matrices will be automatically freed.

Example

This example shows how to use the G4AssemblyVolume class. It
implements a layered detector where each layer consists of 4 plates.

In the code below, at first the world volume is defined, then solid and
logical volume for the plate are created, followed by the definition of
the assembly volume for the layer.

The assembly volume for the layer is then filled by the plates in the
same way as normal physical volumes are placed inside a mother volume.

Finally the layers are placed inside the world volume as the imprints of
the assembly volume (see Listing 41).

Listing 41 An example of usage of the G4AssemblyVolume class.

static unsigned int layers = 5;

void TstVADetectorConstruction::ConstructAssembly()
{
 // Define world volume
 G4Box* WorldBox = new G4Box("WBox", worldX/2., worldY/2., worldZ/2.);
 G4LogicalVolume* worldLV = new G4LogicalVolume(WorldBox, selectedMaterial,
 "WLog", 0, 0, 0);
 G4VPhysicalVolume* worldVol = new G4PVPlacement(0, G4ThreeVector(), "WPhys",worldLV,
 0, false, 0);

 // Define a plate
 G4Box* PlateBox = new G4Box("PlateBox", plateX/2., plateY/2., plateZ/2.);
 G4LogicalVolume* plateLV = new G4LogicalVolume(PlateBox, Pb, "PlateLV", 0, 0, 0);

 // Define one layer as one assembly volume
 G4AssemblyVolume* assemblyDetector = new G4AssemblyVolume();

 // Rotation and translation of a plate inside the assembly
 G4RotationMatrix Ra;
 G4ThreeVector Ta;
 G4Transform3D Tr;

 // Rotation of the assembly inside the world
 G4RotationMatrix Rm;

 // Fill the assembly by the plates
 Ta.setX(caloX/4.); Ta.setY(caloY/4.); Ta.setZ(0.);
 Tr = G4Transform3D(Ra,Ta);
 assemblyDetector->AddPlacedVolume(plateLV, Tr);

 Ta.setX(-1*caloX/4.); Ta.setY(caloY/4.); Ta.setZ(0.);
 Tr = G4Transform3D(Ra,Ta);
 assemblyDetector->AddPlacedVolume(plateLV, Tr);

 Ta.setX(-1*caloX/4.); Ta.setY(-1*caloY/4.); Ta.setZ(0.);
 Tr = G4Transform3D(Ra,Ta);
 assemblyDetector->AddPlacedVolume(plateLV, Tr);

 Ta.setX(caloX/4.); Ta.setY(-1*caloY/4.); Ta.setZ(0.);
 Tr = G4Transform3D(Ra,Ta);
 assemblyDetector->AddPlacedVolume(plateLV, Tr);

 // Now instantiate the layers
 for(unsigned int i = 0; i < layers; i++)
 {
 // Translation of the assembly inside the world
 G4ThreeVector Tm(0,0,i*(caloZ + caloCaloOffset) - firstCaloPos);
 Tr = G4Transform3D(Rm,Tm);
 assemblyDetector->MakeImprint(worldLV, Tr);
 }
}

The resulting detector will look as in Fig. 10.

[image: Assembly volume detector]

Fig. 10 The geometry corresponding to the Listing 41.

Footnotes

Reflecting Hierarchies of Volumes

Hierarchies of placed or replicated volumes can be reflected by means of the
G4ReflectionFactory class and G4ReflectedSolid, which implements a
solid that has been shifted from its original reference frame to a new
'reflected' one. The reflection transformation is applied as a decomposition
into rotation and translation transformations.

The factory is a singleton object which provides the following methods:

G4PhysicalVolumesPair Place(const G4Transform3D& transform3D,
 const G4String& name,
 G4LogicalVolume* LV,
 G4LogicalVolume* motherLV,
 G4bool isMany,
 G4int copyNo,
 G4bool surfCheck=false)

G4PhysicalVolumesPair Replicate(const G4String& name,
 G4LogicalVolume* LV,
 G4LogicalVolume* motherLV,
 EAxis axis,
 G4int nofReplicas,
 G4double width,
 G4double offset=0)

G4PhysicalVolumesPair Divide(const G4String& name,
 G4LogicalVolume* LV,
 G4LogicalVolume* motherLV,
 EAxis axis,
 G4int nofDivisions,
 G4double width,
 G4double offset);

The method Place() used for placements, evaluates the passed
transformation. In case the transformation contains a reflection, the
factory will act as follows:

	Performs the transformation decomposition.

	Creates a new reflected solid and logical volume, or retrieves them
from a map if the reflected object was already created.

	Transforms the daughters (if any) and place them in the given mother.

If successful, the result is a pair of physical volumes, where the
second physical volume is a placement in a reflected mother. Optionally,
it is also possible to force the overlaps check at the time of
placement, by activating the surfCheck flag.

The method Replicate() creates replicas in the given mother. If
successful, the result is a pair of physical volumes, where the second
physical volume is a replica in a reflected mother.

The method Divide() creates divisions in the given mother. If
successful, the result is a pair of physical volumes, where the second
physical volume is a division in a reflected mother. There exists also
two more variants of this method which may specify or not width or
number of divisions.

Note

In order to reflect hierarchies containing divided volumes, it is
necessary to explicitly instantiate a concrete division
factory -before- applying the actual reflection: (i.e. -
G4PVDivisionFactory::GetInstance();).

Note

Reflection of generic parameterised volumes is currently not possible.

Listing 42 An example of usage of the G4ReflectionFactory class.

#include "G4ReflectionFactory.hh"

// Calor placement with rotation

G4double calThickness = 100*cm;
G4double Xpos = calThickness*1.5;
G4RotationMatrix* rotD3 = new G4RotationMatrix();
rotD3->rotateY(10.*deg);

G4VPhysicalVolume* physiCalor =
 new G4PVPlacement(rotD3, // rotation
 G4ThreeVector(Xpos,0.,0.), // at (Xpos,0,0)
 logicCalor, // its logical volume (defined elsewhere)
 "Calorimeter", // its name
 logicHall, // its mother volume (defined elsewhere)
 false, // no boolean operation
 0); // copy number

// Calor reflection with rotation
//
G4Translate3D translation(-Xpos, 0., 0.);
G4Transform3D rotation = G4Rotate3D(*rotD3);
G4ReflectX3D reflection;
G4Transform3D transform = translation*rotation*reflection;

G4ReflectionFactory::Instance()
 ->Place(transform, // the transformation with reflection
 "Calorimeter", // the actual name
 logicCalor, // the logical volume
 logicHall, // the mother volume
 false, // no boolean operation
 1, // copy number
 false); // no overlap check triggered

// Replicate layers
//
G4ReflectionFactory::Instance()
 ->Replicate("Layer", // layer name
 logicLayer, // layer logical volume (defined elsewhere)
 logicCalor, // its mother
 kXAxis, // axis of replication
 5, // number of replica
 20*cm); // width of replica

Footnotes

The Geometry Navigator

Navigation through the geometry at tracking time is implemented by the
class G4Navigator. The navigator is used to locate points in the
geometry and compute distances to geometry boundaries. At tracking time,
the navigator is intended to be the only point of interaction with
tracking.

Internally, the G4Navigator has several private helper/utility classes:

	G4NavigationHistory - stores the compounded transformations,
replication/parameterisation information, and volume pointers at each
level of the hierarchy to the current location. The volume types at
each level are also stored - whether normal (placement), replicated
or parameterised.

	G4NormalNavigation - provides location & distance computation
functions for geometries containing 'placement' volumes, with no
voxels.

	G4VoxelNavigation - provides location and distance computation
functions for geometries containing 'placement' physical volumes with
voxels. Internally a stack of voxel information is maintained.
Private functions allow for isotropic distance computation to voxel
boundaries and for computation of the 'next voxel' in a specified
direction.

	G4ParameterisedNavigation - provides location and distance
computation functions for geometries containing parameterised volumes
with voxels. Voxel information is maintained similarly to
G4VoxelNavigation, but computation can also be simpler by
adopting voxels to be one level deep only (unrefined, or 1D
optimisation)

	G4ReplicaNavigation - provides location and distance computation
functions for replicated volumes.

	G4RegularNavigation - provides location and distance computation
functions for fast navigation in volumes containing a regular
parameterisation. If two contiguous voxels have the same material,
navigation does not stop at the surface.

In addition, the navigator maintains a set of flags for exiting/entry
optimisation. A navigator is not a singleton class; this is mainly to
allow a design extension in future (e.g. geometrical event biasing).

Navigation and Tracking

The main functions required for tracking in the geometry are described
below. Additional functions are provided to return the net
transformation of volumes and for the creation of touchables. None of
the functions implicitly requires that the geometry be described
hierarchically.

	SetWorldVolume()

Sets the first volume in the hierarchy. It must be unrotated and
untranslated from the origin.

	LocateGlobalPointAndSetup()

Locates the volume containing the specified global point. This
involves a traverse of the hierarchy, requiring the computation of
compound transformations, testing replicated and parameterised
volumes (etc). To improve efficiency this search may be performed
relative to the last, and this is the recommended way of calling the
function. A 'relative' search may be used for the first call of the
function which will result in the search defaulting to a search from
the root node of the hierarchy. Searches may also be performed using
a G4TouchableHistory.

	LocateGlobalPointAndUpdateTouchableHandle()

First, search the geometrical hierarchy like the above method
LocateGlobalPointAndSetup(). Then use the volume found and its
navigation history to update the touchable.

	ComputeStep()

Computes the distance to the next boundary intersected along the
specified unit direction from a specified point. The point must be
have been located prior to calling ComputeStep().

When calling ComputeStep(), a proposed physics step is passed. If
it can be determined that the first intersection lies at or beyond
that distance then kInfinity is returned. In any case, if the
returned step is greater than the physics step, the physics step must
be taken.

	SetGeometricallyLimitedStep()

Informs the navigator that the last computed step was taken in its
entirety. This enables entering/exiting optimisation, and should be
called prior to calling LocateGlobalPointAndSetup().

	CreateTouchableHistory()

Creates a G4TouchableHistory object, for which the caller has
deletion responsibility. The 'touchable' volume is the volume
returned by the last Locate operation. The object includes a copy of
the current NavigationHistory, enabling the efficient relocation of
points in/close to the current volume in the hierarchy.

As stated previously, the navigator makes use of utility classes to
perform location and step computation functions. The different
navigation utilities manipulate the G4NavigationHistory object.

In LocateGlobalPointAndSetup() the process of locating a point
breaks down into three main stages - optimisation, determination that
the point is contained with a subtree (mother and daughters), and
determination of the actual containing daughter. The latter two can be
thought of as scanning first 'up' the hierarchy until a volume that is
guaranteed to contain the point is found, and then scanning 'down' until
the actual volume that contains the point is found.

In ComputeStep() three types of computation are treated depending on
the current containing volume:

	The volume contains normal (placement) daughters (or none)

	The volume contains a single parameterised volume object,
representing many volumes

	The volume is a replica and contains normal (placement) daughters

Using the navigator to locate points

More than one navigator object can be created inside an application;
these navigators can act independently for different purposes. The main
navigator which is activated automatically at the startup of a
simulation program is the navigator used for the tracking and attached
the world volume of the main tracking (or mass) geometry.

The navigator for tracking can be retrieved at any state of the
application by messaging the G4TransportationManager:

G4Navigator* tracking_navigator =
 G4TransportationManager::GetInstance()->GetNavigatorForTracking();

This also allows to retrieve at any time a pointer to the world volume
assigned for tracking:

G4VPhysicalVolume* tracking_world = tracking_navigator->GetWorldVolume();

The navigator for tracking also retains all the information of the
current history of volumes traversed at a precise moment of the
tracking during a run. Therefore, if the navigator for tracking is used
during tracking for locating a generic point in the tree of volumes, the
actual particle gets also -relocated- in the specified position and
tracking will be of course affected !

In order to avoid the problem above and provide information about
location of a point without affecting the tracking, it is suggested to
either use an alternative G4Navigator object (which can then be
assigned to the world-volume), or access the information through the
step.

If the user instantiates an alternative G4Navigator, ownership is
retained by the user's code, and the navigator object should be deleted
by that code.

Using the 'step' to retrieve geometrical information

During the tracking run, geometrical information can be retrieved
through the touchable handle associated to the current step. For
example, to identify the exact copy-number of a specific physical volume
in the mass geometry, one should do the following:

// Given the pointer to the step object ...
//
G4Step* aStep = ..;

// ... retrieve the 'pre-step' point
//
G4StepPoint* preStepPoint = aStep->GetPreStepPoint();

// ... retrieve a touchable handle and access to the information
//
G4TouchableHandle theTouchable = preStepPoint->GetTouchableHandle();
G4int copyNo = theTouchable->GetCopyNumber();
G4int motherCopyNo = theTouchable->GetCopyNumber(1);

To determine the exact position in global coordinates in the mass
geometry and convert to local coordinates (local to the current volume):

G4ThreeVector worldPosition = preStepPoint->GetPosition();
G4ThreeVector localPosition = theTouchable->GetHistory()->
 GetTopTransform().TransformPoint(worldPosition);

Using an alternative navigator to locate points

In order to know (when in the idle state of the application) in
which physical volume a given point is located in the detector geometry,
it is necessary to create an alternative navigator object first and
assign it to the world volume:

G4Navigator* aNavigator = new G4Navigator();
aNavigator->SetWorldVolume(worldVolumePointer);

Then, locate the point myPoint (defined in global coordinates),
retrieve a touchable handle and do whatever you need with it:

aNavigator->LocateGlobalPointAndSetup(myPoint);
G4TouchableHistoryHandle aTouchable =
 aNavigator->CreateTouchableHistoryHandle();

 // Do whatever you need with it ...
 // ... convert point in local coordinates (local to the current volume)
 //
 G4ThreeVector localPosition = aTouchable->GetHistory()->
 GetTopTransform().TransformPoint(myPoint);

 // ... convert back to global coordinates system
 G4ThreeVector globalPosition = aTouchable->GetHistory()->
 GetTopTransform().Inverse().TransformPoint(localPosition);

If outside of the tracking run and given a generic local position (local
to a given volume in the geometry tree), it is -not- possible to
determine a priori its global position and convert it to the global
coordinates system. The reason for this is rather simple, nobody can
guarantee that the given (local) point is located in the right -copy- of
the physical volume ! In order to retrieve this information, some extra
knowledge related to the absolute position of the physical volume is
required first, i.e. one should first determine a global point belonging
to that volume, eventually making a dedicated scan of the geometry tree
through a dedicated G4Navigator object and then apply the method
above after having created the touchable for it.

Navigation in parallel geometries

Since release 8.2 of Geant4, it is possible to define geometry trees
which are parallel to the tracking geometry and having them assigned
to navigator objects that transparently communicate in sync with the
normal tracking geometry.

Parallel geometries can be defined for several uses (fast shower
parameterisation, geometrical biasing, particle scoring, readout
geometries, etc ...) and can overlap with the mass geometry defined
for the tracking. The parallel transportation will be activated only
after the registration of the parallel geometry in the detector
description setup; see Section Parallel Geometries for how to
define a parallel geometry and register it to the run-manager.

The G4TransportationManager provides all the utilities to verify,
retrieve and activate the navigators associated to the various parallel
geometries defined.

Fast navigation in regular patterned geometries and phantoms

Since release 9.1 of Geant4, a specialised navigation algorithm has been
introduced to allow for optimal memory use and extremely efficient
navigation in geometries represented by a regular pattern of volumes and
particularly three-dimensional grids of boxes. A typical application of
this kind is the case of DICOM phantoms for medical physics studies.

The class G4RegularNavigation is used and automatically activated
when such geometries are defined. It is required to the user to
implement a parameterisation of the kind G4PhantomParameterisation
and place the parameterised volume containing it in a container volume,
so that all cells in the three-dimensional grid (voxels) completely
fill the container volume. This way the location of a point inside a
voxel can be done in a fast way, transforming the position to the
coordinate system of the container volume and doing a simple calculation
of the kind:

copyNo_x = (localPoint.x()+fVoxelHalfX*fNoVoxelX)/(fVoxelHalfX*2.)

where fVoxelHalfX is the half dimension of the voxel along X and
fNoVoxelX is the number of voxels in the X dimension. Voxel
0 will be the one closest to the corner
(fVoxelHalfX*fNoVoxelX, fVoxelHalfY*fNoVoxelY, fVoxelHalfZ*fNoVoxelZ).

Having the voxels filling completely the container volume allows to
avoid the lengthy computation of ComputeStep() and ComputeSafety
methods required in the traditional navigation algorithm. In this case,
when a track is inside the parent volume, it has always to be inside one
of the voxels and it will be only necessary to calculate the distance to
the walls of the current voxel.

Skipping borders of voxels with same material

Another speed optimisation can be provided by skipping the frontiers of
two voxels which the same material assigned, so that bigger steps can be
done. This optimisation may be not very useful when the number of
materials is very big (in which case the probability of having
contiguous voxels with same material is reduced), or when the physical
step is small compared to the voxel dimensions (very often the case of
electrons). The optimisation can be switched off in such cases, by
invoking the following method with argument skip = 0:

Phantoms with only one material

If you want to describe a phantom of a unique material, you may spare
some memory by not filling the set of indices of materials of each
voxel. If the method SetMaterialIndices() is not invoked, the index
for all voxels will be 0, that is the first (and unique) material in
your list.

G4RegularParameterisation::SetSkipEqualMaterials(G4bool skip);

Example

To use the specialised navigation, it is required to first create an
object of type G4PhantomParameterisation:

G4PhantomParameterisation* param = new G4PhantomParameterisation();

Then, fill it with the all the necessary data:

// Voxel dimensions in the three dimensions
//
G4double halfX = ...;
G4double halfY = ...;
G4double halfZ = ...;
param->SetVoxelDimensions(halfX, halfY, halfZ);

// Number of voxels in the three dimensions
//
G4int nVoxelX = ...;
G4int nVoxelY = ...;
G4int nVoxelZ = ...;
param->SetNoVoxel(nVoxelX, nVoxelY, nVoxelZ);

// Vector of materials of the voxels
//
std::vector < G4Material* > theMaterials;
theMaterials.push_back(new G4Material(...
theMaterials.push_back(new G4Material(...
param->SetMaterials(theMaterials);

// List of material indices
// For each voxel it is a number that correspond to the index of its
// material in the vector of materials defined above;
//
size_t* mateIDs = new size_t[nVoxelX*nVoxelY*nVoxelZ];
mateIDs[0] = n0;
mateIDs[1] = n1;
...
param->SetMaterialIndices(mateIDs);

Then, define the volume that contains all the voxels:

G4Box* cont_solid = new G4Box("PhantomContainer",nVoxelX*halfX.,nVoxelY*halfY.,nVoxelZ*halfZ);
G4LogicalVolume* cont_logic =
 new G4LogicalVolume(cont_solid,
 matePatient, // material is not relevant here...
 "PhantomContainer",
 0, 0, 0);
G4VPhysicalVolume * cont_phys =
 new G4PVPlacement(rotm, // rotation
 pos, // translation
 cont_logic, // logical volume
 "PhantomContainer", // name
 world_logic, // mother volume
 false, // No op. bool.
 1); // Copy number

The physical volume should be assigned as the container volume of the
parameterisation:

param->BuildContainerSolid(cont_phys);

// Assure that the voxels are completely filling the container volume
//
param->CheckVoxelsFillContainer(cont_solid->GetXHalfLength(),
 cont_solid->GetyHalfLength(),
 cont_solid->GetzHalfLength());

// The parameterised volume which uses this parameterisation is placed
// in the container logical volume
//
G4PVParameterised * patient_phys =
 new G4PVParameterised("Patient", // name
 patient_logic, // logical volume
 cont_logic, // mother volume
 kXAxis, // optimisation hint
 nVoxelX*nVoxelY*nVoxelZ, // number of voxels
 param); // parameterisation

// Indicate that this physical volume is having a regular structure
//
patient_phys->SetRegularStructureId(1);

An example showing the application of the optimised navigation algorithm
for phantoms geometries is available in
examples/extended/medical/DICOM. It implements a real application for reading
DICOM images and convert them to Geant4 geometries with defined materials and
densities, allowing for different implementation solutions to be chosen
(non-optimised, classical 3D optimisation, nested parameterisations and
use of G4PhantomParameterisation).

Run-time commands

When running in verbose mode (i.e. the default, G4VERBOSE set
while installing the Geant4 kernel libraries), the navigator provides a
few commands to control its behavior. It is possible to select different
verbosity levels (up to 5), with the command:

geometry/navigator/verbose [verbose_level]

or to force the navigator to run in check mode:

geometry/navigator/check_mode [true/false]

The latter will force more strict and less tolerant checks in
step/safety computation to verify the correctness of the solids'
response in the geometry.

By combining check_mode with verbosity level-1, additional verbosity
checks on the response from the solids can be activated.

Setting Geometry Tolerance to be relative

The tolerance value defining the accuracy of tracking on the surfaces is
by default set to a reasonably small value of 10E-9 mm. Such accuracy
may be however redundant for use on simulation of detectors of big size
or macroscopic dimensions. Since release 9.0, it is possible to specify
the surface tolerance to be relative to the extent of the world volume
defined for containing the geometry setup.

The class G4GeometryManager can be used to activate the computation
of the surface tolerance to be relative to the geometry setup which has
been defined. It can be done this way:

G4GeometryManager::GetInstance()->SetWorldMaximumExtent(WorldExtent);

where, WorldExtent is the actual maximum extent of the world volume
used for placing the whole geometry setup.

Such call to G4GeometryManager must be done before defining any
geometrical component of the setup (solid shape or volume), and can be
done only once!

The class G4GeometryTolerance is to be used for retrieving the
actual values defined for tolerances, surface (Cartesian), angular or
radial respectively:

G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
G4GeometryTolerance::GetInstance()->GetAngularTolerance();
G4GeometryTolerance::GetInstance()->GetRadialTolerance();

Footnotes

Converting Geometries from Geant3.21

Approach

G3toG4 is the Geant4 facility to convert GEANT 3.21 geometries into
Geant4. This is done in two stages:

	The user supplies a GEANT 3.21 RZ-file (.rz) containing the
initialization data structures. An executable rztog4 reads this
file and produces an ASCII call list file containing instructions
on how to build the geometry. The source code of rztog4 is
FORTRAN.

	A call list interpreter (G4BuildGeom.cc) reads these instructions
and builds the geometry in the user's client code for Geant4.

Importing converted geometries into Geant4

Two examples of how to use the call list interpreter are supplied in the
directory examples/extended/g3tog4:

	cltog4 is a simple example which simply invokes the call list
interpreter method G4BuildGeom from the
G3toG4DetectorConstruction class, builds the geometry and exits.

	clGeometry, is more complete and is patterned as for the basic
Geant4 examples. It also invokes the call list interpreter, but in
addition, allows the geometry to be visualized and particles to be
tracked.

To compile and build the G3toG4 libraries, you need to have enabled
GEANT4_USE_G3TOG4 at the build configuration of Geant4. The G3toG4
libraries are not built by default.

Current Status

The package has been tested with the geometries from experiments like:
BaBar, CMS, Atlas, Alice, Zeus, L3, and Opal.

Here is a comprehensive list of features supported and not supported or
implemented in the current version of the package:

	Supported shapes: all GEANT 3.21 shapes except for GTRA,
CTUB.

	PGON, PCON are built using the specific solids
G4Polycone and G4Polyhedra.

	GEANT 3.21 MANY feature is only partially supported. MANY
positions are resolved in the G3toG4MANY() function, which has to
be processed before G3toG4BuildTree() (it is not called by
default). In order to resolve MANY, the user code has to provide
additional info using G4gsbool(G4String volName, G4String manyVolName) function for all the overlapping volumes.
Daughters of overlapping volumes are then resolved automatically and
should not be specified via Gsbool.

Limitation: a volume with a MANY position can have only this
one position; if more than one position is needed a new volume has to
be defined (gsvolu()) for each position.

	GSDV* routines for dividing volumes are implemented, using
G4PVReplicas, for shapes:

	BOX, TUBE, TUBS, PARA
- all axes;

	CONE, CONS
- axes 2, 3;

	TRD1, TRD2, TRAP
- axis 3;

	PGON, PCON
- axis 2;

	PARA
-axis 1; axis 2,3 for a special case

	GSPOSP is implemented via individual logical volumes for each
instantiation.

	GSROTM is implemented. Reflections of hierarchies based on plain
CSG solids are implemented through the G3Division class.

	Hits are not implemented.

	Conversion of GEANT 3.21 magnetic field is currently not supported.
However, the usage of magnetic field has to be turned on.

Footnotes

Detecting Overlapping Volumes

The problem of overlapping volumes

Volumes are often positioned within other volumes with the intent that
one is fully contained within the other. If, however, a volume extends
beyond the boundaries of its mother volume, it is defined as
overlapping. It may also be intended that volumes are positioned within
the same mother volume such that they do not intersect one another. When
such volumes do intersect, they are also defined as overlapping.

The problem of detecting overlaps between volumes is bounded by the
complexity of the solid model description. Hence it requires the same
mathematical sophistication which is needed to describe the most complex
solid topology, in general. However, a tunable accuracy can be obtained
by approximating the solids via first and/or second order surfaces and
checking their intersections.

In general, the most powerful clash detection algorithms are provided by
CAD systems, treating the intersection between the solids in their
topological form.

Detecting overlaps at construction

The Geant4 geometry modeler provides the ability to detect overlaps of
placed volumes (normal placements or parameterised) at the time of
construction. This check is optional and can be activated when
instantiating a placement (see G4PVPlacement constructor in
Placements: single positioned copy) or a parameterised volume (see
G4PVParameterised constructor in
Repeated volumes).

The positioning of that specific volume will be checked against all
volumes in the same hierarchy level and its mother volume. Depending on
the complexity of the geometry being checked, the check may require
considerable CPU time; it is therefore suggested to use it only for
debugging the geometry setup and to apply it only to the part of the
geometry setup which requires debugging.

The classes G4PVPlacement and G4PVParameterised also provide a
method:

G4bool CheckOverlaps(G4int res=1000, G4double tol=0., G4bool verbose=true, G4int maxErr=1)

which will force the check for the specified volume, and can be
therefore used to verify for overlaps also once the geometry is fully
built. The check verifies if each placed or parameterised instance is
overlapping with other instances or with its mother volume. A default
resolution for the number of points to be generated and verified is
provided. The method returns true if an overlap occurs. It is also
possible to specify a "tolerance" by which overlaps not exceeding such
quantity will not be reported and a maximum of overlaps errors for the
volume; by default, one overlap per volume is reported.

Detecting overlaps: built-in kernel commands

Built-in run-time commands to activate verification tests for the
user-defined geometry are also provided

geometry/test/run
--> to start verification of geometry for overlapping regions
 recursively through the volumes tree.
geometry/test/recursion_start [int]
--> to set the starting depth level in the volumes tree from where
 checking overlaps. Default is level '0' (i.e. the world volume).
 The new settings will then be applied to any recursive test run.
geometry/test/recursion_depth [int]
--> to set the total depth in the volume tree for checking overlaps.
 Default is '-1' (i.e. checking the whole tree).
 Recursion will stop after having reached the specified depth (the
 default being the full depth of the geometry tree).
 The new settings will then be applied to any recursive test run.
geometry/test/tolerance [double] [unit]
--> to define tolerance by which overlaps should not be reported.
 Default is '0'.
geometry/test/verbosity [bool]
--> to set verbosity mode. Default is 'true'.
geometry/test/resolution [int]
--> to establish the number of points on surface to be generated
 and checked for each volume. Default is '10000'.
geometry/test/maximum_errors [int]
--> to fix the threshold for the number of errors to be reported
 for a single volume. By default, for each volume, reports stop
 after the first error reported.

To detect overlapping volumes, the built-in UI commands use the random
generation of points on surface technique described above. It allows to
detect with high level of precision any kind of overlaps, as depicted
below. For example, consider Fig. 11:

[image: ../../_images/geomtest.jpg]

Fig. 11 Different cases of placed volumes overlapping each other.

Here we have a line intersecting some physical volume (large, black
rectangle). Belonging to the volume are four daughters: A, B, C, and D.
Indicated by the dots are the intersections of the line with the mother
volume and the four daughters.

This example has two geometry errors. First, volume A sticks outside its
mother volume (this practice, sometimes used in GEANT3.21, is not
allowed in Geant4). This can be noticed because the intersection point
(leftmost magenta dot) lies outside the mother volume, as defined by the
space between the two black dots.

The second error is that daughter volumes A and B overlap. This is
noticeable because one of the intersections with A (rightmost magenta
dot) is inside the volume B, as defined as the space between the red
dots. Alternatively, one of the intersections with B (leftmost red dot)
is inside the volume A, as defined as the space between the magenta
dots.

Another difficult issue is roundoff error. For example, daughters C and
D lie precisely next to each other. It is possible, due to roundoff,
that one of the intersections points will lie just slightly inside the
space of the other. In addition, a volume that lies tightly up against
the outside of its mother may have an intersection point that just
slightly lies outside the mother.

Finally, notice that no mention is made of the possible daughter volumes
of A, B, C, and D. To keep the code simple, only the immediate daughters
of a volume are checked at one pass. To test these "granddaughter"
volumes, the daughters A, B, C, and D each have to be tested themselves
in turn. To make this automatic, a recursive algorithm is applied; it
first tests the target volume, then it loops over all daughter volumes
and calls itself.

Note

for a complex geometry, checking the entire volume hierarchy can
be extremely time consuming.

Using built-in visualisation features

See Debugging geometry with vis.

Using the visualization tool DAVID

The Geant4 visualization offers also a debugging tool for detecting
potential intersections of physical volumes. The Geant4
DAVID
visualization tool can automatically detect the overlaps between
the volumes defined in Geant4 and converted to a graphical
representation for visualization purposes. The accuracy of the graphical
representation can be tuned onto the exact geometrical description. In
the debugging, physical-volume surfaces are automatically decomposed
into 3D polygons, and intersections of the generated polygons are
investigated. If a polygon intersects with another one, physical volumes
which these polygons belong to are visualized in color (red is the
default). The Fig. 12 figure below is
a sample visualization of a detector geometry with intersecting physical
volumes highlighted:

[image: ../../_images/DAVID_SAMPLE.jpg]

Fig. 12 A geometry with overlapping volumes highlighted by DAVID.

At present physical volumes made of the following solids can be
debugged: G4Box, G4Cons, G4Para, G4Sphere, G4Trd,
G4Trap, G4Tubs. (Existence of other solids is harmless.)

Visual debugging of physical-volume surfaces is performed with the
DAWNFILE driver defined in the visualization category and with the two
application packages, i.e. Fukui Renderer "DAWN" and a visual
intersection debugger "DAVID".

How to compile Geant4 with the DAWNFILE driver incorporated is described
in The Visualization Drivers.

If the DAWNFILE driver, DAWN and DAVID are all working well in your host
machine, the visual intersection debugging of physical-volume surfaces
can be performed as follows:

Run your Geant4 executable, invoke the DAWNFILE driver, and execute
visualization commands to visualize your detector geometry:

Idle> /vis/open DAWNFILE
.....(setting camera etc)...
Idle> /vis/drawVolume
Idle> /vis/viewer/update

Then a file "g4.prim", which describes the detector geometry, is
generated in the current directory and DAVID is invoked to read it. (The
description of the format of the file g4.prim can be found from the
DAWN web site documentation.)

If DAVID detects intersection of physical-volume surfaces, it
automatically invokes DAWN to visualize the detector geometry with the
intersected physical volumes highlighted (See the above sample
visualization).

If no intersection is detected, visualization is skipped and the
following message is displayed on the console:

--
!!! Number of intersected volumes : 0 !!!
!!! Congratulations ! \(^o^)/ !!!
--

If you always want to skip visualization, set an environmental variable
as follows beforehand:

% setenv DAVID_NO_VIEW 1

To control the precision associated to computation of intersections
(default precision is set to 9), it is possible to use the environmental
variable for the DAWNFILE graphics driver, as follows:

% setenv G4DAWNFILE_PRECISION 10

If necessary, re-visualize the detector geometry with intersected parts
highlighted. The data are saved in a file "g4david.prim" in the current
directory. This file can be re-visualized with DAWN as follows:

% dawn g4david.prim

It is also helpful to convert the generated file g4david.prim into a
VRML-formatted file and perform interactive visualization of it with
your WWW browser. The file conversion tool prim2wrml can be
downloaded from the DAWN web site.

Footnotes

Dynamic Geometry Setups

Geant4 can handle geometries which vary in time (e.g. a geometry varying
between two runs in the same job).

It is considered a change to the geometry setup, whenever for the same
physical volume:

	the shape or dimension of its related solid is modified;

	the positioning (translation or rotation) of the volume is changed;

	the volume (or a set of volumes, tree) is removed/replaced or added.

Whenever such a change happens, the geometry setup needs to be first
"opened" for the change to be applied and afterwards "closed" for the
optimisation to be reorganised.

In the general case, in order to notify the Geant4 system of the change
in the geometry setup, the G4RunManager has to be messaged once the
new geometry setup has been finalised:

G4RunManager::GeometryHasBeenModified();

The above notification needs to be performed also if a material
associated to a positioned volume is changed, in order to allow for
the internal materials/cuts table to be updated. However, for relatively
complex geometries the re-optimisation step may be extremely
inefficient, since it has the effect that the whole geometry setup will
be re-optimised and re-initialised. In cases where only a limited
portion of the geometry has changed, it may be suitable to apply the
re-optimisation only to the affected portion of the geometry (subtree).

Since release 7.1 of the Geant4 toolkit, it is possible to apply
re-optimisation local to the subtree of the geometry which has changed.
The user will have to explicitly "open/close" the geometry providing a
pointer to the top physical volume concerned:

Listing 43 Opening and closing a portion of the geometry without notifying the G4RunManager.

#include "G4GeometryManager.hh"

// Open geometry for the physical volume to be modified ...
//
G4GeometryManager::OpenGeometry(physCalor);

// Modify dimension of the solid ...
//
physCalor->GetLogicalVolume()->GetSolid()->SetXHalfLength(12.5*cm);

// Close geometry for the portion modified ...
//
G4GeometryManager::CloseGeometry(physCalor);

If the existing geometry setup is modified locally in more than one
place, it may be convenient to apply such a technique only once, by
specifying a physical volume on top of the hierarchy (subtree)
containing all changed portions of the setup.

An alternative solution for dealing with dynamic geometries is to
specify NOT to apply optimisation for the subtree affected by the change
and apply the general solution of invoking the G4RunManager. In this
case, a performance penalty at run-time may be observed (depending on
the complexity of the not-optimised subtree), considering that, without
optimisation, intersections to all volumes in the subtree will be
explicitly computed each time.

Note

in multi-threaded runs, dynamic geometries are only allowed for
runs consisting only of one event.

Footnotes

Importing XML Models Using GDML

Geometry Description Markup Language (GDML#1)
is a markup language based on XML and suited for the description of
detector geometry models. It allows for easy exchange of geometry data
in a human-readable XML-based description and structured formatting.

The GDML parser is a component of Geant4 which can be built and
installed as an optional choice. It allows for importing and exporting
GDML files, following the schema specified in the GDML
documentation#2. The
installation of the plugin is optional and requires the installation of
the XercesC#3 DOM parser.

Examples of how to import and export a detector description model based
on GDML#4, and also how to extend the GDML
schema, are provided and can be found in
examples/extended/persistency/gdml.

Footnotes

	#1

	http://cern.ch/gdml/

	#2

	http://cern.ch/gdml/doc/GDMLmanual.pdf

	#3

	http://xerces.apache.org/xerces-c/

	#4

	http://cern.ch/gdml/

Importing ASCII Text Models

Since release 9.2 of Geant4, it is also possible to import geometry
setups based on a plain text description, according to a well defined
syntax for identifying the different geometrical entities (solids,
volumes, materials and volume attributes) with associated parameters. An
example showing how to define a geometry in plain text format and import
it in a Geant4 application is shown in
examples/extended/persistency/P03. The example also covers the case
of associating a sensitive detector to one of the volumes defined in the
text geometry, the case of mixing C++ and text geometry definitions and
the case of defining new tags in the text format so that regions and
cuts by region can be defined in the text file. It also provides an
example of how to write a geometry text file from the in-memory Geant4
geometry. For the details on the format see the dedicated
manual#1.

Footnotes

	#1

	https://cern.ch/geant4/collaboration/working_groups/persistency/docs/textgeom.pdf

Saving geometry tree objects in binary format

The Geant4 geometry tree can be stored in the Root binary file format
using the Root-I/O technique provided by in Root. Such a binary file
can then be used to quickly load the geometry into the memory or to move
geometries between different Geant4 applications.

See Object Persistency for details and references.

Footnotes

Material

General considerations

In nature, materials (chemical compounds, mixtures) are made of
elements, and elements are made of isotopes. Geant4 has three main
classes designed to reflect this organization. Each of these classes has
a table, which is a static data member, used to keep track of the
instances of the respective classes created.

	G4Isotope
	This class describes the properties of atoms: atomic number, number
of nucleons, mass per mole, etc.

	G4Element
	This class describes the properties of elements: effective atomic
number, effective number of nucleons, effective mass per mole,
number of isotopes, shell energy, and quantities like cross section
per atom, etc.

	G4Material
	This class describes the macroscopic properties of matter: density,
state, temperature, pressure, and macroscopic quantities like
radiation length, mean free path, dE/dx, etc.

Only the G4Material class is visible to the rest of the toolkit and
used by the tracking, the geometry and the physics. It contains all the
information relevant to its constituent elements and isotopes, while at
the same time hiding their implementation details.

Introduction to the Classes

G4Isotope

A G4Isotope object has a name, atomic number, number of nucleons,
mass per mole, and an index in the table. The constructor automatically
stores "this" isotope in the isotopes table, which will assign it an
index number. The G4Isotope objects are owned by the isotopes table,
and must not be deleted by user code.

G4Element

A G4Element object has a name, symbol, effective atomic number,
effective number of nucleons, effective mass of a mole, an index in the
elements table, the number of isotopes, a vector of pointers to such
isotopes, and a vector of relative abundances referring to such isotopes
(where relative abundance means the number of atoms per volume). In
addition, the class has methods to add, one by one, the isotopes which
are to form the element.

The constructor automatically stores "this" element in the elements
table, which will assign it an index number. The G4Element objects
are owned by the elements table, and must not be deleted by user code.

A G4Element object can be constructed by directly providing the
effective atomic number, effective number of nucleons, and effective
mass of a mole, if the user explicitly wants to do so. Alternatively, a
G4Element object can be constructed by declaring the number of
isotopes of which it will be composed. The constructor will "new" a
vector of pointers to G4Isotopes and a vector of doubles to store
their relative abundances. Finally, the method to add an isotope must be
invoked for each of the desired (pre-existing) isotope objects,
providing their addresses and relative abundances. At the last isotope
entry, the system will automatically compute the effective atomic
number, effective number of nucleons and effective mass of a mole, and
will store "this" element in the elements table.

A few quantities, with physical meaning or not, which are constant in a
given element, are computed and stored here as "derived data members".

Using the internal Geant4 database, a G4Element can be accessed by
atomic number or by atomic symbol ("Al", "Fe", "Pb"...). In that case
G4Element will be found from the list of existing elements or will
be constructed using data from the Geant4 database, which is derived
from the NIST database of elements and isotope
compositions#1.
Thus, the natural isotope composition can be built by default. The same
element can be created as using the NIST database with the natural
composition of isotopes and from scratch in user code with user defined
isotope composition.

G4Material

A G4Material object has a name, density, physical state, temperature
and pressure (by default the standard conditions), the number of
elements and a vector of pointers to such elements, a vector of the
fraction of mass for each element, a vector of the atoms (or molecules)
numbers of each element, and an index in the materials table. In
addition, the class has methods to add, one by one, the elements which
will comprise the material.

The constructor automatically stores "this" material in the materials
table, which will assign it an index number. The G4Material objects
are owned by the materials table, and must not be deleted by user code.

A G4Material object can be constructed by directly providing the
resulting effective numbers, if the user explicitly wants to do so (an
underlying element will be created with these numbers). Alternatively, a
G4Material object can be constructed by declaring the number of
elements of which it will be composed. The constructor will "new" a
vector of pointers to G4Element and a vector of doubles to store
their fraction of mass. Finally, the method to add an element must be
invoked for each of the desired (pre-existing) element objects,
providing their addresses and mass fractions. At the last element entry,
the system will automatically compute the vector of the number of atoms
of each element per volume, the total number of electrons per volume,
and will store "this" material in the materials table. In the same way,
a material can be constructed as a mixture of other materials and
elements.

It should be noted that if the user provides the number of atoms (or
molecules) for each element comprising the chemical compound, the system
automatically computes the mass fraction. A few quantities, with
physical meaning or not, which are constant in a given material, are
computed and stored here as "derived data members".

Some materials are included in the internal Geant4 database, which were
derived from the NIST database of material
properties#2.
Additionally a number of materials frequently used in HEP is included in
the database. Materials are interrogated or constructed by their names
(Material Database). There are UI commands for the material
category, which provide an interactive access to the database. If
material is created using the NIST database by it will consist by
default of elements with the natural composition of isotopes.

Final Considerations

The classes will automatically decide if the total of the mass fractions
is correct, and perform the necessary checks. The main reason why a
fixed index is kept as a data member is that many cross section and
energy tables will be built in the physics processes "by rows of
materials (or elements, or even isotopes)". The tracking gives the
physics process the address of a material object (the material of the
current volume). If the material has an index according to which the
cross section table has been built, then direct access is available when
a number in such a table must be accessed. We get directly to the
correct row, and the energy of the particle will tell us the column.
Without such an index, every access to the cross section or energy
tables would imply a search to get to the correct material's row. More
details will be given in the section on processes.

Isotopes, elements and materials must be instantiated dynamically in the
user application; they are automatically registered in internal stores
and the system takes care to free the memory allocated at the end of the
job.

Recipes for Building Elements and Materials

The Listing 44 illustrates the different ways
to define materials.

Listing 44 A program which illustrates the different ways to define materials.

#include "G4Isotope.hh"
#include "G4Element.hh"
#include "G4Material.hh"
#include "G4UnitsTable.hh"

int main() {
G4String name, symbol; // a=mass of a mole;
G4double a, z, density; // z=mean number of protons;
G4int iz, n; // iz=nb of protons in an isotope;
 // n=nb of nucleons in an isotope;
G4int ncomponents, natoms;
G4double abundance, fractionmass;
G4double temperature, pressure;

G4UnitDefinition::BuildUnitsTable();

// define Elements
a = 1.01*g/mole;
G4Element* elH = new G4Element(name="Hydrogen",symbol="H" , z= 1., a);

a = 12.01*g/mole;
G4Element* elC = new G4Element(name="Carbon" ,symbol="C" , z= 6., a);

a = 14.01*g/mole;
G4Element* elN = new G4Element(name="Nitrogen",symbol="N" , z= 7., a);

a = 16.00*g/mole;
G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , z= 8., a);

a = 28.09*g/mole;
G4Element* elSi = new G4Element(name="Silicon", symbol="Si", z=14., a);

a = 55.85*g/mole;
G4Element* elFe = new G4Element(name="Iron" ,symbol="Fe", z=26., a);

a = 183.84*g/mole;
G4Element* elW = new G4Element(name="Tungsten" ,symbol="W", z=74., a);

a = 207.20*g/mole;
G4Element* elPb = new G4Element(name="Lead" ,symbol="Pb", z=82., a);

// define an Element from isotopes, by relative abundance
G4Isotope* U5 = new G4Isotope(name="U235", iz=92, n=235, a=235.01*g/mole);
G4Isotope* U8 = new G4Isotope(name="U238", iz=92, n=238, a=238.03*g/mole);

G4Element* elU = new G4Element(name="enriched Uranium", symbol="U", ncomponents=2);
elU->AddIsotope(U5, abundance= 90.*perCent);
elU->AddIsotope(U8, abundance= 10.*perCent);

G4cout << *(G4Isotope::GetIsotopeTable()) << G4endl;
G4cout << *(G4Element::GetElementTable()) << G4endl;

// define simple materials
density = 2.700*g/cm3;
a = 26.98*g/mole;
G4Material* Al = new G4Material(name="Aluminum", z=13., a, density);

density = 1.390*g/cm3;
a = 39.95*g/mole;
G4Material* lAr = new G4Material(name="liquidArgon", z=18., a, density);

density = 8.960*g/cm3;
a = 63.55*g/mole;
G4Material* Cu = new G4Material(name="Copper" , z=29., a, density);

// define a material from elements. case 1: chemical molecule
density = 1.000*g/cm3;
G4Material* H2O = new G4Material(name="Water", density, ncomponents=2);
H2O->AddElement(elH, natoms=2);
H2O->AddElement(elO, natoms=1);

density = 1.032*g/cm3;
G4Material* Sci = new G4Material(name="Scintillator", density, ncomponents=2);
Sci->AddElement(elC, natoms=9);
Sci->AddElement(elH, natoms=10);

density = 2.200*g/cm3;
G4Material* SiO2 = new G4Material(name="quartz", density, ncomponents=2);
SiO2->AddElement(elSi, natoms=1);
SiO2->AddElement(elO , natoms=2);

density = 8.280*g/cm3;
G4Material* PbWO4= new G4Material(name="PbWO4", density, ncomponents=3);
PbWO4->AddElement(elO , natoms=4);
PbWO4->AddElement(elW , natoms=1);
PbWO4->AddElement(elPb, natoms=1);

// define a material from elements. case 2: mixture by fractional mass
density = 1.290*mg/cm3;
G4Material* Air = new G4Material(name="Air " , density, ncomponents=2);
Air->AddElement(elN, fractionmass=0.7);
Air->AddElement(elO, fractionmass=0.3);

// define a material from elements and/or others materials (mixture of mixtures)
density = 0.200*g/cm3;
G4Material* Aerog = new G4Material(name="Aerogel", density, ncomponents=3);
Aerog->AddMaterial(SiO2, fractionmass=62.5*perCent);
Aerog->AddMaterial(H2O , fractionmass=37.4*perCent);
Aerog->AddElement (elC , fractionmass= 0.1*perCent);

// examples of gas in non STP conditions
density = 27.*mg/cm3;
pressure = 50.*atmosphere;
temperature = 325.*kelvin;
G4Material* CO2 = new G4Material(name="Carbonic gas", density, ncomponents=2,
 kStateGas,temperature,pressure);
CO2->AddElement(elC, natoms=1);
CO2->AddElement(elO, natoms=2);

density = 0.3*mg/cm3;
pressure = 2.*atmosphere;
temperature = 500.*kelvin;
G4Material* steam = new G4Material(name="Water steam ", density, ncomponents=1,
 kStateGas,temperature,pressure);
steam->AddMaterial(H2O, fractionmass=1.);

// What about vacuum ? Vacuum is an ordinary gas with very low density
density = universe_mean_density; //from PhysicalConstants.h
pressure = 1.e-19*pascal;
temperature = 0.1*kelvin;
new G4Material(name="Galactic", z=1., a=1.01*g/mole, density,
 kStateGas,temperature,pressure);

density = 1.e-5*g/cm3;
pressure = 2.e-2*bar;
temperature = STP_Temperature; //from PhysicalConstants.h
G4Material* beam = new G4Material(name="Beam ", density, ncomponents=1,
 kStateGas,temperature,pressure);
beam->AddMaterial(Air, fractionmass=1.);

// print the table of materials
G4cout << *(G4Material::GetMaterialTable()) << G4endl;

return EXIT_SUCCESS;
}

As can be seen in the later examples, a material has a state: solid (the
default), liquid, or gas. The constructor checks the density and
automatically sets the state to gas below a given threshold (10 mg/cm3).

In the case of a gas, one may specify the temperature and pressure. The
defaults are STP conditions defined in PhysicalConstants.hh.

An element must have the number of nucleons >= number of protons >= 1.

A material must have non-zero values of density, temperature and
pressure.

Materials can also be defined using the internal Geant4 database.
Listing 45 illustrates how to do this for
the same materials used in Listing 44.
There are also UI commands which allow the database to be accessed. The
list of currently available material names (Material Database) is
extended permanently.

Listing 45 A program which shows how to define materials from the internal database.

#include "globals.hh"
#include "G4Material.hh"
#include "G4NistManager.hh"

int main() {
 G4NistManager* man = G4NistManager::Instance();
 man->SetVerbose(1);

 // define elements
 G4Element* C = man->FindOrBuildElement("C");
 G4Element* Pb = man->FindOrBuildMaterial("Pb");

 // define pure NIST materials
 G4Material* Al = man->FindOrBuildMaterial("G4_Al");
 G4Material* Cu = man->FindOrBuildMaterial("G4_Cu");

 // define NIST materials
 G4Material* H2O = man->FindOrBuildMaterial("G4_WATER");
 G4Material* Sci = man->FindOrBuildMaterial("G4_PLASTIC_SC_VINYLTOLUENE");
 G4Material* SiO2 = man->FindOrBuildMaterial("G4_SILICON_DIOXIDE");
 G4Material* Air = man->FindOrBuildMaterial("G4_AIR");

 // HEP materials
 G4Material* PbWO4 = man->FindOrBuildMaterial("G4_PbWO4");
 G4Material* lAr = man->FindOrBuildMaterial("G4_lAr");
 G4Material* vac = man->FindOrBuildMaterial("G4_Galactic");

 // define gas material at non STP conditions (T = 120K, P=0.5atm)
 G4Material* coldAr = man->ConstructNewGasdMaterial("ColdAr","G4_Ar",120.*kelvin,0.5*atmosphere);

 // print the table of materials
 G4cout << *(G4Material::GetMaterialTable()) << G4endl;

 return EXIT_SUCCESS;
}

The Tables

Print a constituent

The following shows how to print a constituent:

G4cout << elU << G4endl;
G4cout << Air << G4endl;

Print the table of materials

The following shows how to print the table of materials:

G4cout << *(G4Material::GetMaterialTable()) << G4endl;

Footnotes

	#1

	https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses

	#2

	https://physics.nist.gov/PhysRefData/Star/Text/method.html

Electromagnetic Field

An Overview of Propagation in a Field

Geant4 is capable of describing and propagating in a variety of fields.
Magnetic fields, electric fields, electromagnetic fields, and gravity
fields, uniform or non-uniform, can specified for a Geant4 setup. The
propagation of tracks inside them can be performed to a user-defined
accuracy.

In order to propagate a track inside a field, the equation of motion of
the particle in the field is integrated. In general, this is done using
a Runge-Kutta method for the integration of ordinary differential
equations. However, for specific cases where an analytical solution is
known, it is possible to utilize this instead. Several Runge-Kutta
methods are available, suitable for different conditions. In specific
cases (such as a uniform field where the analytical solution is known)
different solvers can also be used. In addition, when an approximate
analytical solution is known, it is possible to utilize it in an
iterative manner in order to converge to the solution to the precision
required. This latter method is currently implemented and can be used
particularly well for magnetic fields that are almost uniform.

Once a method is chosen that calculates the track's propagation in a
specific field, the curved path is broken up into linear chord segments.
These chord segments are determined so that they closely approximate the
curved path. The chords are then used to interrogate the Navigator as to
whether the track has crossed a volume boundary. Several parameters are
available to adjust the accuracy of the integration and the subsequent
interrogation of the model geometry.

How closely the set of chords approximates a curved trajectory is
governed by a parameter called the miss distance (also called the
chord distance). This is an upper bound for the value of the sagitta
- the distance between the 'real' curved trajectory and the approximate
linear trajectory of the chord. By setting this parameter, the user can
control the precision of the volume interrogation. Every attempt has
been made to ensure that all volume interrogations will be made to an
accuracy within this miss distance.

[image: ../_images/MissDistance.jpg]

Fig. 13 The curved trajectory will be approximated by chords, so that the
maximum estimated distance and chord is less than the miss distance.

In addition to the miss distance there are two more parameters which
the user can set in order to adjust the accuracy (and performance) of
tracking in a field. In particular these parameters govern the accuracy
of the intersection with a volume boundary and the accuracy of the
integration of other steps. As such they play an important role for
tracking.

The delta intersection parameter is the accuracy to which an
intersection with a volume boundary is calculated. If a candidate
boundary intersection is estimated to have a precision better than this,
it is accepted. This parameter is especially important because it is
used to limit a bias that our algorithm (for boundary crossing in a
field) exhibits. This algorithm calculates the intersection with a
volume boundary using a chord between two points on the curved particle
trajectory. As such, the intersection point is always on the 'inside' of
the curve. By setting a value for this parameter that is much smaller
than some acceptable error, the user can limit the effect of this bias
on, for example, the future estimation of the reconstructed particle
momentum.

[image: ../_images/IntersectionError.jpg]

Fig. 14 The distance between the calculated chord intersection point C
and a computed curve point D is used to determine whether C is an accurate
representation of the intersection of the curved path ADB with a volume
boundary. Here CD is likely too large, and a new intersection on
the chord AD will be calculated.

The delta one step parameter is the accuracy for the endpoint of
'ordinary' integration steps, those which do not intersect a volume
boundary. This parameter is a limit on the estimated error of the
endpoint of each physics step. It can be seen as akin to a statistical
uncertainty and is not expected to contribute any systematic behavior to
physical quantities. In contrast, the bias addressed by delta
intersection is clearly correlated with potential systematic errors in
the momentum of reconstructed tracks. Thus very strict limits on the
intersection parameter should be used in tracking detectors or wherever
the intersections are used to reconstruct a track's momentum.

Delta intersection and delta one step are parameters of the Field
Manager; the user can set them according to the demands of his
application. Because it is possible to use more than one field manager,
different values can be set for different detector regions.

Note that reasonable values for the two parameters are strongly coupled:
it does not make sense to request an accuracy of 1 nm for delta
intersection and accept 100 [image: \mu]m for the delta one step error
value. Nevertheless delta intersection is the more important of the
two. It is recommended that these parameters should not differ
significantly - certainly not by more than an order of magnitude.

Practical Aspects

Creating a Magnetic Field for a Detector

The simplest way to define a field for a detector involves the following
steps:

	create a field. It can be uniform

#include "G4SystemOfUnits.hh"

G4MagneticField *magField;
magField = new G4UniformMagField(G4ThreeVector(0.,0.,3.0*kilogauss));

or non-uniform:

magField = new G4QuadrupoleMagField(1.*tesla/(1.*meter));

	set it as the default field:

G4FieldManager* fieldMgr
 = G4TransportationManager::GetTransportationManager()
 ->GetFieldManager();
fieldMgr->SetDetectorField(magField);

	create the objects which calculate the trajectory for a pure
magnetic field,:

fieldMgr->CreateChordFinder(magField);

This is a short cut, which creates all the equation of motion,
a method for integration (Runge-Kutta stepper) and the driver
which controls the integration and limits its estimated error.

Creating a Uniform Magnetic Field with user commands

Since 10.0 version, it is also possible to create a uniform magnetic field
and perform the other two steps above the G4GlobalMagFieldMessenger class:

G4ThreeVector fieldValue = G4ThreeVector(0.,0.,fieldValue);
fMagFieldMessenger = new G4GlobalMagFieldMessenger(fieldValue);
fMagFieldMessenger->SetVerboseLevel(1);

The messenger creates the global uniform magnetic field, which is
activated (set to the G4TransportationManager object) only when the
fieldValue is non zero vector. The messenger class setter functions
can be then used to change the field value (and activate or inactivate
the field again) or the level of output messages. The messenger also
takes care of deleting the field.

As its class name suggests, the messenger creates also UI commands which
can be used to change the field value and the verbose level
interactively or from a macro:

/globalField/setValue vx vy vz unit
/globalField/verbose level

Creating a Field for a Part of the Volume Hierarchy

It is possible to create a field for a part of the detector. In
particular it can describe the field (with pointer pEmField, for
example) inside a logical volume and all its daughters. This can be done
by simply creating a G4FieldManager and attaching it to a logical
volume (with pointer, logicVolumeWithField, for example) or set of
logical volumes.

G4bool allLocal = true;
logicVolumeWithField->SetFieldManager(localFieldManager, allLocal);

Using the second parameter to SetFieldManager you choose whether
daughter volumes of this logical volume will also be given this new
field. If it has the value true, the field will be assigned also to
its daughters, and all their sub-volumes. Else, if it is false, it
will be copied only to those daughter volumes
which do not have a field manager already,
and recursively to their sub-volumes without a field manager.

Creating an Electric or Electromagnetic Field

The design and implementation of the Field category allows and enables
the use of an electric or combined electromagnetic field. These fields
can also vary with time, as can magnetic fields.

Source listing Listing 46 shows how to
define a uniform electric field for the whole of a detector.

Listing 46 How to define a uniform electric field for the whole of a detector, extracted from example in examples/extended/field/field02 .

// in the header file (or first)
#include "G4EqMagElectricField.hh"
#include "G4UniformElectricField.hh"
#include "G4DormandPrince745.hh"
...
G4ElectricField* pEMfield;
G4EqMagElectricField* pEquation;
G4ChordFinder* pChordFinder ;

// in the source file

{
 pEMfield = new G4UniformElectricField(
 G4ThreeVector(0.0,100000.0*kilovolt/cm,0.0));

 // Create an equation of motion for this field
 pEquation = new G4EqMagElectricField(pEMfield);

 G4int nvar = 8;

 // Create the Runge-Kutta 'stepper' using the efficient 'DoPri5' method
 auto pStepper = new G4DormandPrince745(pEquation, nvar);

 // Get the global field manager
 auto fieldManager= G4TransportationManager::GetTransportationManager()->
 GetFieldManager();
 // Set this field to the global field manager
 fieldManager->SetDetectorField(pEMfield);

 G4double minStep = 0.010*mm ; // minimal step of 10 microns

 // The driver will ensure that integration is control to give
 // acceptable integration error
 auto pIntgrationDriver =
 new G4IntegrationDriver<G4DormandPrince745>(minStep,
 pStepper,
 nvar);

 pChordFinder = new G4ChordFinder(pIntgrationDriver);
 fieldManager->SetChordFinder(pChordFinder);
}

An example with an electric field is examples/extended/field/field02,
where the class F02ElectricFieldSetup demonstrates how to set these and
other parameters, and how to choose different Integration Steppers. An
example with a uniform gravity field (G4UniformGravityField) is
examples/extended/field/field06.

Note that using gravity since Geant4 10.6 it is necessary to enable it in the
transportation process(es) used in the simulation. (This is in order to
enable optimisations which are possible only in its absence.)

The user can also create their own type of field, inheriting from
G4VField, and an associated Equation of Motion class (inheriting
from G4EqRhs) to simulate other types of fields.

How to Adjust the Accuracy of hitting a volume

Straight-line chord segments are used to detect volume boundary crossing.
The curved trajectory is broken up into such segments using an accuracy
parameter DeltaChord. Segments much be chosene so that their 'sagitta',
the maximum distance between the curve and chord, is smaller than DeltaChord.
So effectively this is the maximum distance by which a volume that should be
intersected could be missed.

To change the accuracy of the approximation of the curved trajectory
by linear segments, use the SetDeltaChord method:

fieldMgr->GetChordFinder()->SetDeltaChord(dcLength); // Units: length

Geant4 propagation will seek ensure that any volume within dcLenght from the
curved trajectory will be intersected.

How to Adjust the Integration Accuracy

In order to obtain a particular accuracy in tracking particles through
an electromagnetic field, it is necessary to adjust the parameters of
the field propagation module. In the following section, some of these
additional parameters are discussed.

When integration is used to calculate the trajectory, it is necessary to
determine an acceptable level of numerical imprecision in order to get
performant simulation with acceptable errors. The parameters in Geant4
tell the field module what level of integration inaccuracy is
acceptable.

In all quantities which are integrated (position, momentum, energy)
there will be errors. Here, however, we focus on the error in two key
quantities: the position and the momentum. (The error in the energy will
come from the momentum integration).

Three parameters exist which are relevant to the integration accuracy.
DeltaOneStep is a distance and is roughly the position error which is
acceptable in an integration step. Since many integration steps may be
required for a single physics step, DeltaOneStep should be a fraction of
the average physics step size. The next two parameters impose a further
limit on the relative error of the position/momentum inaccuracy.
EpsilonMin and EpsilonMax impose a minimum and maximum on this relative
error - and take precedence over DeltaOneStep. (Note: if you set
EpsilonMin=EpsilonMax=your-value, then all steps will be made to this
relative precision.

Listing 47 How to set accuracy parameters for the 'global' field of the setup.

G4FieldManager *globalFieldManager;

G4TransportationManager *transportMgr=
 G4TransportationManager::GetTransportationManager();

globalFieldManager = transportMgr->GetFieldManager();
 // Relative accuracy values:
G4double minEps= 1.0e-5; // Minimum & value for largest steps
G4double maxEps= 1.0e-4; // Maximum & value for smallest steps

globalFieldManager->SetMinimumEpsilonStep(minEps);
globalFieldManager->SetMaximumEpsilonStep(maxEps);
globalFieldManager->SetDeltaOneStep(0.5e-3 * mm); // 0.5 micrometer

G4cout << "EpsilonStep: set min= " << minEps << " max= " << maxEps << G4endl;

We note that the relevant parameters above limit the inaccuracy in each
step. The final inaccuracy due to the full trajectory will accumulate!

The exact point at which a track crosses a boundary is also calculated
with finite accuracy. To limit this inaccuracy, a parameter called
DeltaIntersection is used. This is a maximum for the inaccuracy of a
single boundary crossing. Thus the accuracy of the position of the track
after a number of boundary crossings is directly proportional to the
number of boundaries.

Full control of integration method for a magnetic field

You can instead specify explicitly the full set of classes for propagating in
a magnetic field.
This provides full control over the method of integration, and allows the
choice of higher or lower order methods.
It also all you to select the use of methods which used to
be the default choice in the past (e.g. G4ClassicalRungeRK4
or G4DormandPrince745 without using interpolation.)

The classes required are the equation of motion:

auto pEquation = new G4Mag_UsualEqRhs(magField);
G4int nVar= pEquation->GetNumberOfVariables();

the method of integration (stepper):

auto pStepper = new G4DormandPrince745(pEquation);

the driver to control the accuracy of integration:

auto driver = G4InterpolationDriver<G4DormandPrince745>(minStep,pStepper, nvar);

or alternatively a driver without interpolation:

auto driver= G4IntegrationDriver<typeof(pStepper)>(minStep,pStepper, nvar);

and the chord finder:

auto chordFinder = new G4ChordFinder(driver);

Choosing a Stepper

Runge-Kutta integration is used to compute the motion of a charged track
in a general field. There are many general steppers from which to
choose, of low and high order, and specialized steppers for pure
magnetic fields. By default, Geant4 uses the established stepper of
Dormand and Prince Runge-Kutta stepper, which is general purpose,
efficient and robust.
It is a 5th order method which provides an error estimate directly
, and requires fewer evaluations of the derivative (and field) than
the previous default, the classical 4th order method (for which an error
estimate required multiple sub-steps).

For somewhat smooth fields, which change smoothly over the length scales of
typical physics steps, there is choice
between fifth order steppers (such as the default G4DormandPrince745):

G4int nvar = 8; // To integrate time & energy
 // in addition to position, momentum
G4EqMagElectricField* pEquation= new G4EqMagElectricField(pEMfield);

auto doPri5stepper = new G4DormandPrince745(pEquation, nvar);
 // The recommended stepper, well suited for reasonably smooth fields
 // and intermediate accuracy requirements (10^-4 to 10^-7)

Alternative fifth order embedded steppers beside the recommended and
default G4DormandPrince745 which requires 7 field evaluations (stages)
include the older G4CashKarpRKF45 which requires fewer field evaluations
(6 'stages')

auto CK45stepper = new G4CashKarpRKF45(pEquation, nvar);
 // Alternative 4/5th order stepper for reasonably smooth fields

The newest experimental classes G4BogackiShampine45 or
G4TsitourasRK45 implement some of the most efficient fifth
order methods in the literature, but require an additional derivative (field
evaluation) per step.:

auto BS45stepper = new G4BogackiShampine45(pEquation, nvar);
 // Alternative 4/5th order stepper with 8 stages (evaluations).

If there are particularly challenging accuracy demands (better than
1e-7) it may be worth to investigate higher order steppers.
Alternatively, if the field is known to have specific properties,
lower or higher order steppers can be used to obtain the results of the
necessary accuracy using fewer computing cycles.

Since Geant4 10.5 it is recommended to use the templated driver
G4IntegrationDriver together with the stepper:

auto dp45driver =
 new G4IntegrationDriver<G4DormandPrince745>(stepMin, doPri5stepper, nvar);

Steppers for rough fields

Sometimes the field changes greatly over short distances, and is estimated
in ways that do not ensure that its derivatives are smooth. These can present
a challenge for fourth or fifth order Runge-Kutta methods.

What matters is the variation of the field in geometrical regions in which a
large fraction of particles are tracked. In particular, if the field is
calculated from a field map and it varies significantly and in a non-smooth
way over short distances in important regions, it is suggested to investigate
a lower order stepper.

Steppers of reduced order are also suitable when lower accuracy is required,
such as errors of order 10-3. Such accuracy could be suitable for the least
important tracks, such as low energy electrons near the end of their
trajectory (but still inside material.)

Steppers of reduced order require fewer derivative evaluations per step.
The choice of lower order steppers includes the third order embedded
stepper G4BogackiShampine23, which provides a direct error estimate.:

auto stepper = new G4BogackiShampine23(pEquation, nvar);
 // 3rd order embbedded stepper
 // Suitable for lower accuracy needs (<~ 10^-3) and/or 'rough' fields

Older type steppers, which do not provide a direct error estimate,
offer an alternative for the roughest fields.
(Note: these methods estimate the error in a step by subdividing it into two
smaller steps and using the difference between the new estimate and the
estimate for the whole step as the estimated error.)

The recommended ones are the fourth order G4ClassicalRK4, which was the
default in releases of Geant4 up to 10.3, and is very robust:

pStepper = new ClassicalRK4(pEquation, nvar);
 // 4th order, the old default - a robust alternative

the third order stepper G4SimpleHeum, and the second order
steppers G4ImplicitEuler and G4SimpleRunge.:

pStepper = new G4SimpleHeum(pEquation, nvar);
 // 3rd order robust alternative for low accuracy and/or rought fields

pStepper = new G4SimpleRunge(pEquation, nvar);
 // 2nd order, for very rough (non-smooth) fields

A first order stepper is not recommended, but may be used only for
the roughest fields, as a cross check for other higher performance methods.

For somewhat smooth fields (intermediate), the choice
between a fifth order stepper (such as the default G4DormandPrince745):

pStepper = new G4DormandPrince745(pEquation, nvar);
 // The recommended stepper, well suited for reasonably smooth fields

embedded third, the older type second or third order
steppers, or the established fourth order G4ClassicalRK4 or

should be made by trial and error.

Trying a few different types of steppers for a particular
field or application is suggested if maximum performance is a goal.

The choice of stepper depends on the type of field: magnetic or general.
A general field can be an electric or electromagnetic field, it can be a
magnetic field or a user-defined field (which requires a user-defined
equation of motion.)

For a general field all the above steppers are potential
alternatives to the recommended / default G4DormandPrince745.

But specialized steppers for pure magnetic fields are also available.
The G4NystromRK4 stepper is a fourth order method which estimates the
integration error in a step directly from the variation of the field at the
initial point, the midpoint and near the endpoint of the step.
Thus it requires no additional evaluations (stages.):

G4Mag_UsualEqRhs*
 pEquation = new G4Mag_UsualEqRhs(fMagneticField);
pStepper = new G4NystromRK4(pEquation);

Others take into account the fact that a local trajectory in a slowly varying
field will not vary significantly from a helix. Combining this in with a
variation the Runge-Kutta method can provide higher accuracy at lower
computational cost when large steps are possible.

pStepper = new G4HelixImplicitEuler(pEquation);
// Note that for magnetic field that do not vary with time,
// the default number of variables suffices.

// or ..
pStepper = new G4HelixExplicitEuler(pEquation);
pStepper = new G4HelixSimpleRunge(pEquation);

A new stepper for propagation in magnetic field is available in release
9.3. Choosing the G4NystromRK4 stepper provides accuracy near that of
G4ClassicalRK4 (4th order) with a significantly reduced cost in field
evaluation. Using a novel analytical expression for estimating the error
of a proposed step and the Nystrom reuse of the mid-point field value,
it requires only 2 additional field evaluations per attempted step, in
place of 10 field evaluations of ClassicalRK4 (which uses the general
midpoint method for estimating the step error.)

G4Mag_UsualEqRhs*
 pMagFldEquation = new G4Mag_UsualEqRhs(fMagneticField);
pStepper = new G4NystromRK4(pMagFldEquation);

It is proposed as an alternative stepper in the case of a pure magnetic
field. It is not applicable for the simulation of electric or full
electromagnetic or other types of field. For a pure magnetic field,
results should be fully compatible with the results of ClassicalRK4 in
nearly all cases. (The only potential exceptions are large steps for
tracks with small momenta - which cannot be integrated well by any RK
method except the Helical extended methods.)

You can choose an alternative stepper either when the field manager is
constructed or later. At the construction of the ChordFinder it is an
optional argument:

G4ChordFinder(G4MagneticField* itsMagField,
 G4double stepMinimum = 1.0e-2 * mm,
 G4MagIntegratorStepper* pItsStepper = 0);

To change the stepper at a later time use

pChordFinder->GetIntegrationDriver()
 ->RenewStepperAndAdjust(newStepper);

Increasing efficiency with interpolation and FSAL stepper

Often a significant fraction of CPU time is spent in integrating the
motion of charged particles in field. This is particularly the case
when the cost of evaluating the field at a location (and possibly time)
is significant. To improve on this developments over the past years
have introduced methods that require fewer field evaluations for the
same overall accuracy.

New in Geant4 10.6 is the ability to full use of the newest RK methods,
which have an interpolation capability.
Such Runge-Kutta methods provide an interpolation polynomial
which can be evaluated to estimate the values of all integrated variables
at an arbitrary intermediate length in the integration interval.

Both these interpolation capabilities are harnessed by the new type of integration
driver G4InterpolationDriver. Currently this combination is available
only with the G4DormandPrince745 stepper.

using InterpolationDriverType = G4InterpolationDriver<G4DormandPrince745>;
auto dopri5stepper = G4DormandPrince745(pEquation, nvar);

auto interpDriver= new InterpolationDriver(stepMinimum, dopri5stepper,
 dopri5stepper->GetNumberOfVariables());
auto pChordFinder = new G4ChordFinder(interpDriver);
fieldManager->SetChordFinder(pChordFinder);

Geant4 10.4 introduced the capability to use RK methods with the
'First Same as Last' (FSAL) property.
Embedded steppers with this property
evaluate the field and the derivative in the equation of motion
at the endpoint of each step, as an intrinsic part of the method.
As a result, after a successful integration step,
(one in which the estimated error was acceptable) the derivative
at the start of the next step is already available.
So one evaluation of the field is saved for every successive integration
interval after the first one in each tracking/physical step.

Since Geant4 10.6 an FSAL capable stepper can be selected for magnetic fields
simply by requesting it when constructing a G4ChordFinder:

G4MagneticField * pMagField;
G4double stepMinimum = 0.03 * millimeter;
G4int useFSALstp= 1;

auto pChordFinder= new G4ChordFinder(pMagField, stepMinimum, nullptr, useFSALstp);
fieldManager->SetChordFinder(pChordFinder);

Handling very long steps by switching to helix based stepper

Very long steps of lower energy charged particles can cause excessive
simulation time when regular Runge-Kutta methods are used -- as these can
integrate only a limited angle of a helical track in a single integration step.

This can be a problem for setups in which there is a significant fraction of
tracks of low-energy charged particles in a volume with vaccum or a thin gas.
In addition integration slowdown or abandoned tracks can occur when muons are
tracked in a large air volume with even a fringe magnetic field.

For these setups an alternative type of driver specialised for pure magnetic
fields was created. It combines an Interpolation stepper / driver for 'shorter' steps,
and a helix-based method for 'long' steps.

It samples the magnetic field at the start of a step, and selects the 'long'
step integration method if the helix angle exceed the threshold, currently
fixed at 2 pi.

This type of driver G4BFieldIntegrationDriver was the default driver
created by G4ChordFinder in Geant4 10.6 for pure magnetic fields.

G4MagneticField * pMagField;
G4double stepMinimum = 0.03 * millimeter;
G4bool useFSALstp= false;

auto pChordFinder= new G4ChordFinder(pMagField, stepMinimum, nullptr, useFSALstp);
fieldManager->SetChordFinder(pChordFinder);

In Geant4 10.7 the default has changed to use an interpolation driver with
templated steppers (see next subsection).

As a result, to select it G4BFieldIntegrationDriver in Geant4 10.7 a user must
use:

G4int driverId = 3; // B-Field driver = 3
auto pChordFinder= new G4ChordFinder(pMagField, stepMinimum, nullptr, driverId);
fieldManager->SetChordFinder(pChordFinder);

It can also be created directly

using SmallStepDriver = G4InterpolationDriver<G4DormandPrince745>;
using LargeStepDriver = G4IntegrationDriver<G4HelixHeum>;

auto regularStepper = new G4DormandPrince745(pEquation);
int numVar = regularStepper->GetNumberOfVariables();

auto longStepper = std::unique_ptr<G4HelixHeum>(new G4HelixHeum(pEquation));

G4VIntegrationDriver driver =
 new G4BFieldIntegrationDriver(
 std::unique_ptr<SmallStepDriver>(new SmallStepDriver(stepMinimum,
 regularStepper, numVar))
 std::unique_ptr<LargeStepDriver>(new LargeStepDriver(stepMinimum,
 longStepper.get(), numVar)));

Speeding up using steppers templated on equation

To reduce the CPU time of field propagation in Geant4 10.7 an equation class
for magnetic fields and some templated stepper classes were created.

The first optimisation is that the templated equation knows the type of the field class:

using Equation_t = G4TMagFieldEquation<Field_class_type>;
Equation_t* equation= new Equation_t(field_object);

Given the field class' type, the equation will invoke the field without a
virtual call. The relevant include files are:

#include "G4TMagFieldEquation.hh"
#include "G4TDormandPrince45.hh"

// For field definition
#include "G4SystemOfUnits.hh"
#include "G4QuadrupoleMagField.hh"

To create the templated equation it is simpler to declare each class' type first:

using Field_t = G4QuadrupoleMagField;
using Equation_t = G4TMagFieldEquation<Field_t>;

Field_t* quadMagField = new G4QuadrupoleMagField(1.*tesla/(1.*meter));

Equation_t* equation= new Equation_t(quadMagField);

but it can also be created directly such as

auto equation= new G4TMagFieldEquation<G4QuadrupoleMagField>(quadMagField);

The second optimisation makes the type of the equation known to the templated stepper.
This avoid a virtual call from the stepper to the equation.

using TemplatedStepper_t = G4TDormandPrince45<Equation_t>;

TemplatedStepper_t* dopri5_stepper=
 new G4TDormandPrince45<Equation_t>(equation);

Here G4TDormandPrince45 is the templated version of the recommended
G4DormandPrince745 stepper that implements the well known 4th/5th order embedded
Runge-Kutta method of Dormand and Prince.

Alternative methods which have a templated stepper from Geant4 10.7 include
the embedded method of Cash and Karp (G4TCashKarpRKF45), and a number of
methods which use bisection for error estimatios:
the original method of Runge and Kutta (G4TClassicalRK4) which used to
be the default before Geant4 release 10.4, and two lower order methods,
the 2nd order G4TSimpleRunge and the third order G4TSimpleHeum.

As a further optimisation, it can also be used with a templated driver

double stepMin= 0.1 * CLHEP::millimeter;

auto dp45driver =
 new G4IntegrationDriver<TemplatedStepper_t>(stepMin, dopri5_stepper);

auto interpolatingDrv =
 new G4InterpolationDriver<TemplatedStepper_t>(stepMin, dopri5_stepper);

which is simplified greatly by using a name for the type of the templated stepper.

Note that the templated stepper class also can be used without using an
equation templated on the type of field. This could be preferable in the case
of complex field classes in which a large amount of code calculates the
value of the field.

A templated stepper also using an alternative type of field.
We demonstrate using a full electromagnetic field (which in practice will
be a derived class for a user's application) and its equation G4EqMagElectricField:

#include "G4EqMagElectricField.hh"

using Equation_t = G4EqMagElectricField;
constexpr nvar= 8; // Equation integrates over x, p, t

using TemplatedDoPri5_t = G4TDormandPrince45<Equation_t,nvar>;

MyElectroMagneticField *emField= ...; // deriving from

auto emEquation= new G4EqMagElectricField(emField);

TemplatedDoPri5_t* pStepperTDP45 = new TemplatedDoPri5_t(emEquation, nvar);

auto ck45Stepper = new G4TCashKarpRKF45<Equation_t,nvar>(emEquation, nvar);

Using different FSAL steppers -- without interpolation

A different method which only has the FSAL property can be used for a magnetic field by
adding a flag to the constructor of G4ChordFinder:

G4MagneticField * pMagField;
G4double stepMinimum = 0.03 * millimeter;
G4bool useFSALstp= true;

auto pChordF= new G4ChordFinder(pMagField, stepMinimum, nullptr, useFSALstp);

This uses the constructor:

G4ChordFinder::G4ChordFinder(G4MagneticField* theMagField,
 G4double stepMinimum,
 G4MagIntegratorStepper* pItsStepper,
 G4bool useFSALstepper);

Steppers of this type can also be created directly:

Listing 48 How to create an 'FSAL'-type stepper

#include "G4RK547FEq1.hh"
#include "G4SystemsOfUnits.hh"

using FsalStepperType = G4RK547FEq1;
G4double stepMinimum= 0.1 * millimeter; // Minimum size of step (for driver)
int nvar= 6; // or 8 to include time, Energy

auto fsalStepper= new FsalStepperType(pEquation, nvar);

They must then be coupled to a new type of driver G4FSALIntegrationDriver
in order to be used in integration.
(This is a derived class of the new base class for drivers
G4VIntegrationDriver.)

auto intgrDriver = new
 G4FSALIntegrationDriver<NewFsalStepperType>(stepMinimum,
 fsalStepper,
 fsalStepper->GetNumberOfVariables());

This also demonstrates one of a new family of (FSAL) steppers G4RK547FEq1
(others are G4RK547FEq2 and G4RK547FEq3) which were created to
provide an improved equilibrium in integration.
When a integration step fails due to an error above threshold, for some
setups there can be oscillations in step size that cause multiple bounces
between a successful and a failed step.
The coefficients of these steppers were optimised to reduce these
oscillations, and thus increase the success rate of steps. Initial
tests demonstrated a small potential (1.0-2.5%) performance advantage.

Further reducing the number of field calls to speed-up simulation

An additional method to reduce the number of field evaluations is to
avoid recalculating the field value inside a sphere of a given
radius distConst from the previously evaluated location.

This can be done by utilising the class G4CachedMagneticField class,
for the case of pure magnetic fields which do not vary with time.

G4MagneticField * pMagField; // Your field - Defined elsewhere

G4double distConst = 2.5 * millimeter;
G4MagneticField * pCachedMagField= new G4CachedMagneticField(pMagField, distConst);

This is not recommended if there are locations in the setup in which large
variations occur in the field vector.
In those cases it is best to rely on advanced integration method.
In particular the Interpolation capabilities introduced in Geant4 10.6
greatly reduced the number of field calls already.

Choosing different accuracies for the same volume

It is possible to create a G4FieldManager which has different properties
for particles of different momenta (or depending on other parameters of
a track). This is useful, for example, in obtaining high accuracy for
'important' tracks (e.g. muons) and accept less accuracy in tracking
other tracks (e.g. electrons). To use this, you must create your own field
manager class, derived from G4FieldManager which implements the method

void ConfigureForTrack(const G4Track *) override final;

and uses it to configure itself using the parameters of the current track.

For example to choose different values for the relative accuracy of
integration for particles with energy below or above 2.5 MeV,
this could be achieve as follows:

class MyFieldManager : G4FieldManager
{
 MyFieldManager() = default;
 ~MyFieldManager() = default;

 void ConfigureForTrack(const G4Track *) override final;
};

void MyFieldManager::ConfigureForTrack(const G4Track *pTrack)
{
 const G4double lowEepsMin= 1.0e-5, lowEepsMax= 1.0e-4;
 const G4double hiEepsMin= 2.5e-6, hiEepsMax= 1.0e-5;

 if(pTrack->GetKineticEnergy() < 2.5 * MeV) {
 SetMinimumEpsilonStep(lowEepsMin);
 SetMaximumEpsilonStep(lowEepsMax); // Max relative accuracy
 } else {
 SetMinimumEpsilonStep(hiEepsMin);
 SetMaximumEpsilonStep(hiEepsMax); // Max relative accuracy
 }
}

Parameters that must scale with problem size

The default settings of this module are for problems with the physical
size of a typical high energy physics setup, that is, distances smaller
than about one kilometer. A few parameters are necessary to carry this
information to the magnetic field module, and must typically be rescaled
for problems of vastly different sizes in order to get reasonable
performance and robustness. Two of these parameters are the maximum
acceptable step and the minimum step size.

The maximum acceptable step should be set to a distance larger than
the biggest reasonable step. If the apparatus in a setup has a diameter
of two meters, a likely maximum acceptable steplength would be 10
meters. A particle could then take large spiral steps, but would not
attempt to take, for example, a 1000-meter-long step in the case of a
very low-density material. Similarly, for problems of a planetary scale,
such as the earth with its radius of roughly 6400 km, a maximum
acceptable steplength of a few times this value would be reasonable.

An upper limit for the size of a step is a parameter of
G4PropagatorInField, and can be set by calling its
SetLargestAcceptableStep method.

The minimum step size is used during integration to limit the amount
of work in difficult cases. It is possible that strong fields or
integration problems can force the integrator to try very small steps;
this parameter stops them from becoming unnecessarily small.

Trial steps smaller than this parameter will be treated with less
accuracy, and may even be ignored, depending on the situation.

The minimum step size is a parameter of the MagInt_Driver, but can be
set in the constructor of G4ChordFinder, as in the source listing
above.

Known Issues

For most integration method
it is computationally expensive to change the miss distance
to very small values, as it causes tracks to be limited to curved
sections whose 'sagitta' is smaller than this value. (The sagitta is the
distance of the mid-point from the chord between endpoints
see e.g. <https://en.wikipedia.org/wiki/Sagitta_%28geometry%29> .)
For tracks
with small curvature (typically low momentum particles in strong fields)
this can cause a large number of steps

	even in areas where there are no volumes to intersect (where the
safety could be utilized to partially alleviate this limitation)

	especially in a region near a volume boundary (in which case it is
necessary in order to discover whether a track might intersect a
volume for only a short distance.)

Requiring such precision for the intersection of all potential volumes
is clearly expensive, and in some cases it is not possible to reduce
expense greatly.

By contrast, changing the intersection parameter delta intersection
is less computationally expensive. It causes further calculation for only a
fraction of the steps, those that intersect a volume boundary.

Spin Tracking

The effects of a particle's motion on the precession of its spin angular
momentum in slowly varying external fields are simulated. The
relativistic equation of motion for spin is known as the BMT equation.
The equation demonstrates a remarkable property; in a purely magnetic
field, in vacuum, and neglecting small anomalous magnetic moments, the
particle's spin precesses in such a manner that the longitudinal
polarization remains a constant, whatever the motion of the particle.
But when the particle interacts with electric fields of the medium and
multiple scatters, the spin, which is related to the particle's magnetic
moment, does not participate, and the need thus arises to propagate it
independent of the momentum vector. In the case of a polarized muon
beam, for example, it is important to predict the muon's spin direction
at decay-time in order to simulate the decay electron (Michel)
distribution correctly.

In order to track the spin of a particle in a magnetic field, you need
to code the following:

	in your DetectorConstruction:

#include "G4Mag_SpinEqRhs.hh"

G4Mag_EqRhs* pEquation = new G4Mag_SpinEqRhs(magField);
G4MagIntegratorStepper* pStepper = new G4ClassicalRK4(pEquation,12);
 // notice the 12

	in your PrimaryGenerator:

particleGun->SetParticlePolarization(G4ThreeVector p)

for example:

particleGun->
SetParticlePolarization(-(particleGun->GetParticleMomentumDirection()));

// or
particleGun->
SetParticlePolarization(particleGun->GetParticleMomentumDirection()
 .cross(G4ThreeVector(0.,1.,0.)));

where you set the initial spin direction.

While the G4Mag_SpinEqRhs class constructor:

G4Mag_SpinEqRhs::G4Mag_SpinEqRhs(G4MagneticField* MagField)
 : G4Mag_EqRhs(MagField)
{
 anomaly = 1.165923e-3;
}

sets the muon anomaly by default, the class also comes with the public
method:

inline void SetAnomaly(G4double a) { anomaly = a; }

with which you can set the magnetic anomaly to any value you require.

The code has been rewritten (in Release 9.5) such that field tracking of
the spin can now be done for charged and neutral particles with a
magnetic moment, for example spin tracking of ultra cold neutrons. This
requires the user to set EnableUseMagneticMoment, a method of the
G4Transportation process. The force resulting from the term,
MUSDOTNABLAB, is not yet implemented in Geant4 (for example, simulated
trajectory of a neutral hydrogen atom trapped by its magnetic moment in
a gradient B-field.)

Alternative Integration Methods

There are three alternative integration methods available in Geant4. One is
general, can be applied for any equation of motion.

The final, Symplectic Integration, aims to preserve phase space volume and
energy exactly -- and its implementations achieve this to the order of the
method used (currently 2nd order.)

Quantum State Simulation

The Quantum State Simulation method is a general integration method
which uses polynomial approximation of the solutions of ODEs.
In Geant4 its implementation is currently specialised for pure magnetic fields
only. It is of potential interest to applications with a large number of
volume boundary crossings per track.

Listing 49 The simplest way to enable the Quantum State Simulation (QSS) integration
method

#include "G4ChordFinder.hh"
#include "G4QSSDriverCreator.hh"

{
 G4MagneticField* magField = ...
 G4double stepMinimum= 0.01 * CLHEP::mm

 auto chordFnd = new G4ChordFinder(magField, stepMinimum, nullptr, kQss2DriverType);
}
..

Listing 50 How to create a driver for the Quantum State Simulation (QSS) integration
method

#include "G4QSSDriverCreator.hh"
#include "G4ChordFinder.hh"

{
 auto qssStepper2 = G4QSSDriverCreator::CreateQss2Stepper(pEquation);
 fIntgrDriver = G4QSSDriverCreator::CreateDriver(qssStepper2);

 G4cout << "-- Created QSS driver for B-field integration" << G4endl;

 auto chordFinder= new G4ChordFinder(driver);
}
..

Bulirsch-Stoer

The Bulirsch-Stoer method is an alternative to Runge-Kutta methods, and uses
a midpoint method to obtain an estimate of the trajectory solution.
It can be used with any equation of motion.
One key use is to cross check results obtained with Runge-Kutta methods.

The current method is fourth order. (tbc)

Listing 51 How to create a driver for the Bulirsch Stoer midpoint method

#include "G4BulirschStoer.hh"
#include "G4BulirschStoerDriver.hh"

void DetectorConstruction::ConstructSDandField()
{
 G4MagneticField *magField = new G4UniformMagField(G4ThreeVector(0, 0, 3.8*tesla);
 G4EquationOfMotion pEquation= new G4Mag_UsualEqRhs(pMyMagField);

 G4BulirschStoer * pBSstepper = new G4BulirschStoer(pEquation, nVar, epsilon);
 G4VIntegrationDriver* driver = new G4IntegrationDriver<G4BulirschStoer>(stepMinimum, pBSstepper, nVar);
 G4cout << "Using Bulirsch Stoer method (and driver) - alternative to RK" << G4endl;

 G4ChordFinder* chordFinder= new G4ChordFinder(driver);

 // Use this for the global field
 G4FieldMananger* globalFieldMgr= G4TransportationManager::GetTransportationManager()->GetFieldManager();
 globalFieldMgr->SetChordFinder(chordFinder);
}
..

Symplectic Integration

Some accelerator applications require long-term stability in the integration of
energy and/or the preservation of phase-space volume. These are not well
served by (medium order) Runge-Kutta method, and even high-order
Runge-Kutta methods typically are not able to provide the required accuracy.

To address such applications Geant4 release 11.1 introduces a new integration
method, the symplectic 2nd order Boris integration method.
This method is implemented by the integration driver G4BorisDriver.

Listing 52 How to create a symplectic 2nd-order Boris integration driver

#include "G4BorisScheme.hh"
#include "G4BorisDriver.hh"

void
CreateBorisDriver(G4EquationOfMotion* equation,
 G4FieldManager* fieldManager,
 G4double minimumStep
)
{
 // 1. Create Scheme and Driver
 auto borisScheme = new G4BorisScheme(equation);
 auto driver = new G4BorisDriver(minimumStep, borisScheme);

 // 2. Create ChordFinder
 auto chordFinder = new G4ChordFinder(driver);

 // 3. Updating Field Manager (with ChordFinder, field)
 fieldManager->SetChordFinder(chordFinder);
}

..

Recall that in a pure magnetic field the transportation process,
e.g. G4Transportation, will conserve energy by ignoring integration errors.
The field manager stores a property 'FieldChangesEnergy' which recalls this,
and whose default behaviour must be overriden.
If investigating energy conservation for a pure magnetic field, you
must switch this off by calling the method
SetFieldChangesEnergy(G4bool);
with the argnument true for the relevant field manager.

This is demonstrated in the field01 extended example for the global field
manager using:

GetGlobalFieldManager()->SetFieldChangesEnergy(true);

This enables you to test the level of energy conservation in the integration.

Note in a combined electro-magnetic field this property is automatically
false, and changes due to integration already affect the particle energy.

Footnotes

Hits

Hit

A hit is a snapshot of the physical interaction of a track in the
sensitive region of a detector. In it you can store information
associated with a G4Step object. This information can be

	the position and time of the step,

	the momentum and energy of the track,

	the energy deposition of the step,

	geometrical information,

or any combination of the above.

G4VHit

G4VHit is an abstract base class which represents a hit. You must
inherit this base class and derive your own concrete hit class(es). The
member data of your concrete hit class can be, and should be, your
choice.

As with G4THitsCollection, authors of subclasses must declare
templated G4Allocators for their class. They must also implement
operator new() and operator delete() which use these allocators.

G4VHit has two virtual methods, Draw() and Print(). To draw
or print out your concrete hits, these methods should be implemented.
How to define the drawing method is described in
Polylines, Markers and Text.

G4THitsCollection

G4VHit is an abstract class from which you derive your own concrete
classes. During the processing of a given event, represented by a
G4Event object, many objects of the hit class will be produced,
collected and associated with the event. Therefore, for each concrete
hit class you must also prepare a concrete class derived from
G4VHitsCollection, an abstract class which represents a vector
collection of user defined hits.

G4THitsCollection is a template class derived from
G4VHitsCollection, and the concrete hit collection class of a
particular G4VHit concrete class can be instantiated from this
template class. Each object of a hit collection must have a unique name
for each event.

G4Event has a G4HCofThisEvent class object, that is a container
class of collections of hits. Hit collections are stored by their
pointers, whose type is that of the base class.

An example of a concrete hit class

Listing 53 shows an example of a concrete hit class.

Listing 53 An example of a concrete hit class.

//============ header file =====================

#ifndef B2TrackerHit_h
#define B2TrackerHit_h 1

#include "G4VHit.hh"
#include "G4THitsCollection.hh"
#include "G4Allocator.hh"
#include "G4ThreeVector.hh"
#include "tls.hh"

namespace B2
{

/// Tracker hit class
///
/// It defines data members to store the trackID, chamberNb, energy deposit,
/// and position of charged particles in a selected volume:
/// - fTrackID, fChamberNB, fEdep, fPos

class TrackerHit : public G4VHit
{
 public:
 TrackerHit();
 TrackerHit(const TrackerHit&) = default;
 ~TrackerHit() override;

 // operators
 TrackerHit& operator=(const TrackerHit&) = default;
 G4bool operator==(const TrackerHit&) const;

 inline void* operator new(size_t);
 inline void operator delete(void*);

 // methods from base class
 void Draw() override;
 void Print() override;

 // Set methods
 void SetTrackID (G4int track) { fTrackID = track; };
 void SetChamberNb(G4int chamb) { fChamberNb = chamb; };
 void SetEdep (G4double de) { fEdep = de; };
 void SetPos (G4ThreeVector xyz){ fPos = xyz; };

 // Get methods
 G4int GetTrackID() const { return fTrackID; };
 G4int GetChamberNb() const { return fChamberNb; };
 G4double GetEdep() const { return fEdep; };
 G4ThreeVector GetPos() const { return fPos; };

 private:
 G4int fTrackID = -1;
 G4int fChamberNb = -1;
 G4double fEdep = 0.;
 G4ThreeVector fPos;
};

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

typedef G4THitsCollection<TrackerHit> TrackerHitsCollection;

extern G4ThreadLocal G4Allocator<TrackerHit>* TrackerHitAllocator;

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

inline void* TrackerHit::operator new(size_t)
{
 if(!TrackerHitAllocator)
 TrackerHitAllocator = new G4Allocator<TrackerHit>;
 return (void *) TrackerHitAllocator->MallocSingle();
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

inline void TrackerHit::operator delete(void *hit)
{
 TrackerHitAllocator->FreeSingle((TrackerHit*) hit);
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

}

#endif

//============ source file =====================

#include "TrackerHit.hh"

namespace B2
{

G4ThreadLocal G4Allocator<TrackerHit>* TrackerHit::TrackerHitAllocator = 0;

 ... snipped ...

G4Allocator is a class for fast allocation of objects to the heap
through the paging mechanism. For details of G4Allocator, refer to
General management classes. Use of G4Allocator is not mandatory, but
it is recommended, especially for users who are not familiar with the
C++ memory allocation mechanism or alternative tools of memory
allocation. On the other hand, note that G4Allocator is to be used
only for the concrete class that is not used as a base class of
any other classes. For example, do not use the G4Trajectory
class as a base class for a customized trajectory class, since
G4Trajectory uses G4Allocator.

G4THitsMap

G4THitsMap is an alternative to G4THitsCollection.
G4THitsMap does not demand G4VHit, but instead any variable
which can be mapped with an integer key. Typically the key is a copy
number of the volume, and the mapped value could for example be a
double, such as the energy deposition in a volume. G4THitsMap is
convenient for applications which do not need to output event-by-event
data but instead just accumulate them. All the G4VPrimitiveScorer
classes discussed in G4MultiFunctionalDetector and G4VPrimitiveScorer use G4THitsMap.

G4THitsMap is derived from the G4VHitsCollection abstract base
class and all objects of this class are also stored in
G4HCofThisEvent at the end of an event. How to access a
G4THitsMap object is discussed in the following section
(G4MultiFunctionalDetector and G4VPrimitiveScorer).

Sensitive detector

G4VSensitiveDetector

G4VSensitiveDetector is an abstract base class which represents a
detector. The principal mandate of a sensitive detector is the
construction of hit objects using information from steps along a
particle track. The ProcessHits() method of G4VSensitiveDetector
performs this task using G4Step objects as input. The second
argument of ProcessHits() method, i.e. G4TouchableHistory, is
obsolete and not used. If user needs to define an artificial second
geometry, use Parallel Geometries.

ProcessHits() method has a return type of G4bool. This return
value is not used by Geant4 kernel. This return value may be used by
the user's use-case where one sensitive detector dispatches ProcessHits()
to some subsequent (i.e. child) sensitive detectors, and to avoid
double-counting, one of these child detector may return true or false.

Your concrete detector class should be instantiated with the unique name
of your detector. The name can be associated with one or more global
names with "/" as a delimiter for categorizing your detectors. For
example

myEMcal = new MyEMcal("/myDet/myCal/myEMcal");

where myEMcal is the name of your detector. The detector must be
constructed in G4VUserDetectorConstruction::ConstructSDandField()
method. It must be assigned to one or more G4LogicalVolume objects
to set the sensitivity of these volumes. Such assignment must be made in
the same G4VUserDetectorConstruction::ConstructSDandField() method.
The pointer should also be registered to G4SDManager, as described
in G4SDManager.

G4VSensitiveDetector has three major virtual methods.

	ProcessHits()
	This method is invoked by G4SteppingManager when a step is
composed in the G4LogicalVolume which has the pointer to this
sensitive detector. The first argument of this method is a
G4Step object of the current step. The second argument is a
G4TouchableHistory object for the Readout geometry
described in the next section. The second argument is NULL if
Readout geometry is not assigned to this sensitive detector.
In this method, one or more G4VHit objects should be constructed
if the current step is meaningful for your detector.

	Initialize()
	This method is invoked at the beginning of each event. The argument
of this method is an object of the G4HCofThisEvent class. Hit
collections, where hits produced in this particular event are
stored, can be associated with the G4HCofThisEvent object in
this method. The hit collections associated with the
G4HCofThisEvent object during this method can be used for
during the event processing digitization.

	EndOfEvent()
	This method is invoked at the end of each event. The argument of
this method is the same object as the previous method. Hit
collections occasionally created in your sensitive detector can be
associated with the G4HCofThisEvent object.

G4SDManager

G4SDManager is the singleton manager class for sensitive detectors.

Activation/inactivation of sensitive detectors

The user interface commands activate and inactivate are
available to control your sensitive detectors. For example:

/hits/activate detector_name
/hits/inactivate detector_name

where detector_name can be the detector name or the category name.

For example, if your EM calorimeter is named

/myDet/myCal/myEMcal
/hits/inactivate myCal

will inactivate all detectors belonging to the myCal category.

Access to the hit collections

Hit collections are accessed for various cases.

	Digitization

	Event filtering in G4VUserStackingAction

	"End of event" simple analysis

	Drawing / printing hits

The following is an example of how to access the hit collection of a
particular concrete type:

G4SDManager* fSDM = G4SDManager::GetSDMpointer();
G4RunManager* fRM = G4RunManager::GetRunManager();
G4int collectionID = fSDM->GetCollectionID("collection_name");
const G4Event* currentEvent = fRM->GetCurrentEvent();
G4HCofThisEvent* HCofEvent = currentEvent->GetHCofThisEvent();
MyHitsCollection* myCollection = (MyHitsCollection*)(HC0fEvent->GetHC(collectionID));

G4MultiFunctionalDetector and G4VPrimitiveScorer

G4MultiFunctionalDetector is a concrete class derived from
G4VSensitiveDetector. Instead of implementing a user-specific
detector class, G4MultiFunctionalDetector allows the user to
register G4VPrimitiveScorer classes to build up the sensitivity.
G4MultiFunctionalDetector should be instantiated in the users
detector construction with its unique name and should be assigned to one
or more G4LogicalVolumes.

G4VPrimitiveScorer is an abstract base class representing a class to
be registered to G4MultiFunctionalDetector that creates a
G4THitsMap object of one physics quantity for an event. Geant4
provides many concrete primitive scorer classes listed in
Concrete classes of G4VPrimitiveScorer, and the user can also implement
his/her own primitive scorers. Each primitive scorer object must be
instantiated with a name that must be unique among primitive scorers
registered in a G4MultiFunctionalDetector. Please note that a
primitive scorer object must not be shared by more than one
G4MultiFunctionalDetector object.

As mentioned in Hit, each G4VPrimitiveScorer
generates one G4THitsMap object per event. The name of the map
object is the same as the name of the primitive scorer. Each of the
concrete primitive scorers listed in
Concrete classes of G4VPrimitiveScorer generates a G4THitsMap<G4double> that maps
a G4double value to its key integer number. By default, the key is
taken as the copy number of the G4LogicalVolume to which
G4MultiFunctionalDetector is assigned. In case the logical volume is
uniquely placed in its mother volume and the mother is replicated, the
copy number of its mother volume can be taken by setting the second
argument of the G4VPrimitiveScorer constructor, "depth" to 1, i.e.
one level up. Furthermore, in case the key must consider more than one
copy number of a different geometry hierarchy, the user can derive
his/her own primitive scorer from the provided concrete class and
implement the GetIndex(G4Step*) virtual method to return the unique
key.

Listing 54 shows an example of primitive
sensitivity class definitions.

Listing 54 An example of defining primitive sensitivity classes taken from RE06DetectorConstruction.

void RE06DetectorConstruction::SetupDetectors()
{
 G4String filterName, particleName;

 G4SDParticleFilter* gammaFilter =
 new G4SDParticleFilter(filterName="gammaFilter",particleName="gamma");
 G4SDParticleFilter* electronFilter =
 new G4SDParticleFilter(filterName="electronFilter",particleName="e-");
 G4SDParticleFilter* positronFilter =
 new G4SDParticleFilter(filterName="positronFilter",particleName="e+");
 G4SDParticleFilter* epFilter = new G4SDParticleFilter(filterName="epFilter");
 epFilter->add(particleName="e-");
 epFilter->add(particleName="e+");

 for(G4int i=0;i<3;i++)
 {
 for(G4int j=0;j<2;j++)
 {
 // Loop counter j = 0 : absorber
 // = 1 : gap
 G4String detName = fCalName[i];
 if(j==0)
 { detName += "_abs"; }
 else
 { detName += "_gap"; }
 G4MultiFunctionalDetector* det = new G4MultiFunctionalDetector(detName);

 // The second argument in each primitive means the "level" of geometrical hierarchy,
 // the copy number of that level is used as the key of the G4THitsMap.
 // For absorber (j = 0), the copy number of its own physical volume is used.
 // For gap (j = 1), the copy number of its mother physical volume is used, since there
 // is only one physical volume of gap is placed with respect to its mother.
 G4VPrimitiveScorer* primitive;
 primitive = new G4PSEnergyDeposit("eDep",j);
 det->RegisterPrimitive(primitive);
 primitive = new G4PSNofSecondary("nGamma",j);
 primitive->SetFilter(gammaFilter);
 det->RegisterPrimitive(primitive);
 primitive = new G4PSNofSecondary("nElectron",j);
 primitive->SetFilter(electronFilter);
 det->RegisterPrimitive(primitive);
 primitive = new G4PSNofSecondary("nPositron",j);
 primitive->SetFilter(positronFilter);
 det->RegisterPrimitive(primitive);
 primitive = new G4PSMinKinEAtGeneration("minEkinGamma",j);
 primitive->SetFilter(gammaFilter);
 det->RegisterPrimitive(primitive);
 primitive = new G4PSMinKinEAtGeneration("minEkinElectron",j);
 primitive->SetFilter(electronFilter);
 det->RegisterPrimitive(primitive);
 primitive = new G4PSMinKinEAtGeneration("minEkinPositron",j);
 primitive->SetFilter(positronFilter);
 det->RegisterPrimitive(primitive);
 primitive = new G4PSTrackLength("trackLength",j);
 primitive->SetFilter(epFilter);
 det->RegisterPrimitive(primitive);
 primitive = new G4PSNofStep("nStep",j);
 primitive->SetFilter(epFilter);
 det->RegisterPrimitive(primitive);

 G4SDManager::GetSDMpointer()->AddNewDetector(det);
 if(j==0)
 { layerLogical[i]->SetSensitiveDetector(det); }
 else
 { gapLogical[i]->SetSensitiveDetector(det); }
 }
 }
}

Each G4THitsMap object can be accessed from G4HCofThisEvent with
a unique collection ID number. This ID number can be obtained from
G4SDManager::GetCollectionID() with a name of
G4MultiFunctionalDetector and G4VPrimitiveScorer connected with
a slush ("/"). G4THitsMap has a [] operator taking the key value as
an argument and returning the pointer of the value. Please note that
the [] operator returns the pointer of the value. If you get zero
from the [] operator, it does not mean the value is zero, but that
the provided key does not exist. The value itself is accessible with an
asterisk ("*"). It is advised to check the validity of the returned
pointer before accessing the value. G4THitsMap also has a +=
operator in order to accumulate event data into run data.
Listing 55 shows the use of
G4THitsMap.

Listing 55 An example of accessing to G4THitsMap objects.

#include "Run.hh"

#include "G4RunManager.hh"
#include "G4Event.hh"

#include "G4SDManager.hh"
#include "G4HCofThisEvent.hh"
#include "G4THitsMap.hh"
#include "G4SystemOfUnits.hh"

namespace B3b
{

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

Run::Run()
{ }

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

Run::~Run()
{ }

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void Run::RecordEvent(const G4Event* event)
{
 if (fCollID_cryst < 0) {
 fCollID_cryst
 = G4SDManager::GetSDMpointer()->GetCollectionID("crystal/edep");
 //G4cout << " fCollID_cryst: " << fCollID_cryst << G4endl;
 }

 if (fCollID_patient < 0) {
 fCollID_patient
 = G4SDManager::GetSDMpointer()->GetCollectionID("patient/dose");
 //G4cout << " fCollID_patient: " << fCollID_patient << G4endl;
 }

 G4int evtNb = event->GetEventID();

 if (evtNb%fPrintModulo == 0) {
 G4cout << G4endl << "---> end of event: " << evtNb << G4endl;
 }

 //Hits collections
 //
 G4HCofThisEvent* HCE = event->GetHCofThisEvent();
 if(!HCE) return;

 //Energy in crystals : identify 'good events'
 //
 const G4double eThreshold = 500*keV;
 G4int nbOfFired = 0;

 G4THitsMap<G4double>* evtMap =
 static_cast<G4THitsMap<G4double>*>(HCE->GetHC(fCollID_cryst));

 std::map<G4int,G4double*>::iterator itr;
 for (itr = evtMap->GetMap()->begin(); itr != evtMap->GetMap()->end(); itr++) {
 G4double edep = *(itr->second);
 if (edep > eThreshold) nbOfFired++;
 ///G4int copyNb = (itr->first);
 ///G4cout << G4endl << " cryst" << copyNb << ": " << edep/keV << " keV ";
 }
 if (nbOfFired == 2) fGoodEvents++;

 //Dose deposit in patient
 //
 G4double dose = 0.;

 evtMap = static_cast<G4THitsMap<G4double>*>(HCE->GetHC(fCollID_patient));

 for (itr = evtMap->GetMap()->begin(); itr != evtMap->GetMap()->end(); itr++) {
 ///G4int copyNb = (itr->first);
 dose = *(itr->second);
 }
 fSumDose += dose;
 fStatDose += dose;

 G4Run::RecordEvent(event);
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

void Run::Merge(const G4Run* aRun)
{
 const Run* localRun = static_cast<const Run*>(aRun);
 fGoodEvents += localRun->fGoodEvents;
 fSumDose += localRun->fSumDose;
 fStatDose += localRun->fStatDose;
 G4Run::Merge(aRun);
}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

}

Concrete classes of G4VPrimitiveScorer

With Geant4 version 8.0, several concrete primitive scorer classes are
provided, all of which are derived from the G4VPrimitiveScorer
abstract base class and which are to be registered to
G4MultiFunctionalDetector. Each of them contains one G4THitsMap
object and scores a simple double value for each key.

Track length scorers

	G4PSTrackLength
	The track length is defined as the sum of step lengths of the
particles inside the cell. By default, the track weight is not taken
into account, but could be used as a multiplier of each step length
if the Weighted() method of this class object is invoked.

	G4PSPassageTrackLength
	The passage track length is the same as the track length in
G4PSTrackLength, except that only tracks which pass through the
volume are taken into account. It means newly-generated or stopped
tracks inside the cell are excluded from the calculation. By
default, the track weight is not taken into account, but could be
used as a multiplier of each step length if the Weighted()
method of this class object is invoked.

Deposited energy scorers

	G4PSEnergyDeposit
	This scorer stores a sum of particles' energy deposits at each step
in the cell. The particle weight is multiplied at each step.

	G4PSDoseDeposit
	In some cases, dose is a more convenient way to evaluate the effect
of energy deposit in a cell than simple deposited energy. The dose
deposit is defined by the sum of energy deposits at each step in a
cell divided by the mass of the cell. The mass is calculated from
the density and volume of the cell taken from the methods of
G4VSolid and G4LogicalVolume. The particle weight is
multiplied at each step.

	G4PSDoseDeposit3D
	In the case of replica or nested geometries it is necessary to
determine voxel numbers from within the replica hierarchy. For example
if the z-axis is parameterised and y is replica of x then the
voxel number needs to be calculated accordingly:

G4PSDoseDeposit3D(("DoseDeposit", fNoVoxelsZ, fNoVoxelsY, fNoVoxelsX, 0, 2, 1);

The last three arguments are optional, however required to determine the
depth according to each axis (or replica direction).
The class creates instances of G4PSDoseDeposit according to:

i * fNj * fNk + j * fNk + k;

where i, j and k correspond to the 3 arguments for number of voxels
and replica depth in the declaration.

Current and flux scorers

There are two different definitions of a particle's flow for a given
geometry. One is a current and the other is a flux. In our scorers, the
current is simply defined as the number of particles (with the
particle's weight) at a certain surface or volume, while the flux takes
the particle's injection angle to the geometry into account. The current
and flux are usually defined at a surface, but volume current and volume
flux are also provided.

	G4PSFlatSurfaceCurrent
	Flat surface current is a surface based scorer. The present
implementation is limited to scoring only at the -Z surface of a
G4Box solid. The quantity is defined by the number of tracks
that reach the surface. The user must choose a direction of the
particle to be scored. The choices are fCurrent_In, fCurrent_Out,
or fCurrent_InOut, one of which must be entered as the second
argument of the constructor. Here, fCurrent_In scores incoming
particles to the cell, while fCurrent_Out scores only outgoing
particles from the cell. fCurrent_InOut scores both directions. The
current is multiplied by particle weight and is normalized for a
unit area.

	G4PSSphereSurfaceCurrent
	Sphere surface current is a surface based scorer, and similar to the
G4PSFlatSurfaceCurrent. The only difference is that the surface is
defined at the inner surface of a G4Sphere solid.

	G4PSPassageCurrent
	Passage current is a volume-based scorer. The current is defined by
the number of tracks that pass through the volume. A particle weight
is applied at the exit point. A passage current is defined for a
volume.

	G4PSFlatSurfaceFlux
	Flat surface flux is a surface based flux scorer. The surface flux
is defined by the number of tracks that reach the surface. The
expression of surface flux is given by the sum of W/cos(t)/A, where
W, t and A represent particle weight, injection angle of particle
with respect to the surface normal, and area of the surface. The
user must enter one of the particle directions, fFlux_In,
fFlux_Out, or fFlux_InOut in the constructor. Here, fFlux_In
scores incoming particles to the cell, while fFlux_Out scores
outgoing particles from the cell. fFlux_InOut scores both
directions.

	G4PSCellFlux
	Cell flux is a volume based flux scorer. The cell flux is defined by
a track length (L) of the particle inside a volume divided by the
volume (V) of this cell. The track length is calculated by a sum of
the step lengths in the cell. The expression for cell flux is given
by the sum of (W*L)/V, where W is a particle weight, and is
multiplied by the track length at each step.

	G4PSPassageCellFlux
	Passage cell flux is a volume based scorer similar to
G4PSCellFlux. The only difference is that tracks which pass
through a cell are taken into account. It means generated or stopped
tracks inside the volume are excluded from the calculation.

Other scorers

	G4PSMinKinEAtGeneration
	This scorer records the minimum kinetic energy of secondary
particles at their production point in the volume in an event. This
primitive scorer does not integrate the quantity, but records the
minimum quantity.

	G4PSNofSecondary
	This class scores the number of secondary particles generated in the
volume. The weight of the secondary track is taken into account.

	G4PSNofStep
	This class scores the number of steps in the cell. A particle weight
is not applied.

	G4PSCellCharge
	This class scored the total charge of particles which has stopped in
the volume.

G4VSDFilter and its derived classes

G4VSDFilter is an abstract class that represents a track filter to
be associated with G4VSensitiveDetector or G4VPrimitiveScorer.
It defines a virtual method

G4bool Accept(const G4Step*)

that should return true if this particular step should be scored by
the G4VSensitiveDetector or G4VPrimitiveScorer.

While the user can implement his/her own filter class, Geant4 version
8.0 provides the following concrete filter classes:

	G4SDChargedFilter
	All charged particles are accepted.

	G4SDNeutralFilter
	All neutral particles are accepted.

	G4SDParticleFilter
	Particle species which are registered to this filter object by
Add("particle_name") are accepted. More than one species can be
registered.

	G4SDKineticEnergyFilter
	A track with kinetic energy greater than or equal to EKmin and
smaller than EKmin is accepted. EKmin and EKmax should be defined as
arguments of the constructor. The default values of EKmin and EKmax
are zero and DBL_MAX.

	G4SDParticleWithEnergyFilter
	Combination of G4SDParticleFilter and
G4SDParticleWithEnergyFilter.

The use of the G4SDParticleFilter class is demonstrated in
Listing 54, where filters which accept
gamma, electron, positron and electron/positron are defined.

Multiple sensitive detectors associated to a single logical-volume

From Geant4 Version 10.3 it is possible to attach multiple sensitive
detectors to a single geometrical element. This is achieved via the use
of a special proxy class, to which multiple child sensitive detectors
are attached: G4MultiSensitiveDetector. The kernel still sees a single sensitive detector associated to any
given logical-volume, but the proxy will dispatch the calls from kernel
to all the attached child sensitive detectors.

When using the G4VUserDetectorConstruction::SetSensitiveDetector(...)
utility method the handling of multiple sensitive detectors is done
automatically. Multiple calls to the method passing the same logical
volume will trigger the creation and setup of an instance of
G4MultiSensitiveDetector.

For more complex use cases it may be necessary to manually instantiate
and setup an instance of G4MultiSensitiveDetector. For this advanced
use case you can refer to the implementation of the
G4VUserDetectorConstruction::SetSensitiveDetector(G4LogicalVolume* logVol, G4VSensitiveDetector* aSD)
utility method.

Listing 56 An example of the use of G4MultiSensitiveDetector.

void MyDetectorConstruction::ConstructSDandField()
{
 auto sdman = G4SDManager::GetSDMpointer();
 //...
 auto mySD = new mySD1("/SD1");
 sdman->AddNewDetector(mySD);//Note we explicitly add the SD to the manager
 SetSensitiveDetector("LogVolName",mySD);
 auto mySD2 = new MySD2("/SD2");
 sdman->AddNewDetector(mySD2);
 //This will trigger automatic creation and setup of proxy
 SetSensitiveDetector("LogVolName",mySD2);
 //...
}

Utilities

UI-command base scoring

Command-based scoring functionality offers the user a possibility to define
a scoring-mesh and various scorers for commonly-used physics quantities such as dose,
flux, etc. via UI commands.

Due to small performance overhead, it does not come by default. To use this functionality,
G4ScoringManager has to be activated after the instantiation of G4RunManager in the main()
function, see Listing 57. This will create the UI commands in /score directory.

Listing 57 Activation of UI-command base scoring in main()

#include "G4ScoringManager.hh"
int main()
{
 // ...
 G4RunManager* runManager = new G4RunManager;
 G4ScoringManager::GetScoringManager();
 // ...
}

An example of a macro creating a scoring mesh of box type with two scorers and a filter is given
below:

Define scoring mesh
/score/create/boxMesh boxMesh_1
/score/mesh/boxSize 100. 100. 100. cm
/score/mesh/nBin 30 30 30

Define scoring quantity
/score/quantity/energyDeposit boxMash keV

Define a filter
/score/filter/charged

Close mesh
/score/close

Detailed usage of command-based scoring is given in the section Command-based scoring.

G4ScoringManager provides also a default score writer which dumps every
entry of one quantity of a mesh for all quantities of the mesh
one by one in CSV format. To alternate the file format the user
can implement his/her own score writer deriving from G4VUserScoreWriter
base class and set it to G4ScoringManager. To demonstrate this,
RE03UserScoreWriter is included in the extended RE03 example in the
runAndEvent category.

Score Ntuple Writer

It is also possible to save the scorers hits using Geant4 analysis tools. This functionality is assured by the G4VScoreNtupleWriter interface (since 10.5) and the G4TScoreNtupleWriter and G4TScoreNtupleWriterMessenger classses (since 10.6).

This feature is demonstrated in the basic examples B3 and B4d. The example of activating the score ntuple writer is given below:

#include "G4AnalysisManager.hh"
#include "G4TScoreNtupleWriter.hh"

 // Activate score ntuple writer
 G4TScoreNtupleWriter<G4AnalysisManager> scoreNtupleWriter;
 scoreNtupleWriter.SetVerboseLevel(1);

The Geant4 UI commands defined in G4TScoreNtupleWriterMessenger can be used to choose
the output file name and the level of verbosity:

/score/ntuple/writerFileName name
/score/ntuple/writerVerbose 1

Footnotes

Digitization

Digi

A hit is created by a sensitive detector when a step goes through it.
Thus, the sensitive detector is associated to the corresponding
G4LogicalVolume object(s). On the other hand, a digit is created
using information of hits and/or other digits by a digitizer module. The
digitizer module is not associated with any volume, and you have to
implicitly invoke the Digitize() method of your concrete
G4VDigitizerModule class.

Typical usages of digitizer module include:

	simulate ADC and/or TDC

	simulate readout scheme

	generate raw data

	simulate trigger logics

	simulate pile up

G4VDigi

G4VDigi is an abstract base class which represents a digit. You have
to inherit this base class and derive your own concrete digit class(es).
The member data of your concrete digit class should be defined by
yourself. G4VDigi has two virtual methods, Draw() and
Print().

As with G4VHit, authors of subclasses must declare templated
G4Allocators for their digit class. They must also implement
operator new() and operator delete() which use these allocators.

G4TDigiCollection

G4TDigiCollection is a template class for digits collections, which
is derived from the abstract base class G4VDigiCollection.
G4Event has a G4DCofThisEvent object, which is a container class
of collections of digits. The usages of G4VDigi and
G4TDigiCollection are almost the same as G4VHit and
G4THitsCollection, respectively, explained in the previous section.

As with G4THitsCollection, authors of subclasses must declare
templated G4Allocators for their collection class. They must also
implement operator new() and operator delete() which use these
allocators.

Digitizer module

G4VDigitizerModule

G4VDigitizerModule is an abstract base class which represents a
digitizer module. It has a pure virtual method, Digitize(). A
concrete digitizer module must have an implementation of this virtual
method. The Geant4 kernel classes do not have a "built-in"
invocation to the Digitize() method. You have to implement your code
to invoke this method of your digitizer module.

In the Digitize() method, you construct your G4VDigi concrete
class objects and store them to your G4TDigiCollection concrete
class object(s). Your collection(s) should be associated with the
G4DCofThisEvent object.

G4DigiManager

G4DigiManager is the singleton manager class of the digitizer
modules. All of your concrete digitizer modules should be registered to
G4DigiManager with their unique names.

G4DigiManager * fDM = G4DigiManager::GetDMpointer();
MyDigitizer * myDM = new MyDigitizer("/myDet/myCal/myEMdigiMod");
fDM->AddNewModule(myDM);

Your concrete digitizer module can be accessed from your code using the
unique module name.

G4DigiManager * fDM = G4DigiManager::GetDMpointer();
MyDigitizer * myDM = fDM->FindDigitizerModule("/myDet/myCal/myEMdigiMod");
myDM->Digitize();

Also, G4DigiManager has a Digitize() method which takes the
unique module name.

G4DigiManager * fDM = G4DigiManager::GetDMpointer();
MyDigitizer * myDM = fDM->Digitize("/myDet/myCal/myEMdigiMod");

How to get hitsCollection and/or digiCollection

G4DigiManager has the following methods to access to the hits or
digi collections of the currently processing event or of previous
events.

First, you have to get the collection ID number of the hits or digits
collection.

G4DigiManager * fDM = G4DigiManager::GetDMpointer();
G4int myHitsCollID = fDM->GetHitsCollectionID("hits_collection_name");
G4int myDigiCollID = fDM->GetDigiCollectionID("digi_collection_name");

Then, you can get the pointer to your concrete G4THitsCollection
object or G4TDigiCollection object of the currently processing
event.

MyHitsCollection * HC = fDM->GetHitsCollection(myHitsCollID);
MyDigiCollection * DC = fDM->GetDigiCollection(myDigiCollID);

In case you want to access to the hits or digits collection of previous
events, add the second argument.

MyHitsCollection * HC = fDM->GetHitsCollection(myHitsCollID, n);
MyDigiCollection * DC = fDM->GetDigiCollection(myDigiCollID, n);

where, n indicates the hits or digits collection of the
nth previous event.

Footnotes

Birks Quenching

The current versions of hadronic string models (FTF & QGS) produce
hadronic showers with (a few percent) higher energy response than the
stable released (as used in LHC productions) version of these models.
Test-beam and collider data seem to indicate lower energy response in
hadronic showers than currently provided by Geant4 simulations. This is
the main reason why the development versions of the string models were not
released in two previous public versions of Geant4 (10.3 and 10.4),
in spite of providing an overall better description of thin-target data.
We think that the main reason why the simulation overshot the data
regarding the energy response of hadronic showers is in fact due to an
incorrect treatment of the quenching of the signal - the conversion from
the energy deposited by ionizing particles in a sensitive detector to the
observed electronic (readout) signal is not linear, with proportionally
less signal for higher densities of deposited energy, for both
scintillation light and ionization electron-hole/ion pairs. This quenching
effect is traditionally described by the simple, phenomenological "law"
suggested many years ago by Birks. Its main parameter is fitted from
experimental data under the assumption that the observed energy is related
to the incident particle energy loss. This does not consider delta-ray
production which will result in lower energy deposit (density). As a result
of this approximation, the density of deposited energy is overestimated,
which implies that the Birks coefficient, as fitted from the experimental
data, gets underestimated. Using this Birks coefficient in simulations
where delta rays are emitted (and considered discretely), as in practice
for all simulations of high-energy experiments, results in underestimating
the quenching effect, and therefore predicting larger signals than in
reality. The correct Birks coefficient to be used in a simulation depends
on the production threshold which is chosen in the simulation, with lower
thresholds producing a larger delta-ray component and therefore reducing
the density of the energy deposition along the ionizing track, and hence
requiring an even higher Birks coefficient.
We suggest the following pragmatic approach to incorporating Birks quenching:
The calibration of a calorimeter - i.e. the conversion from the electronic
signal produced by a shower and the energy of the primary particle that
initiates the shower - is typically done for test beam data with an electron
of a given energy, e.g. 20 GeV. We suggest to add an extra step to this
calibration, in which the Birks coefficient used in the simulation is
tuned to reproduce the ratio of the energy response of a hadron (typically
a charged pion or a proton) and the energy response of an electron of the
same energy (this ratio is indicated as "h/e"). It is natural to consider
the same beam energy used for the calibration, e.g. 20 GeV, but in principle
it could be a different one; note also that the tuning of the Birks
coefficient is idependent from the calibration constant, given that the
latter cancels out from the ratio h/e.
Of course, with the tuning of the Birks coefficient as suggested above
we compensate also for some of the intrinsic inaccuracies in the modelling
of hadronic interactions; however, this effect is valid uniquely at the
energy where the tuning is done (e.g. 20 GeV), and limited only to the
energy response. For other observables (energy resolution, longitudinal
and lateral shower shapes), and for all other energies, this procedure
has a minimal impact, i.e. should not reduce the prediction-power of the
simulation.

Footnotes

Object Persistency

Persistency in Geant4

Object persistency is provided by Geant4 as an optional functionality.

When a usual (transient) object is created in C++, the object is placed
onto the application heap and it ceases to exist when the application
terminates. Persistent objects, on the other hand, live beyond the
termination of the application process and may then be accessed by other
processes (in some cases, by processes on other machines).

[image: ../_images/pobject.jpg]

Fig. 15 Persistent object.

C++ does not have, as an intrinsic part of the language, the ability to
store and retrieve persistent objects. Geant4 provides an abstract
framework for persistency of hits, digits and events.

Two examples demonstrating an implementation of object persistency using
one of the tools accessible through the available interface, is provided
in examples/extended/persistency.

Using Root-I/O for persistency of Geant4 objects

Object persistency of Geant4 objects is also possible by using the
Root-I/O features through Root#1 (since release
v6.04/08).

The basic steps that one needs to do in order to use Root-I/O for
arbitrary C++ classes is:

	Generate the dictionary for the given classes from Root (this usually
is done by adding the appropriate command to the makefile)

	Add initialization of Root-I/O and loading of the generated
dictionary for the given classes in the appropriate part of the code

	Whenever the objects to be persistified are available, call the
WriteObject method of TFile with the pointer to the
appropriate object as argument (usually it is some sort of container,
like std::vector containing the collection of objects to be
persistified)

The two examples (P01 and P02) provided in
examples/extended/persistency demonstrate how to perform object
persistency using the Root-I/O mechanism for storing hits and geometry
description.

Footnotes

	#1

	https://root.cern.ch/

Parallel Geometries

A parallel world

Occasionally, it is not straightforward to define geometries for
sensitive detectors, importance geometries or envelopes for shower
parameterization to be coherently assigned to volumes in the tracking
(mass) geometry. The parallel navigation functionality introduced since
release 8.2 of Geant4, allows the user to define more than one world
simultaneously. The G4CoupledTransportation process will see all
worlds simultaneously; steps will be limited by every boundaries of the
mass and parallel geometries. G4Transportation is automatically
replaced G4CoupledTransportation.

In a parallel world, the user can define volumes in arbitrary manner
with sensitivity, regions, shower parameterization setups, and/or
importance weight for biasing. Volumes in different worlds may overlap.

Any kind of G4VSensitiveDetector object can be defined in volumes in
a parallel world, exactly at the same manner for the mass geometry.
G4Step object given as an argument of ProcessHit() method
contains geometrical information of the associated world.

Here are restrictions to be considered for the parallel geometry:

	Production thresholds and EM field are used only from the mass
geometry. Even if such physical quantities are defined in a
parallel world, they do not affect to the simulation.

	Although all worlds will be comprehensively taken care by the
G4CoupledTransportation process for the navigation, each parallel
world must have its own unique object of G4ParallelWorldProcess
process (for instance created with G4ParallelWorldPhysics constructor
registered to a modular physics list).

	Volumes in a parallel world may have materials. Such materials
overwrite the materials defined in the mass geometry if the
"layered mass geometry" switch of the G4ParallelWorldProcess
constructor is set.

Defining a parallel world

A parallel world should be defined in the Construct() virtual method
of the user's class derived from the abstract base class
G4VUserParallelWorld. If needed, sensitive detectors must be defined
in the ConstructSD() method of the same derived class. Please note
that EM field cannot be defined in a parallel world.

Listing 58 An example header file of a concrete user parallel world class.

#ifndef MyParallelWorld_h
#define MyParallelWorld_h 1

#include "globals.hh"
#include "G4VUserParallelWorld.hh"

class MyParallelWorld : public G4VUserParallelWorld
{
 public:
 MyParallelWorld(G4String worldName);
 virtual ~MyParallelWorld();

 public:
 virtual void Construct();
 virtual void ConstructSD();
};

#endif

A parallel world must have its unique name, which should be set to the
G4VUserParallelWorld base class as an argument of the base class
constructor.

The world physical volume of the parallel world is provided by the
G4RunManager as a clone of the mass geometry. In the Construct()
virtual method of the user's class, the pointer to this cloned world
physical volume is available through the GetWorld() method defined
in the base class. The user should fill the volumes in the parallel
world by using this provided world volume. For a logical volume in a
parallel world, the material pointer can be nullptr. Even if
specified a valid material pointer, unless "layered mass geometry"
switch of the G4ParallelWorldProcess constructor is set, it will not
be taken into account by any physics process.

Listing 59 An example source code of a concrete user parallel world class.

#include "MyParallelWorld.hh"
#include "G4LogicalVolume.hh"
#include "G4VPhysicalVolume.hh"
#include "G4Box.hh"
#include "G4PVPlacement.hh"

MyParallelWorld::MyParallelWorld(G4String worldName)
:G4VUserParallelWorld(worldName)
{;}

MyParallelWorld::~MyParallelWorld()
{;}

void MyParallelWorld::Construct()
{
 G4VPhysicalVolume* ghostWorld = GetWorld();
 G4LogicalVolume* worldLogical = ghostWorld->GetLogicalVolume();

 // place volumes in the parallel world here. For example ...
 //
 G4Box * ghostSolid = new G4Box("GhostdBox", 60.*cm, 60.*cm, 60.*cm);
 G4LogicalVolume * ghostLogical
 = new G4LogicalVolume(ghostSolid, 0, "GhostLogical", 0, 0, 0);
 new G4PVPlacement(0, G4ThreeVector(), ghostLogical,
 "GhostPhysical", worldLogical, 0, 0);
}

In case the user needs to define more than one parallel worlds, each of
them must be implemented through its dedicated class. Each parallel
world should be registered to the mass geometry class using the method
RegisterParallelWorld() available through the class
G4VUserDetectorConstruction. The registration must be done before
the mass world is registered to the G4RunManager. Each parallel
world should also have its own G4ParallelWorldPhysics constructor
registered to the physics list using the method RegisterPhysics()
available through the class G4VModularPhysicsList.

Listing 60 Typical implementation in the main() to define a parallel world.

// RunManager construction
//
G4RunManager* runManager = new G4RunManager;

// mass world
//
MyDetectorConstruction* massWorld = new MyDetectorConstruction;

// parallel world
//
G4String paraWorldName = "ParallelWorld";
massWorld->RegisterParallelWorld(new MyParallelWorld(paraWorldName));

// set mass world to run manager
//
runManager->SetUserInitialization(massWorld);

// physics list
//
G4VModularPhysicsList* physicsList = new FTFP_BERT;
physicsList->RegisterPhysics(new G4ParallelWorldPhysics(paraWorldName));
runManager->SetUserInitialization(physicsList);

Layered mass geometry

If "layered mass geometry" switch of the G4ParallelWorldProcess
constructor is set, that parallel world is conceptually layered on top
of the mass geometry. If more than one parallel worlds are defined,
later-defined world comes on top of others. A track will see the
material of the top layer, if it is nullptr, then one layer beneath.
Thus, user has to make sure volumes in a parallel world should have
nullptr as their materials except for volumes he/she really wants to
overwrite.

Listing 61 Typical implementation in the main() to define a layered mass geometry.

// RunManager construction
//
G4RunManager* runManager = new G4RunManager;

// mass world
//
MyDetectorConstruction* massWorld = new MyDetectorConstruction;

// parallel world
//
G4String paraWorldName = "ParallelWorld";
massWorld->RegisterParallelWorld(new MyParallelWorld(paraWorldName));

// set mass world to run manager
//
runManager->SetUserInitialization(massWorld);

// physics list
//
G4VModularPhysicsList* physicsList = new FTFP_BERT;
physicsList->RegisterPhysics(new G4ParallelWorldPhysics(paraWorldName,true));
runManager->SetUserInitialization(physicsList);

For an information to advanced users, instead of using
G4ParallelWorldPhysics physics constructor, once can define
G4ParallelWorldProcess in his/her physics list and assign it only to
some selected kind of particle types. In this case, this parallel world
will be seen only by these kinds of particles.

Footnotes

Command-based scoring

Introduction

Command-based scoring in Geant4 defines G4MultiFunctionalDetector
to a volume that is either defined in the tracking volume or created
in a dedicated parallel world utilizing parallel navigation
as described in the previous sections. The parallel world volume can
be a scoring mesh or a scoring probe.

Once a scoring volume is defined, through interactive commands, the
user can define arbitrary number of primitive scorers to score physics
quantities and filters to be associated to each primitive
scorer.

After scoring (i.e. a run), the user can dump scores into a file.
Scores are automatically merged over worker threads.
Also, for scoring mesh, scores can be visualized as well. All available
UI commands are listed in List of built-in commands.

Command-based scoring is an optional functionality and the user has to
explicitly define its use in the main(). To do this, the method
G4ScoringManager::GetScoringManager() must be invoked right after
the instantiation of G4RunManager. The scoring manager is a
singleton object, and the pointer accessed above should not be deleted
by the user.

Listing 62 A user main() to use the command-based scoring

#include "G4RunManager.hh"
#include "G4ScoringManager.hh"

int main(int argc,char** argv)
{
 // Construct the run manager
 G4RunManager * runManager = new G4RunManager;

 // Activate command-based scorer
 G4ScoringManager::GetScoringManager();

 ...
}

Defining a scoring volume in the tracking world

Scoring volume can be declared as a logical volume that
is already defined as a part of the mass geometry through
/score/create/realWorldLogVol <LV_name> <anc_lvl> command, where
<LV_name> is the name of G4LogicalVolume defined in the
tracking world. If there are more than one physical volumes that
share the same logical volume, scores are made for each individual
physical volumes separately. Copy number of the physical volume is
the index. If the physical volume is placed only once
in its mother volume, but its (grand-)mother volume is duplicated,
use the <anc_lvl> parameter to indicate the ancestor level
where the copy number should be taken as the index of the score.

Defining a scoring mesh

To define a scoring mesh, the user has to specify the following.

	Shape and name of the 3D scoring mesh. Currently, box and cylinder are
the only available shapes.

	Size of the scoring mesh. Mesh size must be specified as "half width"
similar to the arguments of G4Box or G4Tubs, respectively .

	Number of bins for each axes. Note that too high number causes
immense memory consumption.

	Optionally, position and rotation of the mesh. If not specified, the
mesh is positioned at the center of the world volume without
rotation.

The following sample UI commands define a
scoring mesh named boxMesh_1, size of which is 2 m * 2 m * 2 m,
and sliced into 30 cells along each axes.

Listing 63 UI commands to define a scoring mesh

#
define scoring mesh
#
/score/create/boxMesh boxMesh_1
/score/mesh/boxSize 100. 100. 100. cm
/score/mesh/nBin 30 30 30

Defining a scoring probe

User may locate scoring “probes” at arbitrary locations. A “probe” is
a virtual cube, the size of which has to be specfied as "half width".
Given probes are located in an artificial “parallel world”, probes
may overlap to the volumes defined in the mass geometry, as long as probes
themselves are not overlapping to each other or protruding from the world
volume.

In addition, the user may optionally set a material to the probe. Once
a material is set to the probe, it overwrites the material(s) defined in
the tracking geometry when a track enters the probe cube. This material
has to be already instantiated in user's detector construction class or
defined in G4NISTmanager.

Because of this overwriting, physics quantities that depend on material
or density, e.g. energy deposition or dose, would be measured according
to the specified material. Please note that this overwriting material
obviously affects to the simulation results, so the size and number of
probes should be reasonably small to avoid significant side effects.

If probes are placed more than once, all probes have the same scorers
but score individually.

The following sample UI commands define a
scoring probe named Probes, size of which is 10 cm * 10 cm * 10 cm,
filled by G4_Water, and located at three positions.

Listing 64 UI commands to define a scoring probe

#
define scoring probe
#
/score/create/probe Probes 5. cm
/score/probe/material G4_WATER
/score/probe/locate 0. 0. 0. cm
/score/probe/locate 25. 0. 0. cm
/score/probe/locate 0. 25. 0. cm

Defining primitive scorers to a scoring volume

Once the scoring volume is defined, the user can define arbitrary
scoring quantities and filters.

For a scoring volume the user may define arbitrary number primitive
scorers to score for each physical volume (each cell for scoring mesh
and each probe for scoring probe). For each scoring quantity, the use
can set one filter. Please note that /score/filter commad affects on the
immediately preceding scorer.

Names of scorers and filters must be unique for the
scoring volume. It is possible to define more than one scorers of same kind with
different names and, likely, with different filters.
The list of available primitive scorers can be found
at Table 3.

Defining a scoring volume and primitive scores should terminate with the
/score/close command. The following sample UI commands define a
scoring mesh named boxMesh_1, size of which is 2 m * 2 m * 2 m,
and sliced into 30 cells along each axes. For each cell energy
deposition, number of steps of gamma, number of steps of electron and
number of steps of positron are scored.

Listing 65 UI commands to define a scoring mesh and scorers

#
define scoring mesh
#
/score/create/boxMesh boxMesh_1
/score/mesh/boxSize 100. 100. 100. cm
/score/mesh/nBin 30 30 30
#
define scorers and filters
#
/score/quantity/energyDeposit eDep
/score/quantity/nOfStep nOfStepGamma
/score/filter/particle gammaFilter gamma
/score/quantity/nOfStep nOfStepEMinus
/score/filter/particle eMinusFilter e-
/score/quantity/nOfStep nOfStepEPlus
/score/filter/particle ePlusFilter e+
#
/score/close
#

Drawing scores for a scoring mesh

Once scores assigned to a scoring mesh are filled, it is possible to
visualize these scores. The
score is drawn on top of the mass geometry with the current
visualization settings.

[image: ../_images/scoreCombinedPicture.jpg]

Fig. 16 Drawing scores in slices (left) and projection (right).

Scored data can be visualized using the commands
/score/drawProjection and /score/drawColumn. For details,
see examples/extended/runAndEvent/RE03.

By default, entries are linearly mapped to colors (gray - blue - green -
red). This color mapping is implemented in G4DefaultLinearColorMap
class, and registered to G4ScoringManager with the color map name
"defaultLinearColorMap". The user may alternate color map by
implementing a customised color map class derived from
G4VScoreColorMap and register it to G4ScoringManager. Then, for
each draw command, one can specify the preferred color map.

This drawing funactionality is available only for scoring mesh.

Writing scores to a file

It is possible to dump a score in a mesh (/score/dumpQuantityToFile
command) or all scores in a mesh (/score/dumpAllQuantitiesToFile
command) to a file. The default file format is the simple CSV. To
alternate the file format, one should overwrite G4VScoreWriter class
and register it to G4ScoringManager. The scoring manager takes
ownership of the registered writer, and will delete it at the end of the
job.

Please refer to /examples/extended/runAndEvent/RE03 for details.

Filling 1-D histogram

Through the template interface class G4TScoreHistFiller a primitive
scorer can directly fill a 1-D histogram defined by G4Analysis module.
Track-by-track or step-by-step filling allows command-based histogram
such as energy spectrum.
G4TScoreHistFiller template class must be instantiated in the user’s
code (e.g. in the constructor of user run action) with his/her choice of
analysis data format.

Listing 66 Instantiation of G4TScoreHistFiller

#include "G4AnalysisManager.hh"
#include “G4TScoreHistFiller.hh”

auto histFiller = new G4TScoreHistFiller<G4AnalysisManager>;

/score/fill1D <histID> <volName> <primName> <copNo> command defines
the histogram <histID> to be filled by <primName> primitive
scorer assigned to <volName> scoring volume.
If scoring volume in tracking
world or probe is placed more than once, fill1D command should
be issued for each individual copy number <copNo>..
Histogram <histID> must be defined through /analysis/h1/create command in
advance to setting it to a primitive scorer.
Scoring volume <volName> (either tracking world scorer or probe scorer)
as well as the primitive scorer <primName> must be defined in advance, as well.
This ifilling 1-D histogram functionality is not available for mesh scorer
due to memory consumption concern.
The list of primitive scorers available for 1-D histogram can be found
at Table 3.

The following UI commands define a
scoring probe named Probes, size of which is 10 cm * 10 cm * 10 cm,
with two volume flux primitive scorers (one for total flux and the other
for proton flux), and fill 1-D histograms of these two fluxes.

Listing 67 Filling 1-D histograms

#
define scoring probe
#
/score/create/probe Probes 5. cm
/score/probe/locate 0. 0. 0. cm
#
define flux scorers and filter
#
/score/quantity/volumeFlux volFlux
/score/quantity/volumeFlux protonFlux
/score/filter/particle protonFilter proton
/score/close
#
define histograms
#
/analysis/h1/create volFlux Probes_volFlux 100 0.01 2000. MeV ! log
/analysis/h1/create protonFlux Probes_protonFlux 100 0.01 2000. MeV ! log
#
filling histograms
#
/score/fill1D 1 Probes volFlux
/score/fill1D 2 Probes protonFlux

[image: ../_images/FluxPlots.jpg]

Fig. 17 Histograms of total flux (top) and proton flux (bottom)

List of available primitive scorers

A primitive scorer is assigned to the scoring volume by
/score/quantity/xxxxx <primName> <unit> where xxxxx is the
name of primitive scorer listed below. Some of these primitive scorers can fill
1-D histogram described in the previous section.

Table 3 List of primitive scorers.

	Name of
primitive
scorer

	Description

	Default
unit

	x-axis
of 1-D
histogram

	y-axis
of 1-D
histogram

	cellCharge

	deposited charge in the volume

	e+

	n/a

	n/a

	cellFlux

	sum of track length divided by the volume

	[image: cm^{-2}]

	Ek in MeV

	weighted
cell flux

	doseDeposit

	deposited dose in the volume

	Gy

	dose per
step in Gy

	track weight

	energyDeposit

	deposited energy in the volume

	MeV

	eDep per
step in MeV

	track weight

	flatSurfaceCurrent

	surface current on -z surface to be used
only for Box

	[image: cm^{-2}]

	Ek in MeV

	weighted
current

	flatSurfaceFlux

	surface flux (1/cos(theta)) on -z surface
to be used only for Box

	[image: cm^{-2}]

	Ek in MeV

	weighted
flux

	nOfCollision

	number of steps made by physics interaction

	n/a

	n/a

	n/a

	nOfSecondary

	number od secondary tracks generated in the
volume

	n/a

	Ek in MeV

	track weight

	nOfStep

	number of steps in the volume

	n/a

	step length
in mm

	entry
(unweighted)

	nOfTerminatedTrack

	numver of tracks terminated in the volume
(due to decay, interaction, stop, etc.)

	n/a

	n/a

	n/a

	nOfTrack

	number of tracks in the volume (including
both passing and terminated tracks)

	n/a

	Ek in MeV

	track weight

	passageCellCurrent

	number of tracks that pass through the
volume

	n/a

	Ek in MeV

	track weight

	passageCellFlux

	sum of track length divided by the volume
counted only for tracks that pass through
the volume

	[image: cm^{-2}]

	Ek in MeV

	weighted
cell flux

	passageTrackLength

	sum of track length in the volume for
tracks that pass through the volume

	mm

	track length
in mm

	entry
(unweighted)

	population

	number of tracks in the volume that are
unique in an event

	n/a

	n/a

	n/a

	trackLength

	total track length in the volume (including
both passing and terminated tracks)

	mm

	n/a

	n/a

	volumeFlux

	number of tracks getting into the volume

	n/a

	Ek in MeV

	track weight

Footnotes

Tracking and Physics

	Tracking
	Basic Concepts

	Access to Track and Step Information

	Handling of Secondary Particles

	User Actions

	Verbose Outputs

	Trajectory and Trajectory Point

	Physics Processes
	Overview

	Electromagnetic Interactions

	Hadronic Interactions

	Particle Decay Process

	Note on the time threshold for radioactive decay of ions

	Gamma-nuclear and Lepto-nuclear Processes

	Optical Photon Processes

	Parameterisation

	Transportation Process

	Particles
	Basic concepts

	Definition of a particle

	Dynamic particle

	Production Threshold versus Tracking Cut
	General considerations

	Set production threshold (SetCut methods)

	Apply cut

	Why produce secondaries below threshold in some processes?

	Cuts in stopping range or in energy?

	Summary

	Special tracking cuts

	Cuts per Region
	General Concepts

	Default Region

	Assigning Production Cuts to a Region

	Physics Table
	General Concepts

	Material-Cuts Couple

	File I/O for the Physics Table

	Building the Physics Table

	User Limits
	General Concepts

	Processes co-working with G4UserLimits

	Track Error Propagation
	Physics

	Trajectory state

	Trajectory state error

	Targets

	Managing the track propagation

	Limiting the step

	Exotic Physics
	Physics

	Material

	Geometry

Footnotes

Tracking

Basic Concepts

Philosophy of Tracking

All Geant4 processes, including the transportation of particles, are
treated generically. In spite of the name "tracking", particles are
not transported in the tracking category. G4TrackingManager is an
interface class which brokers transactions between the event, track and
tracking categories. An instance of this class handles the message
passing between the upper hierarchical object, which is the event
manager, and lower hierarchical objects in the tracking category. The
event manager is a singleton instance of the G4EventManager class.

The tracking manager receives a track from the event manager and takes
the actions required to finish tracking it. G4TrackingManager
aggregates the pointers to G4SteppingManager, G4Trajectory and
G4UserTrackingAction. Also there is a "use" relation to G4Track
and G4Step.

G4SteppingManager plays an essential role in tracking the particle.
It takes care of all message passing between objects in the different
categories relevant to transporting a particle (for example, geometry
and interactions in matter). Its public method Stepping() steers the
stepping of the particle. The algorithm to handle one step is given
below.

	If the particle stop (i.e. zero kinetic energy), each active AtRest
process proposes a step length in time based on the interaction it
describes. And the process proposing the smallest step length will
be invoked.

	Each active discrete or continuous process must propose a step
length based on the interaction it describes. The smallest of these
step lengths is taken.

	The geometry navigator calculates "Safety", the distance to the next
volume boundary. If the minimum physical-step-length from the
processes is shorter than "Safety", the physical-step-length is
selected as the next step length. In this case, no further
geometrical calculations will be performed.

	If the minimum physical-step-length from the processes is longer
than "Safety", the distance to the next boundary is re-calculated.

	The smaller of the minimum physical-step-length and the geometric
step length is taken.

	All active continuous processes are invoked. Note that the
particle's kinetic energy will be updated only after all invoked
processes have completed. The change in kinetic energy will be the
sum of the contributions from these processes.

	The current track properties are updated before discrete processes
are invoked. In the same time, the secondary particles created by
processes are stored in SecondaryList. The updated properties are:

	the kinetic energy of the current track particle (note that
'sumEnergyChange' is the sum of the energy difference before and
after each process invocation)

	position and time

	The kinetic energy of the particle is checked to see whether or not
it has been terminated by a continuous process. If the kinetic
energy goes down to zero, AtRest processes will be applied at the
next step if applicable.

	The discrete process is invoked. After the invocation,

	the energy, position and time of the current track particle are
updated, and

	the secondaries are stored in SecondaryList.

	The track is checked to see whether or not it has been terminated by
the discrete process.

	"Safety" is updated.

	If the step was limited by the volume boundary, push the particle
into the next volume.

	Handle hit information.

	Invoke the user intervention G4UserSteppingAction.

	Save data to Trajectory.

	Update the mean free paths of the discrete processes.

	If the parent particle is still alive, reset the maximum interaction
length of the discrete process which has occurred.

	One step completed.

What is a Process?

Only processes can change information of G4Track and add secondary
tracks via ParticleChange. G4VProcess is a base class of all
processes and it has 3 kinds of DoIt and GetPhysicalInteraction
methods in order to describe interactions generically. If a user want to
modify information of G4Track, he (or she) SHOULD create a special
process for the purpose and register the process to the particle.

What is a Track?

G4Track keeps 'current' information of the particle. (i.e.
energy,momentum, position ,time and so on) and has 'static' information
(i.e. mass, charge, life and so on) also. Note that G4Track keeps
information at the beginning of the step while the AlongStepDoIts
are being invoked for the step in progress.After finishing all
AlongStepDoIts, G4Track is updated. On the other hand,
G4Track is updated after each invocation of a PostStepDoIt.

What is a Step?

G4Step stores the transient information of a step. This includes the
two endpoints of the step, PreStepPoint and PostStepPoint, which
contain the points' coordinates and the volumes containing the points.
G4Step also stores the change in track properties between the two
points. These properties, such as energy and momentum, are updated as
the various active processes are invoked.

What is a ParticleChange?

Processes do NOT change any information of G4Track directly in their
DoIt. Instead, they proposes changes as a result of interactions by
using ParticleChange. After each DoIt, ParticleChange
updates PostStepPoint based on proposed changes. Then, G4Track
is updated after finishing all AlongStepDoIts and after each
PostStepDoIt.

Access to Track and Step Information

How to Get Track Information

Track information may be accessed by invoking various Get methods
provided in the G4Track class. For details, see the
G4Track.hh#1
header file in $G4INCLUDE. Typical information available includes:

	(x,y,z)

	Global time (time since the event was created)

	Local time (time since the track was created)

	Proper time (time in its rest frame since the track was created)

	Momentum direction (unit vector)

	Kinetic energy

	Accumulated geometrical track length

	Accumulated true track length

	Pointer to dynamic particle

	Pointer to physical volume

	Track ID number

	Track ID number of the parent

	Current step number

	Track status

	(x,y,z) at the start point (vertex position) of the track

	Momentum direction at the start point (vertex position) of the track

	Kinetic energy at the start point (vertex position) of the track

	Pointer to the process which created the current track

How to Get Step Information

Step and step-point information can be retrieved by invoking various
Get methods provided in the G4Step/G4StepPoint classes..

Information in
G4Step#2
includes:

	Pointers to PreStep and PostStepPoint

	Geometrical step length (step length before the correction of
multiple scattering)

	True step length (step length after the correction of multiple
scattering)

	Increment of position and time between PreStepPoint and PostStepPoint

	Increment of momentum and energy between PreStepPoint and
PostStepPoint. (Note: to get the energy deposited in the step, you
cannot use this 'Delta energy'. You have to use 'Total energy deposit'
as below.)

	Pointer to G4Track

	Total energy deposited during the step - this is the sum of

	the energy deposited by the energy loss process, and

	the energy lost by secondaries which have NOT been generated
because each of their energies was below the cut threshold

	Energy deposited not by ionization during the step

	Secondary tracks created during tracking for the current track.

	NOTE: all secondaries are included. NOT only secondaries created
in the CURRENT step.

Information in
G4StepPoint#3
(PreStepPoint and PostStepPoint) includes:

	(x, y, z, t)

	(px, py, pz, Ek)

	Momentum direction (unit vector)

	Pointers to physical volumes

	Safety

	Beta, gamma

	Polarization

	Step status

	Pointer to the physics process which defined the current step and its
DoIt type

	Pointer to the physics process which defined the previous step and
its DoIt type

	Total track length

	Global time (time since the current event began)

	Local time (time since the current track began)

	Proper time

How to Get "particle change"

Particle change information can be accessed by invoking various Get
methods provided in the
G4ParticleChange#4
class. Typical information available includes:

	final momentum direction of the parent particle

	final kinetic energy of the parent particle

	final position of the parent particle

	final global time of the parent particle

	final proper time of the parent particle

	final polarization of the parent particle

	status of the parent particle (G4TrackStatus)

	true step length (this is used by multiple scattering to store the
result of the transformation from the geometrical step length to the
true step length)

	local energy deposited - this consists of either

	energy deposited by the energy loss process, or

	the energy lost by secondaries which have NOT been generated
because each of their energies was below the cut threshold.

	number of secondaries particles

	list of secondary particles (list of G4Track)

Handling of Secondary Particles

Secondary particles are passed as G4Tracks from a physics process
to tracking. G4ParticleChange provides the following four methods
for a physics process:

	AddSecondary(G4Track* aSecondary)

	AddSecondary(G4DynamicParticle* aSecondary)

	AddSecondary(G4DynamicParticle* aSecondary, G4ThreeVector position)

	AddSecondary(G4DynamicParticle* aSecondary, G4double time)

In all but the first, the construction of G4Track is done in the
methods using information given by the arguments.

User Actions

There are two classes which allow the user to intervene in the tracking.
These are:

	G4UserTrackingAction, and

	G4UserSteppingAction.

Each provides methods which allow the user access to the Geant4 kernel
at specific points in the tracking.

Note

Users SHOULD NOT (and CAN NOT) change G4Track in
UserSteppingAction. The only exception is the TrackStatus.

Note

Users have to be cautious to implement an
unnatural/unphysical action in these user actions. See the section
Killing Tracks in User Actions and Energy Conservation for more details.

Verbose Outputs

The verbose information output flag can be turned on or off. The amount
of information printed about the track/step, from brief to very
detailed, can be controlled by the value of the verbose flag, for
example,

G4UImanager* UI = G4UImanager::GetUIpointer();

UI->ApplyCommand("/tracking/verbose 1");

Trajectory and Trajectory Point

G4Trajectory and G4TrajectoryPoint

G4Trajectory and G4TrajectoryPoint are default concrete classes
provided by Geant4, which are derived from the G4VTrajectory and
G4VTrajectoryPoint base classes, respectively. A G4Trajectory
class object is created by G4TrackingManager when a G4Track is
passed from the G4EventManager. G4Trajectory has the following
data members:

	ID numbers of the track and the track's parent

	particle name, charge, and PDG code

	a collection of G4TrajectoryPoint pointers

G4TrajectoryPoint corresponds to a step point along the path
followed by the track. Its position is given by a G4ThreeVector. A
G4TrajectoryPoint class object is created in the AppendStep()
method of G4Trajectory and this method is invoked by
G4TrackingManager at the end of each step. The first point is
created when the G4Trajectory is created, thus the first point is
the original vertex.

The creation of a trajectory can be controlled by invoking
G4TrackingManager::SetStoreTrajectory(G4bool). The UI command
/tracking/storeTrajectory _bool_ does the same. The user can set
this flag for each individual track from his/her
G4UserTrackingAction::PreUserTrackingAction() method.

Note

The user should not create trajectories for secondaries in a shower
due to the large amount of memory consumed.

All the created trajectories in an event are stored in
G4TrajectoryContainer class object and this object will be kept by
G4Event. To draw or print trajectories generated in an event, the
user may invoke the DrawTrajectory() or ShowTrajectory() methods
of G4VTrajectory, respectively, from his/her
G4UserEventAction::EndOfEventAction(). The geometry must be drawn
before the trajectory drawing. The color of the drawn trajectory depends
on the particle charge:

	negative: red

	neutral: green

	positive: blue

Note

Due to improvements in G4Navigator, a track can execute more
than one turn of its spiral trajectory without being broken into
smaller steps as long as the trajectory does not cross a geometrical
boundary. Thus a drawn trajectory may not be circular.

Customizing trajectory and trajectory point

G4Track and G4Step are transient classes; they are not available
at the end of the event. Thus, the concrete classes G4VTrajectory
and G4VTrajectoryPoint are the only ones a user may employ for
end-of-event analysis or for persistency. As mentioned above, the
default classes which Geant4 provides, i.e. G4Trajectory and
G4TrajectoryPoint, have only very primitive quantities. The user can
customize his/her own trajectory and trajectory point classes by
deriving directly from the respective base classes.

To use the customized trajectory, the user must construct a concrete
trajectory class object in the
G4UserTrackingAction::PreUserTrackingAction() method and make its
pointer available to G4TrackingManager by using the
SetTrajectory() method. The customized trajectory point class object
must be constructed in the AppendStep() method of the user's
implementation of the trajectory class. This AppendStep() method
will be invoked by G4TrackingManager.

To customize trajectory drawing, the user can override the
DrawTrajectory() method in his/her own trajectory class.

When a customized version of G4Trajectory declares any new class
variables, operator new and operator delete must be provided. It is
also useful to check that the allocation size in operator new is equal
to sizeof(G4Trajectory). These two points do not apply to
G4VTrajectory because it has no operator new or operator delete.

Footnotes

	#1

	http://www-geant4.kek.jp/lxr/source/track/include/G4Track.hh

	#2

	http://www-geant4.kek.jp/lxr/source/track/include/G4Step.hh

	#3

	http://www-geant4.kek.jp/lxr/source/track/include/G4StepPoint.hh

	#4

	http://www-geant4.kek.jp/lxr/source/track/include/G4ParticleChange.hh

Physics Processes

Overview

Physics processes describe how particles interact with a material. Seven
major categories of processes are provided by Geant4:

	electromagnetic,

	hadronic,

	decay,

	photolepton-hadron,

	optical,

	parameterization, and

	transportation.

The generalization and abstraction of physics processes is a key issue
in the design of Geant4. All physics processes are treated in the same
manner from the tracking point of view. The Geant4 approach enables
anyone to create a process and assign it to a particle type. This
openness should allow the creation of processes for novel,
domain-specific or customised purposes by individuals or groups of
users.

Each process has two groups of methods which play an important role in
tracking, GetPhysicalInteractionLength (GPIL) and DoIt. The GPIL
method gives the step length from the current space-time point to the
next space-time point. It does this by calculating the probability of
interaction based on the process's cross section information. At the end
of this step the DoIt method should be invoked. The DoIt method
implements the details of the interaction, changing the particle's
energy, momentum, direction and position, and producing secondary tracks
if required. These changes are recorded as G4VParticleChange
objects (see Particle change).

G4VProcess

G4VProcess is the base class for all physics processes. Each physics
process must implement virtual methods of G4VProcess which describe
the interaction (DoIt) and determine when an interaction should occur
(GPIL). In order to accommodate various types of interactions
G4VProcess provides three DoIt methods:

	G4VParticleChange* AlongStepDoIt(const G4Track& track, const G4Step& stepData)

This method is invoked while G4SteppingManager is transporting a
particle through one step. The corresponding AlongStepDoIt for
each defined process is applied for every step regardless of which
process produces the minimum step length. Each resulting change to
the track information is recorded and accumulated in G4Step.
After all processes have been invoked, changes due to
AlongStepDoIt are applied to G4Track, including the particle
relocation and the safety update. Note that after the invocation of
AlongStepDoIt, the endpoint of the G4Track object is in a new
volume if the step was limited by a geometric boundary. In order to
obtain information about both the old and new volumes,
G4Step must be accessed, since it contains information about
both pre-step and post-step points of a step.

	G4VParticleChange* PostStepDoIt(const G4Track& track, const G4Step& stepData)

This method is invoked at the end point of a step, only if its
process limit the step, or if the process is
forced to occur at each step. G4Track will be updated after each
invocation of PostStepDoIt.

	G4VParticleChange* AtRestDoIt(const G4Track& track, const G4Step& stepData)

This method is invoked only for stopped particles, and only if its
process limit the step in time, or if the process is forced to
occur.

For each of the above DoIt methods G4VProcess provides a
corresponding pure virtual GPIL method:

	PostStepGetPhysicalInteractionLength

G4double PostStepGetPhysicalInteractionLength(const G4Track& track,
 G4double previousStepSize,
 G4ForceCondition* condition)

This method generates the step length allowed by its process. It also
provides a flag to force the interaction to occur regardless of its
step length.

	AlongStepGetPhysicalInteractionLength

G4double AlongStepGetPhysicalInteractionLength(const G4Track& track,
 G4double previousStepSize,
 G4double currentMinimumStep,
 G4double& proposedSafety,
 G4GPILSelection* selection)

This method generates the step length allowed by its process.

	AtRestGetPhysicalInteractionLength

G4double AtRestGetPhysicalInteractionLength(const G4Track& track,
 G4ForceCondition* condition)

This method generates the step length in time proposed by this process.
It also provides a flag to force the interaction to occur regardless
of its step length.

Other pure virtual methods in G4VProcess follow:

	virtual G4bool IsApplicable(const G4ParticleDefinition&)

returns true if this process object is applicable to the particle
type.

	virtual void PreparePhysicsTable(const G4ParticleDefinition&) and

	virtual void BuildPhysicsTable(const G4ParticleDefinition&)

is messaged by the process manager, whenever cross section tables
should be prepared and rebuilt due to changing cut-off values. It is
not mandatory if the process is not affected by cut-off values.

	virtual void StartTracking() and

	virtual void EndTracking()

are messaged by the tracking manager at the beginning and end of
tracking the current track.

	virtual const G4VProcess* GetCreatorProcess() const

returns the sub-process pointer to be used as CreatorProcess
for secondaries produced at the given step. It is needed for
combined processes like G4GammaGeneralProcess or G4NeutronGeneralProcess.
Other methods:

	virtual const G4String& GetProcessName() const

	virtual G4ProcessType GetProcessType() const

	virtual G4int GetProcessSubType() const

are useful for control on MC truth in an application and debugging.

Other base classes for processes

Specialized processes may be derived from seven additional virtual base
classes which are themselves derived from G4VProcess. Three of these
classes are used for simple processes:

	G4VRestProcess
	Processes using only the AtRestDoIt method.

example: neutron capture

	G4VDiscreteProcess
	Processes using only the PostStepDoIt method.

example: Compton scattering, hadron inelastic interaction.
There are virtual methods, which are needed for more accurate
tracking of charged particles:

	virtual G4double GetCrossSection(const G4double kinE, const G4MaterialCutsCouple*)

	virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*, const G4Material*)

The other four classes are provided for rather complex processes:

	G4VContinuousDiscreteProcess
	Processes using both AlongStepDoIt and PostStepDoIt methods.

example: transportation, ionisation(energy loss and delta ray)

	G4VRestDiscreteProcess
	Processes using both AtRestDoIt and PostStepDoIt methods.

example: positron annihilation, decay (both in flight and at rest)

	G4VRestContinuousProcess
	Processes using both AtRestDoIt and AlongStepDoIt methods.

	G4VRestContinuousDiscreteProcess
	Processes using AtRestDoIt, AlongStepDoIt and PostStepDoIt
methods.

Particle change

G4VParticleChange and its descendants are used to store the final
state information of the track, including secondary tracks, which has
been generated by the DoIt methods. The instance of
G4VParticleChange is the only object whose information is updated by
the physics processes, hence it is responsible for updating the step.
The stepping manager collects secondary tracks and only sends requests
via particle change to update G4Step.

G4VParticleChange is introduced as an abstract class. It has a
minimal set of methods for updating G4Step and handling secondaries.
A physics process can therefore define its own particle change derived
from G4VParticleChange. Three pure virtual methods are provided,

	virtual G4Step* UpdateStepForAtRest(G4Step* step) ,

	virtual G4Step* UpdateStepForAlongStep(G4Step* step), and

	virtual G4Step* UpdateStepForPostStep(G4Step* step),

which correspond to the three DoIt methods of G4VProcess. Each
derived class should implement these methods. There are specialized
derived classes

	G4ParticleChange - used in hadronic physics processes,

	G4ParticleChangeForTransport - used for transportation processes,

	G4ParticleChangeForDecay - used for G4Decay and G4RadioactiveDecay,

	G4ParticleChangeForLoss - used for energy loss processes,

	G4ParticleChangeForMSC - used for multiple scattering processes,

	G4ParticleChangeForGamma - used for discrete electromagnetic processes.

Electromagnetic Interactions

This section summarizes the electromagnetic (EM) physics processes which
are provided with Geant4. Extended information are available at EM web
pages#1.
For details on the implementation of these processes please refer to the
Physics Reference Manual#2.

To use the electromagnetic physics data files are needed. The user
should set the environment variable G4LEDATA to the directory with this
files. These files are distributed together with Geant4 and can be
obtained via the Geant4 download web page#3.

Electromagnetic Processes

The following is a summary of the electromagnetic processes available in
Geant4.

	Photon processes

	Gamma conversion (also called pair production, class name
G4GammaConversion)

	Photo-electric effect (class name G4PhotoElectricEffect)

	Compton scattering (class name G4ComptonScattering)

	Rayleigh scattering (class name G4RayleighScattering)

	Muon pair production (class name G4GammaConversionToMuons)

	X-ray reflection (class name G4XrayReflection)

	General gamma process (class name G4GeneralGammaProcess)

	Electron/positron processes

	Ionisation and delta ray production (class name G4eIonisation)

	Bremsstrahlung (class name G4eBremsstrahlung)

	e+e- pair production (class name G4ePairProduction)

	Multiple scattering (class name G4eMultipleScattering)

	Positron annihilation into two gammas (class name G4eplusAnnihilation)

	Positron annihilation into two muons (class name G4AnnihiToMuPair)

	Positron annihilation into hadrons (class name G4eeToHadrons)

	Combined process for multiple scattering and transportation (class name G4TransportationWithMsc)

	Muon processes

	Ionisation and delta ray production (class name G4MuIonisation)

	Bremsstrahlung (class name G4MuBremsstrahlung)

	e+e- pair production (class name G4MuPairProduction)

	mu+mu- pair production (class name G4MuonToMuonPairProduction)

	Multiple scattering (class name G4MuMultipleScattering)

	Hadron/ion processes

	Ionisation (class name G4hIonisation)

	Ionisation for ions (class name G4ionIonisation)

	Ionisation for heavy exotic particles (class name G4hhIonisation)

	Ionisation for classical magnetic monopole (class name
G4mplIonisation)

	Multiple scattering (class name G4hMultipleScattering)

	Bremsstrahlung (class name G4hBremsstrahlung)

	e+e- pair production (class name G4hPairProduction)

	Coulomb scattering processes

	Alternative process for simulation of single Coulomb scattering of
all charged particles (class name G4CoulombScattering)

	Alternative process for simulation of single Coulomb scattering of
ions (class name G4ScreenedNuclearRecoil)

	Processes for simulation of polarized electron and gamma beams

	Compton scattering of circularly polarized gamma beam on polarized
target (class name G4PolarizedCompton)

	Pair production induced by circularly polarized gamma beam (class
name G4PolarizedGammaConversion)

	Photo-electric effect induced by circularly polarized gamma beam
(class name G4PolarizedPhotoElectricEffect)

	Bremsstrahlung of polarized electrons and positrons (class name
G4ePolarizedBremsstrahlung)

	Ionisation of polarized electron and positron beam (class name
G4ePolarizedIonisation)

	Annihilation of polarized positrons (class name
G4eplusPolarizedAnnihilation)

	Processes for simulation of X-rays and optical protons production by
charged particles

	Synchrotron radiation (class name G4SynchrotronRadiation)

	Transition radiation (class name G4TransitionRadiation)

	Cerenkov radiation (class name G4Cerenkov)

	Scintillations (class name G4Scintillation)

	The processes described above use physics model classes, which may be
combined according to particle energy. It is possible to change the
energy range over which different models are valid, and to apply
other models specific to particle type, energy range, and G4Region.
Models, which are used in the default EM Physics List, are mainly from
the standard EM sub-library:

	Photoelectric effect (class name G4LivermorePhotoElectricModel)

	Compton scattering (class name G4KleinNishinaCompton)

	Electron/positron pair production (class name G4PairProductionRelModel)

	Rayleigh scattering (class name G4LivermoreRayleighModel)

	Multiple scattering (class name G4UrbanMscModel)

	Multiple scattering (class name G4WentzelVIModel)

	Single Coulomb scattering (class name G4eCoulombScatteringModel)

	Electron ionisation (class name G4MollerBhabhaModel)

	Electron/positron bremsstrahlung (class name G4SeltzerBergerModel)

	Electron/positron bremsstrahlung (class name G4eBremsstrahlungRelModel)

	Positron annihilation into 2 gamma (class name G4eeToTwoGammaModel)

	Muon and hadron low-energy ionisation (class name G4BraggModel)

	Ion low-energy ionisation (class name G4BraggIonModel)

	Ionisation of ions (class name G4LindhardSorensenIonModel)

	Anti-particle low-energy ionisation (class name G4ICRU73QOModel)

	Muon and hadron ionisation (class name G4BetheBlochModel)

	Muon ionisation (class name G4MuBetheBlochModel)

	Muon bremsstrahlung (class name G4MuBremsstrahlungModel)

	Muon pair production by muons (class name G4MuonToMuonPairProductionModel)

	Hadron bremsstrahlung (class name G4hBremsstrahlungModel)

	Muon e+e- pair production (class name G4MuPairProductionModel)

	Hadron e+e- pair production (class name G4hPairProductionModel)

The following alternative models are available in the standard EM
sub-library:

	Ionisation in thin absorbers (class name G4PAIModel)

	Ionisation in thin absorbers (class name G4PAIPhotModel)

	Ionisation in low-density media (class name G4BraggIonGasModel)

	Ionisation in low-density media (class name G4BetheBlochIonGasModel)

	Ionisation of relativistic ions (class name G4AtimaEnergyLossModel)

	Electron/positron pair production (class name G4BetheHeitlerModel)

	Electron/positron pair production (class name G4BetheHeitler5DModel)

	Positron annihilation into 2 or 3 gamma (class name G4eplusTo2GammaOKVIModel)

	Multiple scattering (class name G4GoudsmitSaundersonMscModel)

	Multiple scattering (class name G4LowEWentzelVIModel)

	Single scattering (class name G4eSingleCoulombScatteringModel)

	Single scattering (class name G4hCoulombScatteringModel)

	Single scattering (class name G4IonCoulombScatteringModel)

In the low-energy sub-library there are alternative models (more detailes see below):

	Photoelectric effect (class name G4PenelopePhotoElectricModel)

	Compton scattering (class name G4PenelopeComptonModel)

	Compton scattering (class name G4LivermoreComptonModel)

	Compton scattering (class name G4LivermorePolarizedComptonModel)

	Compton scattering (class name G4LowEPComptonModel)

	Compton scattering (class name G4LowEPPolarizedComptonModel)

	Gamma conversion to e+e- pair (class name G4LivermoreGammaConversionModel)

	Gamma conversion to e+e- pair (class name G4LivermoreGammaConversion5DModel)

	Gamma conversion to e+e- pair (class name G4PenelopeGammaConversionModel)

	Rayleigh scattering (class name G4JAEAElasticScatteringModel)

	Rayleigh scattering (class name G4JAEAPolarizedElasticScatteringModel)

	Rayleigh scattering (class name G4LivermorePolarizedRayleighModel)

	Rayleigh scattering (class name G4PenelopeRayleighModel)

	Electron ionisation (class name G4LivermoreIonisationModel)

	Electron and positron ionisation (class name G4PositronIonisationModel)

	Ion ionisation (class name G4IonParametrisedLossModel)

	Electron, proton, alpha, and ion ionisation (class name G4MicroElecInelastic)

	Electron, proton, alpha, and ion elastic scattering (class name G4MicroElecElastic)

	Electron, proton, alpha, and ion ionisation (class name G4MicroElecInelastic_new)

	Electron, proton, alpha, and ion elastic scattering (class name G4MicroElecElastic_new)

It is recommended to use physics constructor classes provided with
reference physics lists (in subdirectory
source/physics_lists/constructors/electromagnetic of the Geant4
source distribution):

	default EM physics, multiple scattering is simulated with "UseSafety"
type of step limitation by combined G4WentzelVIModel and
G4eCoulombScatteringModel for all particle types, for of e+-
below 100 MeV G4UrbanMscModel is used, RangeFactor = 0.04,
G4LivermorePhotoElectricModel
is used for simulation of the photo-electric effect, the Rayleigh
scattering process is enabled below 1 MeV, G4GammaGeneralProcess is enabled,
physics tables are built
from 100 eV to 100 TeV, 7 bins per energy decade of physics tables
are used (class name G4EmStandardPhysics),

	optional EM physics providing fast but less accurate electron
transport due to "Minimal" method of step limitation by multiple
scattering, RangeFactor = 0.2,
Rayleigh scattering is disabled, photo-electric effect is
using G4PEEffectFluoModel, enabled "ApplyCuts" option, and
enabled G4TransportationWithMsc combined process (class name
G4EmStandardPhysics_option1),

	optional EM physics providing fast but less accurate electron
transport due to "Minimal" method of step limitation by multiple
scattering, RangeFactor = 0.2, "Simple" method of step
limitation by multiple scattering,
Rayleigh scattering is disabled, and photo-electric effect is
using G4PEEffectFluoModel (class name G4EmStandardPhysics_option2)

	EM physics for simulation with high accuracy due to
"UseDistanceToBoundary" multiple scattering step limitation and usage
of G4UrbanMscModel for all charged particles, RangeFactor = 0.03, reduced
finalRange parameter of stepping function optimized per particle
type, alternative model G4KleinNishinaModel for Compton scattering,
enabled fluorescence, enabled nuclear stopping, G4Generator2BS
angular generator for bremsstrahlung,
G4LindhardSorensenIonModel for ion ionisation,
G4ePairProduction for electron/positron, 20 bins
energy decade of physics tables, and 10 eV low-energy limit for
tables (class name G4EmStandardPhysics_option3)

	Combination of EM models for simulation with high accuracy includes
multiple scattering with "UseSafetyPlus" type of step limitation by
combined G4WentzelVIModel and G4eCoulombScatteringModel for
all particle types, for of e+- below 100 MeV G4GoudsmitSaundersonMscModel
is used, RangeFactor = 0.08, Scin = 3 (error free stepping
near geometry boundaries), reduced finalRange parameter of stepping
function optimized per particle type, enabled fluorescence, enabled
nuclear stopping, enable accurate angular generator for ionisation models,
G4LowEPComptonModel below 20 MeV and G4KleinNishinaModel above,
G4BetheHeitler5DModel for gamma conversion,
G4PenelopeIonisationModel for electrons and positrons
below 100 keV, G4LindhardSorensenIonModel for ion ionisation,
G4Generator2BS angular generator for bremsstrahlung,
G4ePairProduction for electron/positron, and 20 bins
per energy decade of physics tables, (class name
G4EmStandardPhysics_option4)

	Models based on Livermore data bases for electrons and gamma, enabled
Rayleigh scattering, enabled fluorescence, G4BetheHeitler5DModel
is used for gamma conversion, enabled nuclear stopping, enable accurate angular
generator for ionisation models, G4IonParameterisedLossModel for ion
ionisation, for of e+- below 100 MeV G4GoudsmitSaundersonMscModel is used with
"UseSafetyPlus" multiple scattering step limitation, RangeFactor = 0.08, Scin = 3
(error free stepping near geometry boundaries), G4Generator2BS angular generator for
bremsstrahlung, G4ePairProduction for electron/positron,
G4LindhardSorensenIonModel for ion ionisation, and 20 bins per
energy decade of
physics tables, (G4EmLivermorePhysics);

	Models based on Livermore data bases and new model for Compton
scattering G4LowEPComptonModel, G4BetheHeitler5DModel
is used for gamma conversion, low-energy model of multiple
scattering G4LowEWenzelMscModel, and G4LindhardSorensenIonModel,
G4hBremsstrahlung and G4hPairProduction
for ions (G4EmLowEPPhysics);

	Penelope2008 models for electrons, positrons and gamma, enabled
Rayleigh scattering, enabled fluorescence, enabled nuclear stopping,
enable accurate angular generator for ionisation models,
G4LindhardSorensenIonModel for ion ionisation, for of e+- below
100 MeV G4GoudsmitSaundersonMscModel is used with "UseSafetyPlus" multiple scattering
step limitation, RangeFactor = 0.08, Scin = 3 (error free stepping near geometry
boundaries), and 20 bins per energy decade of physics tables, (G4EmPenelopePhysics);

	Experimental physics with multiple scattering of e+- below 100 MeV
simulated by G4GoudsmitSaundersonMscModel is done on top of the
default EM physics (G4EmStandardPhysicsGS);

	Experimental physics is done on top of the default EM
physics with multiple scattering of e+- below 100 MeV
simulated by a combination of G4UrbanMscModel below 1 MeV and
G4WentzelVIModel, G4eCoulombScatteringModel, and for
ions G4LindhardSorensenIonModel (G4EmStandardPhysicsWVI);

	Experimental physics with single scattering models instead of
multiple scattering is done on top of the default EM physics, for all
leptons and hadrons G4eCoulombScatteringModel is used, for ions -
G4IonCoulombScatteringModel (G4EmStandardPhysicsSS);

	Low-energy Geant4-DNA physics (G4EmDNAPhysics).

	Alternative low-energy Geant4-DNA physics constructors
(G4EmDNAPhysics_optionX, where X is 1 to 8). Refer to Geant4-DNA
section. The default upper energy applicability limit is 300 MeV.
For particles or processes where DNA physics is not available the
standard models are used.

Examples of the registration of these physics constructor and
construction of alternative combinations of options are shown in basic,
extended and advanced examples, which can be found in the subdirectories
examples/basic, examples/extended/electromagnetic,
examples/medical, examples/advanced, and of the Geant4 source
distribution. Examples illustrating the use of electromagnetic processes
are available as part of the Geant4
release#4.

Options are available for steering of electromagnetic processes.
These options may be invoked either by UI commands or by the new C++
interface class G4EmParameters. The interface
G4EmParameters::Instance() is thread safe, EM parameters are shared
between threads, and parameters are shared between all EM processes.
Parameters may be modified at G4State_PreInit or G4State_Idle states
of Geant4. Note, that when any of EM physics constructor is instantiated
a default set of EM parameters for this EM physics configuration is
defined. So, parameters modification should be applied only after. This
class has the following public methods:

	Dump()

	StreamInfo(std::ostream&)

	SetDefaults()

	SetLossFluctuations(G4bool)

	SetBuildCSDARange(G4bool)

	SetLPM(G4bool)

	SetUseCutAsFinalRange(G4bool)

	SetApplyCuts(G4bool)

	SetFluo(G4bool val)

	SetFluoDirectory(G4EmFluoDirectory type)

	SetAuger(G4bool val)

	SetPixe(G4bool val)

	SetDeexcitationIgnoreCut(G4bool val)

	SetLateralDisplacement(G4bool val)

	SetLateralDisplacementAlg96(G4bool val)

	SetMuHadLateralDisplacement(G4bool val)

	ActivateAngularGeneratorForIonisation(G4bool val)

	SetUseMottCorrection(G4bool val)

	SetIntegral(G4bool val)

	SetBirksActive(G4bool val)

	SetUseICRU90Data(G4bool val)

	SetFluctuationType(G4EmFluctuationType type)

	SetDNAFast(G4bool val)

	SetDNAStationary(G4bool val)

	SetDNAElectronMsc(G4bool val)

	SetGeneralProcessActive(G4bool val)

	SetEnableSamplingTable(G4bool val)

	SetEnablePolarisation(G4bool val)

	SetDirectionalSplitting(G4bool val)

	SetQuantumEntanglement(G4bool val)

	SetRetrieveMuDataFromFile(G4bool val)

	SetPhotoeffectBelowKShell(G4bool val)

	SetMscPositronCorrection(G4bool v)

	SetOnIsolated(G4bool val)

	ActivateDNA(G4bool val)

	SetIsPrintedFlag(G4bool val);

	SetMinEnergy(G4double)

	SetMaxEnergy(G4double)

	SetMaxEnergyForCSDARange(G4double)

	SetLowestElectronEnergy(G4double)

	SetLowestMuHadEnergy(G4double)

	SetLowestTripletEnergy(G4double)

	SetLinearLossLimit(G4double)

	SetBremsstrahlungTh(G4double)

	SetMuHadBremsstrahlungTh(G4double val)

	SetLambdaFactor(G4double)

	SetFactorForAngleLimit(G4double)

	SetMscThetaLimit(G4double)

	SetMscEnergyLimit(G4double)

	SetMscRangeFactor(G4double)

	SetMscMuHadRangeFactor(G4double)

	SetMscGeomFactor(G4double)

	SetMscSafetyFactor(G4double)

	SetMscLambdaLimit(G4double)

	SetMscSkin(G4double)

	SetScreeningFactor(G4double)

	SetMaxNIELEnergy(G4double)

	SetMaxEnergyFor5DMuPair(G4double)

	SetStepFunction(G4double, G4double)

	SetStepFunctionMuHad(G4double, G4double)

	SetStepFunctionLightIons(G4double, G4double);

	SetStepFunctionIons(G4double, G4double);

	SetDirectionalSplittingRadius(G4double)

	SetDirectionalSplittingTarget(const G4ThreeVector&)

	SetNumberOfBinsPerDecade(G4int)

	SetVerbose(G4int)

	SetWorkerVerbose(G4int)

	SetTransportationWithMsc(G4TransportationWithMscType type)

	SetMscStepLimitType(G4MscStepLimitType val)

	SetMscMuHadStepLimitType(G4MscStepLimitType val)

	SetSingleScatteringType(G4eSingleScatteringType val)

	SetNuclearFormFactorType(G4NuclearFormFactorType val)

	SetDNAeSolvationSubType(G4DNAModelSubType val)

	SetConversionType(G4int val)

	SetPIXECrossSectionModel(const G4String&)

	SetPIXEElectronCrossSectionModel(const G4String&)

	SetLivermoreDataDir(const G4String&)

	AddPAIModel(const G4String& particle, const G4String& region, const
G4String& type)

	AddMicroElec(const G4String& region)

	AddDNA(const G4String& region, const G4String& type)

	AddPhysics(const G4String& region, const G4String& physics_type)

	SetSubCutRegion(const G4String& region)

	SetDeexActiveRegion(const G4String& region, G4bool, G4bool, G4bool)

	SetProcessBiasingFactor(const G4String& process, G4double, G4bool)

	ActivateForcedInteraction(const G4String& process, const G4String&
region, G4double, G4bool)

	ActivateSecondaryBiasing(const G4String& process, const G4String&
region, G4double, G4double)

	SetEmSaturation(G4EmSaturation*)

The corresponding UI command can be accessed in the UI subdirectories
"/process/eLoss", "/process/em", and "/process/msc". The following types
of step limitation by multiple scattering are available:

	fMinimal - simplified step limitation (used in _EMV and _EMX Physics
Lists)

	fUseSafety - default

	fUseDistanceToBoundary - advance method of step limitation used in EM
examples, required parameter
skin > 0 , should be used for setup without magnetic field

	fUseSafetyPlus - advanced method may be used with magnetic field

G4EmCalculator is a class which provides access to cross sections
and stopping powers. This class can be used anywhere in the user code
provided the physics list has already been initialised (G4State_Idle).
G4EmCalculator has "Get" methods which can be applied to materials for
which physics tables are already built, and "Compute" methods which can
be applied to any material defined in the application or existing in the
Geant4 internal database. The public methods of this class are:

	GetDEDX(kinEnergy,particle,material,const G4Region* r=nullptr)

	GetRangeFromRestrictedDEDX(kinEnergy,particle,material,const G4Region*
r=nullptr)

	GetCSDARange(kinEnergy,particle,material,const G4Region* r=nullptr)

	GetRange(kinEnergy,particle,material,const G4Region* r=nullptr)

	GetKinEnergy(range,particle,material,const G4Region* r=nullptr)

	GetCrossSectionPerVolume(kinEnergy,particle,material,const G4Region*
r=nullptr)

	GetShellIonisationCrossSectionPerAtom(particle,Z,shell,kinEnergy)

	GetMeanFreePath(kinEnergy,particle,material,const G4Region* r=nullptr)

	PrintDEDXTable(particle)

	PrintRangeTable(particle)

	PrintInverseRangeTable(particle)

	ComputeDEDX(kinEnergy,particle,process,material,cut=DBL_MAX)

	ComputeElectronicDEDX(kinEnergy,particle,material,cut=DBL_MAX)

	ComputeDEDXForCutInRange(kinEnergy,particle,material,cut=DBL_MAX)

	ComputeNuclearDEDX(kinEnergy,particle,material,cut=DBL_MAX)

	ComputeTotalDEDX(kinEnergy,particle,material,cut=DBL_MAX)

	ComputeCrossSectionPerVolume(kinEnergy,particle,process,material,cut=nullptr)

	ComputeCrossSectionPerAtom(kinEnergy,particle,process,Z,A,cut=nullptr)

	ComputeCrossSectionPerShell(kinEnergy,particle,process,Z,shellIdx,cut=nullptr)

	ComputeGammaAttenuationLength(kinEnergy,material)

	ComputeShellIonisationCrossSectionPerAtom(particle,Z,shell,kinEnergy)

	ComputeMeanFreePath(kinEnergy,particle,process,material,cut=nullptr)

	ComputeEnergyCutFromRangeCut(range,particle,material)

	FindParticle(const G4String&)

	FindIon(G4int Z, G4int A)

	FindMaterial(const G4String&)

	FindRegion(const G4String&)

	FindCouple(const G4Material*, const const G4Region* r=nullptr)

	FindProcess(particle, const G4String& processName)

	SetVerbose(G4int)

For these interfaces, particles, materials, or processes may be pointers
(const G4ParticleDefinition*, const G4Material*)
or strings with names (const G4String&).

G4NIELCalculator is a class which provides computation of NIEL energy loss
at a step independently on cuts and tracking.
G4NIELCalculator has follow methods:

	ComputeNIEL(const G4Step*)

	RecoilEnergy(const G4Step*)

	AddEmModel(G4VEmModel*)

the last method allows customisation of NIEL model.

Low Energy Electromagnetic Library

A physical interaction is described by a process class which can handle
physics models, described by model classes. The following is a summary
of the Low Energy Electromagnetic physics models available in Geant4.
Further information is available in the web pages of the Geant4 Low
Energy Electromagnetic Physics Working Group, accessible from the Geant4
web site, “who we are” section, then “working groups”.

The physics content of these models is documented in the Geant4
Physics Reference Manual#5.
They are based on the Livermore data library, on the ICRU73 data tables
or on the Penelope2008 Monte Carlo code. They adopt the same software
design as the "standard" Geant4 electromagnetic models.

Examples of the registration of physics constructor with low-energy
electromagnetic models are shown in Geant4 extended examples
(examples/extended/electromagnetic and examples/extended/medical
in the Geant4 source distribution). Advanced examples
(examples/advanced in the Geant4
source distribution) illustrate alternative instantiation of these
processes. Both are available as part of the Geant4 release.

Production Cuts

Remember that production cuts for secondaries can be specified as range
cuts, which are converted at initialisation time into energy thresholds
for secondary gamma, electron, positron and proton production. The cut
for proton is applied by elastic scattering processes to all recoil
ions.

A range cut value is set by default to 0.7 mm in Geant4 reference
physics lists. This value can be specified in the optional SetCuts()
method of the user Physics list or via UI commands. For e.g. to set a
range cut of 10 micrometers, one can use

/run/setCut 0.01 mm

or, for a given particle type (for e.g. electron),

/run/setCutForAGivenParticle e- 0.01 mm

If a range cut equivalent to an energy lower than 990 eV is specified,
the energy cut is still set to 990 eV. In order to decrease this value
(for e.g. down to 250 eV, in order to simulate low energy emission lines
of the fluorescence spectrum), one may use the following UI command
before the "/run/initialize" command

/cuts/setLowEdge 100 eV

or alternatively directly in the user Physics list, in the optional
SetCuts() method, using:

G4ProductionCutsTable::GetProductionCutsTable()->SetEnergyRange(100*eV, 1*GeV);

A command is also available in order to disable usage of production
threshold for fluorescence and Auger electron production

/process/em/deexcitationIgnoreCut true

Angular Generators

For part of EM processes it is possible to factorise out sampling of
secondary energy and direction. Using an interface G4VEmModel base
class SetAngularDistribution(G4VEmAngularDistribution*) it is
possible to substitute default angular generator of a model. Angular
generators in standard and lowenergy sub-packages follow the same
abstract interface.

For photoelectric models several angular generators are available:

	G4SauterGavrilaAngularDistribution (default);

	G4PhotoElectricAngularGeneratorSauterGavrila;

	G4PhotoElectricAngularGeneratorPolarized.

For bremsstrahlung and pair production models following angular
generators are available:

	G4ModifiedTsai (default for electrons and positrons);

	G4ModifiedMephi (default for muons and hadrons);

	G4DipBustGenerator;

	G4Generator2BS (recommended for electrons and positrons);

	G4Generator2BN;

	G4PenelopeBremsstrahlungAngular.

For gamma conversion models following angular generators are available:

	G4ModifiedTsai (default);

	G4DipBustGenerator.

For models of ionisation a new optional angular generator is available:

	G4DeltaAngle.

Electromagnetics secondary biasing

It may be useful to create more than one secondary at an interaction.
For example, electrons incident on a target in a medical linac produce
photons through bremsstrahlung. The variance reduction technique of
bremsstrahlung splitting involves choosing N photons from the expected
distribution, and assigning each a weight of 1/N.

Similarly, if the secondaries are not important, one can kill them with
a survival probability of 1/N. The weight of the survivors is
increased by a factor N. This is known as Russian roulette.

Neither biasing technique is applied if the resulting daughter particles
would have a weight below 1/N, in the case of brem splitting, or
above 1, in the case of Russian roulette.

These techniques can be enabled in Geant4 electromagnetics with the
macro commands

/process/em/setSecBiasing processName Region factor energyLimit energyUnit

where: processName is the name of the process to apply the biasing to;
Region is the region in which to apply biasing; factor is the
inverse of the brem splitting or Russian roulette factor (1/N);
energyLimit energyUnit is the high energy limit. If the first
secondary has energy above this limit, no biasing is applied.

For example,

/process/em/setSecBiasing eBrem target 10 100 MeV

will result in electrons undergoing bremsstrahlung in the target region
being split 10 times (if the first photon sampled has an energy less
than 100 MeV).

Note that the biasing needs to be specified for each process
individually. To apply Russian Roulette to daughter electrons from
interactions of photons, issue the macro command for the processes phot,
compt, conv.

Directional splitting

This biasing may be enabled based on the direction of the outgoing particles
("directional splitting"). The user may specify a spherical volume of interest by giving the
center and radius of the volume. In an interaction, if the incident particle has
high weight, the outgoing particles are split. N particles from the distribution
are created, each with weight 1/N. For each particle, if it is not directed
towards the volume of interest, Russian Roulette is played. Typically one will want
directional splitting to take place for all interactions.

For example,

/process/em/setDirectionalSplitting true
/process/em/setDirectionalSplittingTarget 1000 0 0 mm # x, y, z components of center
/process/em/setDirectionalSplittingRadius 10 cm
/process/em/setSecBiasing eBrem world 100 100 MeV
/process/em/setSecBiasing Rayl world 100 100 MeV
/process/em/setSecBiasing phot world 100 100 MeV
/process/em/setSecBiasing compt world 100 100 MeV
/process/em/setSecBiasing annihil world 100 100 MeV

Reference: BEAMnrc Users Manual, D.W.O Rogers, B. Walters, I. Kawrakow.
NRCC Report PIRS-0509(A)revL, available
here#6.

Livermore Data Based Models

	Photon models

	Photo-electric effect (class G4LivermorePhotoElectricModel)

	Polarized Photo-electric effect (class
G4LivermorePolarizedPhotoElectricModel)

	Compton scattering (class G4LivermoreComptonModel)

	Compton scattering (class G4LowEPComptonModel)

	Polarized Compton scattering (class
G4LivermorePolarizedComptonModel)

	Rayleigh scattering (class G4LivermoreRayleighModel)

	Polarized Rayleigh scattering (class
G4LivermorePolarizedRayleighModel)

	Gamma conversion (also called pair production, class
G4LivermoreGammaConversionModel)

	Nuclear gamma conversion (class
G4LivermoreNuclearGammaConversionModel)

	Polarized gamma conversion (class
G4LivermorePolarizedGammaConversionModel)

	Electron models

	Bremsstrahlung (class G4LivermoreBremsstrahlungModel)

	Ionisation and delta ray production (class
G4LivermoreIonisationModel)

Hadron and Ion Ionisation Models

Ionisation and delta ray production by hadrons and ions base on stopping
power data at low energies (below 2 MeV/u) and Bethe-Bloch or Lindhard-Sorensen
theories above (J. Lindhard & A.H. Sorensen, Phys. Rev. A 53 (1996) 2443-2455).
The data are taken from ICRU90, ICRU73, PSTAR, ASTAR, and ICRU49
databases. Part of these data are transformed to G4LEDATA database of Geant4,
the rest is hardcoded inside corresponding Geant4 classes. ICRU90 provides
new accurate data but only for 3 target materials
and limited number of projectile/target combinations. ICRU73 cover
projectile/target ion couple fro Z=3 to Z=80. ASTAR is used only for Helium ions.

Penelope2008 Based Models

	Photon models

	Compton scattering (class G4PenelopeComptonModel)

	Rayleigh scattering (class G4PenelopeRayleighModel)

	Gamma conversion (also called pair production, class
G4PenelopeGammaConversionModel)

	Photo-electric effect (class G4PenelopePhotoElectricModel)

	Electron models

	Bremsstrahlung (class G4PenelopeBremsstrahlungModel)

	Ionisation and delta ray production (class
G4PenelopeIonisationModel)

	Positron models

	Bremsstrahlung (class G4PenelopeBremsstrahlungModel)

	Ionisation and delta ray production (class
G4PenelopeIonisationModel)

	Positron annihilation (class G4PenelopeAnnihilationModel)

All Penelope models can be applied up to a maximum energy of 100 GeV,
although it is advisable not to use them above a few hundreds of MeV.

Options are available in the all Penelope Models, allowing to set (and
retrieve) the verbosity level of the model, namely the amount of
information which is printed on the screen.

	SetVerbosityLevel(G4int)

	GetVerbosityLevel()

The default verbosity level is 0 (namely, no textual output on the
screen). The default value should be used in general for normal runs.
Higher verbosity levels are suggested only for testing and debugging
purposes.

The verbosity scale defined for all Penelope processes is the following:

	0 = no printout on the screen (default)

	1 = issue warnings only in the case of energy non-conservation in the
final state (should never happen)

	2 = reports full details on the energy budget in the final state

	3 = writes also information on cross section calculation, data file
opening and sampling of atoms

	4 = issues messages when entering in methods

Very Low energy Electromagnetic Processes (Geant4-DNA extension)

The Geant4 low energy electromagnetic Physics package has been extended
down to energies of a few electron Volts suitable for the simulation of
radiation effects in liquid water for applications in
micro/nanodosimetry at the cellular and sub-cellular level. These
developments take place in the framework of the on-going Geant4-DNA
project (see more in the Geant4-DNA#7 web
pages or in the EM web pages of the
Geant4 Electromagnetic Physics Working Group#8).

The Geant4 -DNA process and model classes apply to electrons, protons,
hydrogen, alpha particles and their charge states, in liquid water ("G4_WATER" material).

Electron processes and models

	Elastic scattering:

	process class is G4DNAElastic

	four alternative model classes are:
G4DNAScreenedRutherfordElasticModel or G4DNAChampionElasticModel
(default) or G4DNAUeharaScreenedRutherfordElasticModel or G4DNACPA100ElasticModel

	Excitation

	process class is G4DNAExcitation

	model class is G4DNABornExcitationModel (default) or
G4DNAEmfietzoglouExcitationModel or G4DNACPA100ExcitationModel

	Ionisation

	process class is G4DNAIonisation

	model class is G4DNABornIonisationModel (default) or
G4DNAEmfietzoglouIonisationModel or G4DNACPA100IonisationModel

	Attachment

	process class is G4DNAAttachment

	model class is G4DNAMeltonAttachmentModel

	Vibrational excitation

	process class is G4DNAVibExcitation

	model class is G4DNASancheExcitationModel

Proton processes and models

	Elastic scattering:

	process class is G4DNAElastic

	G4DNAIonElasticModel

	Excitation

	process class is G4DNAExcitation

	two complementary model classes are
G4DNAMillerGreenExcitationModel (below 500 keV) and
G4DNABornExcitationModel (above)

	Ionisation

	process class is G4DNAIonisation

	two complementary model classes are G4DNARuddIonisationExtendedModel
(below 500 keV) and G4DNABornIonisationModel (above)

	Charge decrease

	process class is G4DNAChargeDecrease

	model class is G4DNADingfelderChargeDecreaseModel

Hydrogen processes and models

	Elastic scattering :

	process class is G4DNAElastic

	G4DNAIonElasticModel

	Excitation

	process class is G4DNAExcitation

	model class is G4DNAMillerGreenExcitationModel

	Ionisation

	process class is G4DNAIonisation

	model class is G4DNARuddIonisationModel

	Charge increase

	process class is G4DNAChargeIncrease

	model class is G4DNADingfelderChargeIncreaseModel

Helium (neutral) processes and models

	Elastic scattering :

	process class is G4DNAElastic

	G4DNAIonElasticModel

	Excitation

	process class is G4DNAExcitation

	model class is G4DNAMillerGreenExcitationModel

	Ionisation

	process class is G4DNAIonisation

	model class is G4DNARuddIonisationModel

	Charge increase

	process class is G4DNAChargeIncrease

	model class is G4DNADingfelderChargeIncreaseModel

Helium+ (ionized once) processes and models

	Elastic scattering :

	process class is G4DNAElastic

	G4DNAIonElasticModel

	Excitation

	process class is G4DNAExcitation

	model class is G4DNAMillerGreenExcitationModel

	Ionisation

	process class is G4DNAIonisation

	model classes is G4DNARuddIonisationModel

	Charge increase

	process class is G4DNAChargeIncrease

	model classes is G4DNADingfelderChargeIncreaseModel

	Charge decrease

	process class is G4DNAChargeDecrease

	model classes is G4DNADingfelderChargeDecreaseModel

Helium++ (ionised twice) processes and models

	Elastic scattering :

	process class is G4DNAElastic

	G4DNAIonElasticModel

	Excitation

	process class is G4DNAExcitation

	model classes is G4DNAMillerGreenExcitationModel

	Ionisation

	process class is G4DNAIonisation

	model classes is G4DNARuddIonisationModel

	Charge decrease

	process class is G4DNAChargeDecrease

	model classes is G4DNADingfelderChargeDecreaseModel

** Ion processes and models**

	Ionisation

	process class is G4DNAIonisation

	model class is G4DNARuddIonisationExtendedModel

Examples of the registration of these processes in a physics list are
given in the G4EmDNAPhysics* constructors (in
source/physics_lists/constructors/electromagnetic in the Geant4
source distribution). An example of the usage of these constructors in a
physics list is given in the "dnaphysics" extended example, which
explains how to extract basic information from Geant4-DNA Physics
processes.

Geant4-DNA physics constructors are described at the
Geant4-DNA website#9.

The "microdosimetry" extended example illustrates how to combine
Geant4-DNA processes with Standard electromagnetic processes
(combination of discrete and condensed history Geant4 electromagnetic
processes at different scales).

A set of Geant4-DNA models applicable to biological materials is available
since release 10.4. These models are named G4DNAPTBElasticModel,
G4DNAPTBExcitationModel, G4DNAPTBIonisationModel and G4DNAPTBAugerModel.
They can be used for electrons in THF, PY, PU, TMP precursors and in backbone,
cytosine, thymine, adenine, guanine materials of DNA.
The G4DNAPTBIonisationModel can also be used with protons in THF, PY and TMP.
Their usage is illustrated in the "icsd" extended example.

Since Geant4 release 11.0, Geant4-DNA can be used to describe electron
interactions down to 10 eV in gold using a tracking structure approach.
Electron processes and models include:

	Elastic scattering

	process class is G4DNAElastic

	model class is G4DNAELSEPAElasticModel

	Ionization

	process class is G4DNAIonisation

	model class is G4DNARelativisticIonisationModel

	Excitation

	process class is G4DNAExcitation

	model class is G4DNADiracRMatrixExcitationModel

	Plasmon excitation

	process class is G4DNAPlasmonExcitation

	model class is G4DNAQuinnPlasmonExcitationModel

See more details on these physics models in:

D. Sakata et al., An implementation of discrete electron transport models
for gold in the Geant4 simulation toolkit, Journal of Applied Physics,
120, 244901, 2016, linked here#10

Since Geant4 release 10.1, Geant4-DNA can also be used for the modelling
of water radiolysis (physico-chemistry and chemistry stages). Three
extended examples, "chem1", "chem2", "chem3" and "chem4" illustrate
this. More information is available from the Geant4-DNA website#11.

To run the Geant4-DNA extension, data files need to be copied by the
user to his/her code repository. These files are distributed together
with the Geant4 release. The user should set the environment variable
G4LEDATA to the directory where he/she has copied the files.

A full list of publications regarding Geant4-DNA is directly available
from the Geant4-DNA website#12 or from the
Geant4@IN2P3 web site#13).

Atomic Deexcitation

A unique interface named G4VAtomicDeexcitation is available in Geant4
for the simulation of atomic deexcitation using Standard, Low Energy and
Very Low Energy electromagnetic processes. Atomic deexcitation includes
fluorescence and Auger electron emission induced by photons, electrons
and ions (PIXE); see more details in:

A. Mantero et al., PIXE Simulation in Geant4 , X-Ray Spec. , 40, 135-140, 2011.#14

It can be activated for processes producing vacancies in atomic shells.
Currently these processes are the photoelectric effect, ionization and
Compton scattering.

Activation of atomic deexcitation

The activation of atomic deexcitation in continuous processes in a user
physics list can be done through the following G4EmParameters class
methods described above or via UI commands

/process/em/deexcitation region true true true
/process/em/fluo true
/process/em/auger true
/process/em/pixe true

One can define parameters in the G4State_PreInit or G4State_Idle
states. Fluorescence from photons and electrons is activated by default
in Option3, Option4, Livermore and Penelope physics constructors, while
Auger production and PIXE are not.

The alternative set of data by Bearden et al. (1967) for the modelling
of fluorescence lines had been added to the G4LEDATA archive. This set
can be selected via UI command

/process/em/fluoDirectory name

Another important UI commands enable simulation of the full Auger and/or
fluorescence cascade

/process/em/deexcitationIgnoreCut true

How to change ionisation cross section models ?

The user can also select which cross section model to use in order to
calculate shell ionisation cross sections for generating PIXE

/process/em/pixeXSmodel name
/process/em/pixeElecXSmodel name

where the name can be "Empirical", "ECPSSR_FormFactor",
"ECPSSR_Analytical" or "ECPSSR_ANSTO" corresponds to different PIXE cross sections.
Following shell cross sections models are available :
"ECPSSR_Analytical" models derive from an analytical calculation of the
ECPSSR theory (see A. Mantero et al., X-Ray Spec.40 (2011) 135-140)
and it reproduces K and L shell cross sections over a wide range of
energies; "ECPSSR_FormFactor" models derive from A. Taborda et al.
calculations (see A. Taborda et al., X-Ray Spec. 40 (2011) 127-134)
of ECPSSR values directly form Form Factors and it covers K, L shells on
the range 0.1-100 MeV and M shells in the range 0.1-10 MeV; the
"empirical" models are from Paul "reference values" (for protons and
alphas for K-Shell) and Orlic empirical model for L shells (only for
protons and ions with Z>2). The later ones are the models used by
default. Out of the energy boundaries, "ECPSSR_Analytical" model is
used. We recommend to use default settings if not sure what to use.
"ECPSSR_ANSTO" models are ECPSSR calculations based on state of the art recommendations documented
in D. Cohen et al., K, L, and M shell datasets for PIXE spectrum fitting and analysis,
NIM B, 363, 7-18, 2015, linked here#15

Example

The TestEm5 extended/electromagetic example shows how to simulate
atomic deexcitation (see for e.g. the pixe.mac and pixe_ANSTO macros).

Very Low energy Electromagnetic Processes in Silicon for microelectronics application (Geant4-MuElec extension)

(Previously named Geant4-MuElec)

The Geant4 low energy electromagnetic Physics package has been extended
down to energies of a few electron Volts suitable for the simulation of
radiation effects in highly integrated microelectronic components.

The Geant4-MicroElec process and model classes apply to electrons,
protons and heavy ions in silicon.

Electron processes and models

	Elastic scattering :

	process class is G4MicroElastic

	model class is G4MicroElecElasticModel_new

	Ionization

	process class is G4MicroElecInelastic

	model class is G4MicroElecInelasticModel_new

Proton processes and models

	Ionisation

	process class is G4MicroElecInelastic

	model class is G4MicroElecInelasticModel_new

Heavy ion processes and models

	Ionization

	process class is G4MicroElecInelastic

	model class is G4MicroElecInelasticModel_new

A full list of publications regarding Geant4-MicroElec is directly
available from the Geant4-MicroElec website#16.

New Compton model by Monash U., Australia

A new Compton scattering model for unpolarised photons has been
developed in the relativistic impulse approximation. The model was
developed as an alternative to low energy electromagnetic Compton
scattering models developed from Ribberfors' Compton scattering
framework (Livermore, Penelope Compton models). The model class is named
named G4LowEPComptonModel.

G4LowEPComptonModel has been added to the physics constructor
G4EmStandardPhysics_option4, containing the most accurate models from
the Standard and Low Energy Electromagnetic physics working groups.

Multi-scale Processes

Hadron Impact Ionisation and PIXE

The G4hImpactIonisation process deals with ionisation by impact of
hadrons and alpha particles, and the following generation of PIXE
(Particle Induced X-ray Emission). This process and related classes can
be found in source/processes/electromagnetic/pii.

Further documentation about PIXE simulation with this process is
available here#17.

A detailed description of the related physics features can be found in:

M. G. Pia et al., PIXE Simulation with Geant4 , IEEE Trans. Nucl. Sci. , vol. 56, no. 6, pp. 3614-3649, 2009.#18

A brief summary of the related physics features can be found in the
Geant4 Physics Reference Manual#19.

An example of how to use this process is shown below. A more extensive
example is available in the
eRosita#20
Geant4 advanced example (see examples/advanced/eRosita in your Geant4
installation source).

#include "G4hImpactIonisation.hh"
[...]

void eRositaPhysicsList::ConstructProcess()
{

[...]

 theParticleIterator->reset();
 while((*theParticleIterator)())
 {
 G4ParticleDefinition* particle = theParticleIterator->value();
 G4ProcessManager* processManager = particle->GetProcessManager();
 G4String particleName = particle->GetParticleName();

 if (particleName == "proton")
 {
 // Instantiate the G4hImpactIonisation process
 G4hImpactIonisation* hIonisation = new G4hImpactIonisation();

 // Select the cross section models to be applied for K, L and M shell vacancy creation
 // (here the ECPSSR model is selected for K, L and M shell; one can mix and match
 // different models for each shell)
 hIonisation->SetPixeCrossSectionK("ecpssr");
 hIonisation->SetPixeCrossSectionL("ecpssr");
 hIonisation->SetPixeCrossSectionM("ecpssr");

 // Register the process with the processManager associated with protons
 processManager -> AddProcess(hIonisation, -1, 2, 2);
 }
 }
}

Available cross section model options

The following cross section model options are available:

	protons

	K shell

	ecpssr (based on the ECPSSR theory)

	ecpssr_hs
(based on the ECPSSR theory, with Hartree-Slater correction)

	ecpssr_ua
(based on the ECPSSR theory, with United Atom Hartree-Slater
correction)

	ecpssr_he
(based on the ECPSSR theory, with high energy correction)

	pwba (plane wave Born approximation)

	paul (based on the empirical model by Paul and Sacher)

	kahoul (based on the empirical model by Kahoul et al.)

	L shell

	ecpssr

	ecpssr_ua

	pwba

	miyagawa
(based on the empirical model by Miyagawa et al.)

	orlic
(based on the empirical model by Orlic et al.)

	sow
(based on the empirical model by Sow et al.)

	M shell

	ecpssr

	pwba

	alpha particles

	K shell

	ecpssr

	ecpssr_hs

	pwba

	paul (based on the empirical model by Paul and Bolik)

	L shell

	ecpssr

	pwba

	M shell

	ecpssr

	pwba

PIXE data library

The G4hImpactIonisation process uses a PIXE Data Library.

The PIXE Data Library is distributed in the Geant4 G4PII data set,
which must be
downloaded#21
along with Geant4 source code.

The G4PIIDATA environment variable must be defined to refer to the
location of the G4PII PIXE data library in your filesystem; for
instance, if you use a c-like shell

setenv G4PIIDATA path_to_where_G4PII_has_been_downloaded

Further documentation about the PIXE Data Library is available
here#22.

Hadronic Interactions

This section briefly introduces the hadronic physics processes installed
in Geant4. For details of the implementation of hadronic interactions
available in Geant4, please refer to the Physics Reference Manual#23.

Treatment of Cross Sections

Cross section data sets

Each hadronic process object (derived from G4HadronicProcess) may
have one or more cross section data sets associated with it. The term
"data set" is meant, in a broad sense, to be an object that encapsulates
methods and data for calculating total cross sections for a given
process. The methods and data may take many forms, from a simple
equation using a few hard-wired numbers to a sophisticated
parameterisation using large data tables. Cross section data sets are
derived from the abstract class G4VCrossSectionDataSet, and are
required to implement the following methods:

G4bool IsApplicable(const G4DynamicParticle*, const G4Element*)

This method must return True if the data set is able to calculate a
total cross section for the given particle and material, and False
otherwise.

G4double GetCrossSection(const G4DynamicParticle*, const G4Element*)

This method, which will be invoked only if True was returned by
IsApplicable, must return a cross section, in Geant4 default units,
for the given particle and material.

void BuildPhysicsTable(const G4ParticleDefinition&)

This method may be invoked to request the data set to recalculate its
internal database or otherwise reset its state after a change in the
cuts or other parameters of the given particle type.

void DumpPhysicsTable(const G4ParticleDefinition&)

This method may be invoked to request the data set to print its internal
database and/or other state information, for the given particle type, to
the standard output stream.

Cross section data store

Cross section data sets are used by the process for the calculation of
the physical interaction length. A given cross section data set may only
apply to a certain energy range, or may only be able to calculate cross
sections for a particular type of particle. The class
G4CrossSectionDataStore has been provided to allow the user to
specify, if desired, a series of data sets for a process, and to arrange
the priority of data sets so that the appropriate one is used for a
given energy range, particle, and material. It implements the following
public method:

G4double ComputeCrossSection(const G4DynamicParticle*, const G4Material*)
G4double GetCrossSection(const G4DynamicParticle*, const G4Element*, const G4Material*)

For a given particle and material, this method returns a cross section
value provided by one of the collection of cross section data sets
listed in the data store object. If there are no known data sets, a
G4Exception is thrown and DBL_MIN is returned. Otherwise, each
data set in the list is queried, in reverse list order, by invoking its
IsApplicable method for the given particle and material. The first
data set object that responds positively will then be asked to return a
cross section value via its GetCrossSection method. If no data set
responds positively, a G4Exception is thrown and DBL_MIN is
returned.

void AddDataSet(G4VCrossSectionDataSet* aDataSet)

This method adds the given cross section data set to the end of the list
of data sets in the data store. For the evaluation of cross sections,
the list has a LIFO (Last In First Out) priority, meaning that data sets
added later to the list will have priority over those added earlier to
the list. Another way of saying this, is that the data store, when given
a GetCrossSection request, does the IsApplicable queries in the
reverse list order, starting with the last data set in the list and
proceeding to the first, and the first data set that responds positively
is used to calculate the cross section.

void BuildPhysicsTable(const G4ParticleDefinition& aParticleType)

This method may be invoked to indicate to the data store that there has
been a change in the cuts or other parameters of the given particle
type. In response, the data store will invoke the BuildPhysicsTable
of each of its data sets.

void DumpPhysicsTable(const G4ParticleDefinition&)

This method may be used to request the data store to invoke the
DumpPhysicsTable method of each of its data sets.

Default cross sections

The default cross section for main hadrons:

- G4ParticleInelasticXS and G4BGGNucleonElasticXS for protons
- G4NeutronInelasticXS, G4NeutronElasticXS, G4NeutronCaptureXS
- G4BGGPionInelasticXS and G4BGGPionElasticXS for pions
- G4GammaNuclearXS for gamma-nuclear

For other hadrons and ions cross section is provided by generic classes:

- G4CrosssectionInelastic
- G4CrossSectionElastic

which require concrete cross section implementation
via the interface G4VComponentCrossSection. Following main components
are used:

- G4ComponentGGHadronNucleusXsc for hadrons
- G4ComponentAntiNuclNuclearXS for anti-protons and anti light ions
- G4ComponentGGNuclNuclXsc for ions

The default cross sections can be overridden in whole or in part by the
user. To this end, the base class G4HadronicProcess has a get
method:

G4CrossSectionDataStore* GetCrossSectionDataStore()

which gives public access to the data store for each process. The user's
cross section data sets can be added to the data store according to the
following framework:

G4Hadron...Process aProcess(...)

MyCrossSectionDataSet myDataSet(...)

aProcess.GetCrossSectionDataStore()->AddDataSet(&MyDataSet)

The added data set will override the default cross section data whenever
so indicated by its IsApplicable method.

In addition to the get method, G4HadronicProcess also has the
method

void SetCrossSectionDataStore(G4CrossSectionDataStore*)

which allows the user to completely replace the default data store with
a new data store.

It should be noted that a process does not send any information about
itself to its associated data store (and hence data set) objects. Thus,
each data set is assumed to be formulated to calculate cross sections
for one and only one type of process. Of course, this does not prevent
different data sets from sharing common data and/or calculation methods,
as in the case of the G4HadronCrossSections class mentioned above.
Indeed, G4VCrossSectionDataSet specifies only the abstract interface
between physics processes and their data sets, and leaves the user free
to implement whatever sort of underlying structure is appropriate.

Cross-sections for low energy neutron transport

The cross section data for low energy neutron transport are organized in
a set of files that are read in by the corresponding data set classes at
time zero. Hereby the file system is used, in order to allow highly
granular access to the data. The ``root'' directory of the
cross-section directory structure is accessed through an environment
variable, G4NEUTRONHPDATA, which is to be set by the user. The
classes accessing the total cross-sections of the individual processes,
i.e., the cross-section data set classes for low energy neutron
transport, are G4NeutronHPElasticData, G4NeutronHPCaptureData,
G4NeutronHPFissionData, and G4NeutronHPInelasticData.

For detailed descriptions of the low energy neutron total
cross-sections, they may be registered by the user as described above
with the data stores of the corresponding processes for neutron
interactions.

It should be noted that using these total cross section classes does not
require that the neutron_hp models also be used. It is up to the user
to decide whether this is desirable or not for his particular problem.

The compact version of neutron cross sections derived
from HP database are provided with classes G4NeutronInelasticXS,
G4NeutronElasticXS, and G4NeutronCaptureXS.
Using low-energy data for protons, deuterons, tritons, alpha, and He3
the data for the class G4ParticleInelasticXS are obtained.
Gamma-nuclear cross section is extracted from the IAEA
Evaluated Photonuclear Data Library (IAEA/PD-2019)
here#24.

These cross-sections for n, p, d, t, He3, He4, and gamma
are accessed through an environment variable G4PARTICLEXSDATA.

Cross-sections for low-energy charged particle transport

The cross-section data for low-energy charged particle transport are
organized in a set of files that are read at initialization, similarly
to the case of low-energy neutron transport. The "root" directory of the
cross-section directory structure is accessed through an environment
variable, G4PARTICLEHPDATA, which has to be set by the user. This
variable has to point to the directory where the low-energy charged
particle data have been installed, e.g. G4TENDL1.4 for the Geant4
release 10.7 (note that the download of this data library from the
Geant4 web site is not done automatically, i.e. it must be done manually
by the user):

export G4PARTICLEHPDATA=/your/path/G4TENDL1.4/

It is expected that the directory $G4PARTICLEHPDATA has the
following five subdirectories, corresponding to the charged particles
that can be handled by the low-energy charged particle transport:
Proton/, Deuteron/, Triton/, He3/, Alpha/. It is
possible for the user to overwrite the default directory structure with
individual environment variables pointing to custom data libraries for
each particle type. This is considered an advanced/expert user feature.
These directories are set by the following environment variables:
G4PROTONHPDATA, for proton; G4DEUTERONHPDATA, for deuteron;
G4TRITONHPDATA, for triton; G4HE3HPDATA, for He3;
G4ALPHAHPDATA, for alpha. Note that if any of these variables is not
defined explicitly, e.g. G4TRITONHPDATA, then the corresponding data
library is expected to be a subdirectory of $G4PARTICLEHPDATA/, e.g.
$G4PARTICLEHPDATA/Triton/. If instead all the above five
environmental variables are set, then G4PARTICLEHPDATA does not need
to be specified; even if it is set, then its value will be ignored
(because the per-particle ones take precedence).

Hadrons at Rest

List of implemented "Hadron at Rest" processes

The following process classes have been implemented:

	[image: \pi^-, K^-, \sigma^-, \xi^-, \omega^-] absorption (class name
G4HadronicAbsorptionBertini)

	neutron capture (class name G4NeutronCaptureProcess)

	anti-proton, anti-[image: \sigma^+], anti-deuteron, anti-triton, anti-alpha,
anti-He3 annihilation (class name G4HadronicAbsorptionFritiof)

	mu- capture (class name G4MuonMinusCapture)

Capture of low-energy negatively charged particles is a complex process
involving formation of mesonic atoms, X-ray cascade and Auger cascade,
nuclear interaction. In the case of mu- there is also a probability to
decay from K-shell of mesonic atom. To handle this a base process class
G4HadronicStoppingProcess is used.

For the case of neutrons, Geant4 offer simulation down to thermal
energies. The capture cross section generally increases when neutron
energy decreases and there are many nuclear resonances. In Geant4
neutron capture cross sections are parameterized using ENDF database.

Hadrons in Flight

What processes do you need?

For hadrons in motion, there are four physics process classes.
table.phys.proc.1 shows each process and the
particles for which it is relevant.

How to register Models

To register an inelastic process model for a particle, a proton for
example, first get the pointer to the particle's process manager:

G4ParticleDefinition *theProton = G4Proton::ProtonDefinition();
G4ProcessManager *theProtonProcMan = theProton->GetProcessManager();

Create an instance of the particle's inelastic process:

G4HadronicProcess *theProcess = new G4HadronicProcess();

Create an instance of the model which determines the secondaries
produced in the interaction, and calculates the momenta of the
particles, for instance the Bertini cascade model:

G4CascadeInterface *theCascade = new G4CascadeInterface();

Register the model with the particle's inelastic process:

theProcess->RegisterMe(theCascade);

Finally, add the particle's inelastic process to the list of discrete
processes:

theProcessManager->AddDiscreteProcess(theProcess);

The particle's inelastic process class, G4HadronInelasticProcess
may be used, which is equivalent to G4HadronicProcess
class. The G4HadronicProcess class derives from the
G4VDiscreteProcess class. The inelastic, elastic, capture, and
fission processes derive from the G4HadronicProcess class. This pure
virtual class also provides the energy range manager object and the
RegisterMe access function.

In-flight, final-state hadronic models derive, directly or indirectly,
from the G4InelasticInteraction class, which is an abstract base
class since the pure virtual function ApplyYourself is not defined
there. G4InelasticInteraction itself derives from the
G4HadronicInteraction abstract base class. This class is the base
class for all the model classes. It sorts out the energy range for the
models and provides class utilities. The G4HadronicInteraction class
provides the Set/GetMinEnergy and the Set/GetMaxEnergy functions
which determine the minimum and maximum energy range for the model. An
energy range can be set for a specific element, a specific material, or
for general applicability:

void SetMinEnergy(G4double anEnergy, G4Element *anElement)
void SetMinEnergy(G4double anEnergy, G4Material *aMaterial)
void SetMinEnergy(const G4double anEnergy)
void SetMaxEnergy(G4double anEnergy, G4Element *anElement)
void SetMaxEnergy(G4double anEnergy, G4Material *aMaterial)
void SetMaxEnergy(const G4double anEnergy)

Which models are there, and what are the defaults

In Geant4, any model can be run together with any other model without
the need for the implementation of a special interface, or batch suite,
and the ranges of applicability for the different models can be steered
at initialisation time. This way, highly specialised models (valid only
for one material and particle, and applicable only in a very restricted
energy range) can be used in the same application, together with more
general code, in a coherent fashion.

Each model has an intrinsic range of applicability, and the model chosen
for a simulation depends very much on the use-case. Consequently, there
are no "defaults". However, physics lists are provided which specify
sets of models for various purposes.

Two types of hadronic shower models have been implemented: data driven
models and theory driven models.

	Data driven models are available for the transport of low energy
neutrons in matter in sub-directory hadronics/models/neutron_hp.
The modeling is based on the data formats of ENDF/6, and all
distributions of this standard data format are implemented. The data
sets used are selected from data libraries that conform to these
standard formats. The file system is used in order to allow granular
access to, and flexibility in, the use of the cross sections for
different isotopes, and channels. The energy coverage of these models
is from thermal energies to 20 MeV.

	Theory driven models are available for inelastic scattering in a
first implementation, covering the full energy range of LHC
experiments. They are located in sub-directory
hadronics/models/generator. The current philosophy implies the
usage of parton string models at high energies, of intra-nuclear
transport models at intermediate energies, and of statistical
break-up models for de-excitation.

High-precision neutron interactions (NeutronHP)

Nuclear models fail (sometimes catastrophically) at predicting with
reasonable accuracies the nuclear cross sections of neutrons (and other
particles). For this reason, all physical quantities relevant for an
accurate modeling of nuclear reactions in Monte Carlo simulations need
to be provided as a database which includes, ideally:

	cross sections

	angular distributions of the emitted particles

	energy spectra of the emitted particles

	energy-angle correlated spectrum (double-differential cross sections,
DDX)

	neutrons per fission

	fission spectra

	fission product yields

	photo production data

For the case of neutron induced reactions, such databases are called
“evaluated data”, in the sense that they contain recommended values for
different quantities that rely on compilations of experimental nuclear
data and usually completed with theoretical predictions, benchmarked
against available experimental data (i.e. integral and differential
experiments) when possible. It should be noticed that the information
available varies from isotope to isotope and can be incomplete or
totally missing.

The G4NeutronHP package in Geant4 allows using evaluated nuclear data
libraries in the G4NDL format. Geant4 users should know that any
simulation involving neutrons with energies below 20 MeV and not using
the G4NeutronHP package can lead to unreliable results. Geant4 users are
therefore encouraged to use it, although they should be aware of the
limitations of using evaluated nuclear data libraries.

An example about how to implement the G4NeutronHP package into physics
list in a Geant4 application can be found in the example case (among
others distributed with Geant4) extended/radioactivedecay/rdecay02.
Three different processes are included in that example: elastic, capture
and inelastic. The inelastic reactions in G4NeutronHP are all reactions
except elastic, capture and fission, so fission should also be included
in the physics list, if needed, and it is done in the same way as it is
done for the other three.

The G4NeutronHP package must be used together with evaluated nuclear
data libraries. They are available on the Geant4 download page#25 and from the
IAEA nuclear data web site#26 where a
larger set of different libraries, including isotopes with Z > 92, is
available.

The evaluated nuclear data libraries do differ and thus the results of
the Monte Carlo simulations will depend on the library used. It is a
safe practice to perform simulations with (at least) two different
libraries for estimating the uncertainties associated to the nuclear
data.

Together with a good implementation of the physics list, users must be
very careful with the definition of the materials performed in a Monte
Carlo simulation when low energy neutron transport is relevant. In
contrast to other kind of simulations, the isotopic composition of the
elements which compose the different materials can strongly affect the
obtained simulation results. Because of this, it is strongly recommended
to define specifically the isotopic composition of each element used in
the simulation, as it is described in the Geant4 user’s manual. In
principle, such a practice is not mandatory if natural isotopic
compositions are used, since Geant4 contains them in their databases.
However, by defining them explicitly some unexpected problems may be
avoided and a better control of the simulation will be achieved.

It is highly recommended or mandatory to set the following UNIX
environment variable and UI commands when running a Geant4 application:

	G4NEUTRONHPDATA
	[path to the G4NDL format data libraries] (mandatory).

	/process/had/particle_hp/skip_missing_isotopes true
	This UI commands sets to zero the cross section of the isotopes which are not
present in the neutron library. If Geant4 doesn’t find an isotope,
then it looks for the natural composition data of that element. Only
if the element is not found then the cross section is set to zero.
On the contrary, if this variable is not defined, Geant4 looks then
for the neutron data of another isotope close in Z and A, which will
have completely different nuclear properties and lead to incorrect
results (highly recommended).

	/process/had/particle_hp/do_not_adjust_final_state true
	Without this UI command, a Geant4 model that attempts to
satisfy the energy and momentum conservation in some nuclear
reactions, by generating artificial gamma rays. By setting such a
variable one avoids the correction and leads to the result obtained
with the ENDF-6 libraries. Even though energy and momentum
conservation are desirable, the ENDF-6 libraries do not provide the
necessary correlations between secondary particles for satisfying
them in all cases. On the contrary, ENDF-6 libraries intrinsically
violate energy and momentum conservation for several processes and
have been built for preserving the overall average quantities such
as average energy releases, average number of secondaries… (highly
recommended).

The G4NDL format libraries are based on the ENDF-6 format libraries,
which contain evaluated (i.e. recommended) nuclear data prepared for
their use in transport codes. These data are essentially nuclear
reaction cross sections together with the distribution in energy and
angle of the secondary reaction products. As a consequence of how the
data is written in the ENDF files, there are some features that may be
or may be not expected in the results of a Monte Carlo calculation.

The information concerning the creation of the reaction products can be
incomplete and/or uncorrelated, in the sense that is described below:

	Incomplete information.

This applies when there is no information about how to generate a
secondary particle. As an example, it is possible to have only the
cross section data of an (n,p) reaction, without any information
concerning the energy and angle of the secondary proton. In this case
Geant4 will produce the proton considering that it is emitted
isotropically in the center of mass frame, with an energy which is
deduced from assuming that the residual nucleus is in its ground
state.

	Uncorrelated information.

This applies when:

	The energy and angle distributions of a reaction product may be
uncorrelated. As a consequence, the reaction products can be
generated with an unphysical energy-angle relationship.

	The energy-angle distributions of different reaction products of a
certain reaction are always uncorrelated. As an example, consider
that in a (n, 2p) reaction at a certain neutron energy both
resulting protons can be emitted with energies ranging from 0 to
5MeV. In this case the energy and angle of each proton will be
sampled independently of the energy and angle of the other proton,
so there will be events in which both protons will be emitted with
energies close to 5 MeV and there will also be events in which
both protons will be emitted with energies close to 0 MeV. As a
consequence, energy and angular momentum won’t be conserved event
by event. However, energy will be conserved in average and the
resulting proton energy spectrum will be correctly produced.

	Concatenated reactions.

There are some cases where several nuclear reactions are put together
as if they were a single reaction (MT=5 reaction, in ENDF-6
format nomenclature). In those cases the information consists in a
cross section, which is the sum of all of them, plus a reaction
product yield and energy-angle distributions for each secondary
particle. In this case the amount of each secondary particle produced
has to be sampled every time the reaction occurs, and it is done
independently of the amount of the other secondary particles
produced.

Thus, in this case neither the energy and angular momentum nor the
number of nucleons is conserved event by event, but all the
quantities should be conserved in average. As a consequence, it is
also not possible to deduce which are the residual nuclei produced,
since no information is available concerning what are the specific
nuclear reactions which take place. It has to be said that sometimes
ENDF libraries include the residual nuclei as an outgoing particle.
However, Geant4 does not manage that information, at present. This
situation is quite uncommon in neutron data libraries up to 20 MeV.
However, it is quite common to find it in charged particle libraries
below 20 MeV or in neutron libraries above 20 MeV.

As a consequence of what has been presented above, some general features
can be expected in the results of a Monte Carlo calculation performed
with the G4NeutronHP package:

	The neutron transport, which means how the neutron looses energy in
the collisions, when and how it is absorbed…, is quite trustable,
since the main purpose of the ENDF neutron libraries is to perform
this neutron transport.

	The production of neutrons due to neutron induced nuclear reactions
is usually trustable, with the exception of the energy-angle
correlations when several neutrons are produced in the same nuclear
reaction.

	The results concerning the production of charged particles have to be
always questioned. A look into the ENDF format library used can
indicate which results are trustable and which are not. This can be
done, for example, in t2 web-page#27, among other
websites.

	The results concerning the production of [image: \gamma]-rays have to be questioned
always. For example, the information on the number and energies of
[image: \gamma]-rays emitted in the neutron capture process is incomplete for
almost all the nuclei and is frequently also uncorrelated. When the
information is available, it will be used, but one can obtain results
which are quite far from reality on an event by event basis: the
total energy of the cascade won’t be correct in many cases and only
some specific [image: \gamma]-rays which are stored in the neutron databases will
be emitted. If there isn’t any information concerning these [image: \gamma]-rays,
Geant4 will use a simple a model instead which is generally missing
the relevant spectroscopic information. The results concerning the
generation of residual nuclei (for example, in activation
calculations) are usually trustable, with the exception of libraries
with MT=5 reactions, as described above
(uncorrelated).

As a general conclusion, users should always be critical with the
results obtained with Monte Carlo simulation codes, and this also
applies to Geant4. They have to anticipate which results can be trusted
and which results should be questioned. For the particular case of the a
closer look into the underlying evaluated nuclear data in the ENDF format
libraries will allow to check what is the information available in a
certain library for some specific isotope and a certain reaction. There
are several public nuclear data sites like
t2 web#28.

The transport of very low energy neutrons (below 5 eV) has to be
performed using the thermal neutron data libraries. At these energies,
the fact that the nuclei are in atoms which form part of a certain
molecule inside a material (crystal lattice, liquid, plastic…) plays an
important role, since there can be a transference of momentum between
the neutron and the whole structure of the material, not only with the
nucleus. This is of particular importance for material used as neutron
moderators, i.e., materials with low A (mass number) used to decrease
the incident neutron energy in only a few collisions. Since the property
is related to the nucleus in the material, as an example, there is the
need for having different thermal libraries for Hydrogen in
polyethylene, Hydrogen in water and so on.

If neutron collisions at these energies are relevant for the problem to
be simulated, thermal libraries should be used for the materials if they
are available. If they are not, the results obtained from the simulation
will not be trustable in the neutron energy range below 5 eV, especially
when using low mass elements in the simulation.

To use the thermal libraries the following lines should be included in
the physics list:

G4HadronElasticProcess* theNeutronElasticProcess = new G4HadronElasticProcess;
// Cross Section Data set
G4NeutronHPElasticData* theHPElasticData = new G4NeutronHPElasticData;
theNeutronElasticProcess->AddDataSet(theHPElasticData);
G4NeutronHPThermalScatteringData* theHPThermalScatteringData = new G4NeutronHPThermalScatteringData;
theNeutronElasticProcess->AddDataSet(theHPThermalScatteringData);
// Models
G4NeutronHPElastic* theNeutronElasticModel = new G4NeutronHPElastic;
theNeutronElasticModel->SetMinEnergy(4.0*eV);
theNeutronElasticProcess->RegisterMe(theNeutronElasticModel);
G4NeutronHPThermalScattering* theNeutronThermalElasticModel = new G4NeutronHPThermalScattering;
theNeutronThermalElasticModel->SetMaxEnergy(4.0*eV);
theNeutronElasticProcess->RegisterMe(theNeutronThermalElasticModel);
// Apply Processes to Process Manager of Neutron
G4ProcessManager* pmanager = G4Neutron::Neutron()->GetProcessManager();
pmanager->AddDiscreteProcess(theNeutronElasticProcess);

And the materials should be defined with a specific name. For example,
to use the thermal library for Hydrogen in water, the water should be
defined as:

G4Element* elTSHW = new G4Element("TS_H_of_Water", "H_WATER", 1.0, 1.0079*g/mole);
G4Material* matH2O_TS = new G4Material("Water_TS", density=1.0*g/cm3, ncomponents=2);
matH2O_TS->AddElement(elTSHW,natoms=2);
matH2O_TS->AddElement(elO,natoms=1);

where the important thing is the name "TS_H_of_Water", which is a
specific name used by G4NeutronHP. In order to see which thermal
libraries are available, they can be found in the
G4NDL4.0/ThermalScattering folder (or equivalent, for other neutron
libraries). Then, one has to look into the
G4NeutronHPThermalScatteringNames.cc source file, under
source/processes/hadronic/models/neutron_hp/src. There are some
lines similar to:

names.insert(std::pair<G4String,G4String>("TS_H_of_Water", "h_water"));

where "TS_H_of_Water" means Hydrogen in water. Names similar to
"TS_H_of_Water" like "TS_C_of_Graphite" or
"TS_H_of_Polyethylene" can be found and used in the same way as
described above.

High-precision charged particle interactions (ParticleHP)

By default in ParticleHP the final state is adjusted to ensure better
conservation laws (for charge, energy, momentum, baryon number). However,
projectile charged particles can be improved by using the following
UI command:
/process/had/particle_hp/do_not_adjust_final_state true

The adjustment of the final state is recommended for realistic detector
response in the case of neutron interactions. For the use-case of
reactor physics and dosimetry, where average quantities are important,
not adjusting the final state (i.e. setting the above environment
variable) improves accuracy.

Note that, for the time being, the UI command
/process/had/particle_hp/do_not_adjust_final_state true
affects both primary neutrons and charged particles, so be careful which is
the use-case and observable quantity you are interested in.

Switching statistical nuclear de-excitation models

Nuclear reactions at intermediate energies (from a few MeV to a few GeV)
are typically modelled in two stages. The first, fast reaction stage is
described by a dynamical model (quantum molecular dynamics, intranuclear
cascade, pre-compound, etc.) and often results in the production of one
or several excited nuclei. The second reaction stage describes the
de-excitation of the excited nuclei and it is usually handled by
statistical de-excitation models. The models for the two reaction stages
can in principle be chosen independently, but the current design of the
Geant4 hadronics framework makes it difficult to do this at the
physics-list level. However, another solution exists.

Geant4 provides several nuclear de-excitation modules. The default one
is G4ExcitationHandler, which is described in detail in the
Physics Reference Manual#29.
The Bertini-style G4CascadeInterface uses an internal de-excitation
model. The ABLA V3 model is also available.

Options are available for steering of the pre-compound model and the
de-excitation module. These options may be invoked by the new C++
interface class G4DeexPrecoParameters. The interface
G4NuclearLevelData::Instance()->GetParameters() is thread safe,
parameters are shared between threads, and parameters are shared between
all de-excitation and pre-compound classes. Parameters may be modified
at G4State_PreInit state of Geant4. This class has the following public
methods:

	Dump()

	StreamInfo(std::ostream&)

	SetLevelDensity(G4double)

	SetR0(G4double)

	SetTransitionsR0(G4double)

	SetFBUEnergyLimit(G4double)

	SetFermiEnergy(G4double)

	SetPrecoLowEnergy(G4double)

	SetPrecoHighEnergy(G4double)

	SetPhenoFactor(G4double)

	SetMinExcitation(G4double)

	SetMaxLifeTime(G4double)

	SetMinExPerNucleounForMF(G4double)

	SetMinEForMultiFrag(G4double)

	SetMinZForPreco(G4int)

	SetMinAForPreco(G4int)

	SetPrecoModelType(G4int)

	SetDeexModelType(G4int)

	SetTwoJMAX(G4int)

	SetVerbose(G4int)

	SetNeverGoBack(G4bool)

	SetUseSoftCutoff(G4bool)

	SetUseCEM(G4bool)

	SetUseGNASH(G4bool)

	SetUseHETC(G4bool)

	SetUseAngularGen(G4bool)

	SetPrecoDummy(G4bool)

	SetCorrelatedGamma(G4bool)

	SetStoreICLevelData(G4bool)

	SetInternalConversionFlag(G4bool)

	SetLevelDensityFlag(G4bool)

	SetDiscreteExcitationFlag(G4bool)

	SetIsomerProduction(G4bool)

	SetDeexChannelType(G4DeexChannelType)

It is possible to replace the default de-excitation model with ABLA V3
for any intranuclear-cascade model in Geant4 except
G4CascadeInterface. The easiest way to do this is to call the
SetDeExcitation() method of the relevant intranuclear-cascade-model
interface. This can be done even if you are using one of the reference
physics lists. The technique is the following.

For clarity's sake, assume you are using the FTFP_INCLXX physics
list, which uses INCL++, the Liege Intranuclear Cascade model
(G4INCLXXInterface) at intermediate energies. You can couple
INCL++ to ABLA V3 by adding a run action
(Usage of User Actions) and adding the following code snippet to
BeginOfRunAction().

Listing 68 Coupling the INCL++ model to ABLA V3

#include "G4HadronicInteraction.hh"
#include "G4HadronicInteractionRegistry.hh"
#include "G4INCLXXInterface.hh"
#include "G4AblaInterface.hh"

void MyRunAction::BeginOfRunAction(const G4Run*)
{
 // Get hold of pointers to the INCL++ model interfaces
 std::vector<G4HadronicInteraction *> interactions = G4HadronicInteractionRegistry::Instance()
 ->FindAllModels(G4INCLXXInterfaceStore::GetInstance()->getINCLXXVersionName());
 for(std::vector<G4HadronicInteraction *>::const_iterator iInter=interactions.begin(), e=interactions.end();
 iInter!=e; ++iInter) {
 G4INCLXXInterface *theINCLInterface = static_cast<G4INCLXXInterface*>(*iInter);
 if(theINCLInterface) {
 // Instantiate the ABLA model
 G4HadronicInteraction *interaction = G4HadronicInteractionRegistry::Instance()->FindModel("ABLA");
 G4AblaInterface *theAblaInterface = static_cast<G4AblaInterface*>(interaction);
 if(!theAblaInterface)
 theAblaInterface = new G4AblaInterface;
 // Couple INCL++ to ABLA
 G4cout << "Coupling INCLXX to ABLA" << G4endl;
 theINCLInterface->SetDeExcitation(theAblaInterface);
 }
 }
}

This technique may be applied to any intranuclear-cascade model (i.e.
models that inherit from G4VIntraNuclearTransportModel), except
G4CascadeInterface. For example, if your physics list relies on the
Binary-Cascade model (e.g. FTF_BIC), you'll need to do

// Get hold of a pointer to the Binary-Cascade model interface
std::vector<G4HadronicInteraction *> interactions = G4HadronicInteractionRegistry::Instance()
 ->FindAllModels("Binary Cascade");
for(std::vector<G4HadronicInteraction *>::const_iterator iInter=interactions.begin(), e=interactions.end();
 iInter!=e; ++iInter) {
 G4BinaryCascade *theBICInterface = static_cast<G4BinaryCascade*>(*iInter);
 if(theBICInterface) {

 // Instantiate ABLA V3 as in the example above
 // [...]

 // Couple BIC to ABLA
 theBICInterface->SetDeExcitation(theAblaInterface);
 }
}

Particle Decay Process

This section briefly introduces decay processes installed in Geant4. For
details of the implementation of particle decays, please refer to the
Physics Reference Manual#30.

Particle Decay Class

Geant4 provides a G4Decay class for both at rest and in
flight particle decays. G4Decay can be applied to all particles
except:

	massless particles, i.e.,
	G4ParticleDefinition::thePDGMass <= 0

	particles with "negative" life time, i.e.,
	G4ParticleDefinition::thePDGLifeTime < 0

	shortlived particles, i.e.,
	G4ParticleDefinition::fShortLivedFlag = True

Decay for some particles may be switched on or off by using
G4ParticleDefinition::SetPDGStable() as well as
ActivateProcess() and InActivateProcess() methods of
G4ProcessManager.

G4Decay proposes the step length (or step time for AtRest)
according to the lifetime of the particle unless
PreAssignedDecayProperTime is defined in G4DynamicParticle.

The G4Decay class itself does not define decay modes of the
particle. Geant4 provides two ways of doing this:

	using G4DecayChannel in G4DecayTable, and

	using thePreAssignedDecayProducts of G4DynamicParticle

The G4Decay class calculates the PhysicalInteractionLength and
boosts decay products created by G4VDecayChannel or event
generators. See below for information on the determination of the decay
modes.

An object of G4Decay can be shared by particles. Registration of the
decay process to particles in the ConstructPhysics method of
PhysicsList (see How to Specify Physics Processes) is
shown in Listing 69.

Listing 69 Registration of the decay process to particles in the ConstructPhysics method of PhysicsList.

#include "G4Decay.hh"
void MyPhysicsList::ConstructGeneral()
{
 // Add Decay Process
 G4Decay* theDecayProcess = new G4Decay();
 theParticleIterator->reset();
 while((*theParticleIterator)()){
 G4ParticleDefinition* particle = theParticleIterator->value();
 G4ProcessManager* pmanager = particle->GetProcessManager();
 if (theDecayProcess->IsApplicable(*particle)) {
 pmanager ->AddProcess(theDecayProcess);
 // set ordering for PostStepDoIt and AtRestDoIt
 pmanager ->SetProcessOrdering(theDecayProcess, idxPostStep);
 pmanager ->SetProcessOrdering(theDecayProcess, idxAtRest);
 }
 }
}

Decay Table

Each particle has its G4DecayTable, which stores information on the
decay modes of the particle. Each decay mode, with its branching ratio,
corresponds to an object of various "decay channel" classes derived
from G4VDecayChannel. Default decay modes are created in the
constructors of particle classes. For example, the decay table of the
neutral pion has G4PhaseSpaceDecayChannel and
G4DalitzDecayChannel as follows:

// create a decay channel
G4VDecayChannel* mode;
// pi0 -> gamma + gamma
mode = new G4PhaseSpaceDecayChannel("pi0",0.988,2,"gamma","gamma");
table->Insert(mode);
// pi0 -> gamma + e+ + e-
mode = new G4DalitzDecayChannel("pi0",0.012,"e-","e+");
table->Insert(mode);

Decay modes and branching ratios defined in Geant4 are listed in
Definition of a particle.

Branching ratios and life time can be set in tracking time.

// set lifetime
G4Neutron::Neutron()->SetPDGLifeTime(885.7*second);
// allow neutron decay
G4Neutron::Neutron()->SetPDGStable(false);

Branching ratios and life time can be modified by using user commands,
also.

Example: Set 100% br for dalitz decay of pi0

Idle> /particle/select pi0
Idle> /particle/property/decay/select 0
Idle> /particle/property/decay/br 0
Idle> /particle/property/decay/select 1
Idle> /particle/property/decay/br 1
Idle> /particle/property/decay/dump
 G4DecayTable: pi0
 0: BR: 0 [Phase Space] : gamma gamma
 1: BR: 1 [Dalitz Decay] : gamma e- e+

Pre-assigned Decay Modes by Event Generators

Decays of heavy flavor particles such as B mesons are very complex, with
many varieties of decay modes and decay mechanisms. There are many
models for heavy particle decay provided by various event generators and
it is impossible to define all the decay modes of heavy particles by
using G4VDecayChannel. In other words, decays of heavy particles
cannot be defined by the Geant4 decay process, but should be defined by
event generators or other external packages. Geant4 provides two ways to
do this: pre-assigned decay mode and external decayer.

In the latter approach, the class G4VExtDecayer is used for the
interface to an external package which defines decay modes for a
particle. If an instance of G4VExtDecayer is attached to
G4Decay, daughter particles will be generated by the external decay
handler.

In the former case, decays of heavy particles are simulated by an event
generator and the primary event contains the decay information.
G4VPrimaryGenerator automatically attaches any daughter particles to
the parent particle as the PreAssignedDecayProducts member of
G4DynamicParticle. G4Decay adopts these pre-assigned daughter
particles instead of asking G4VDecayChannel to generate decay
products.

In addition, the user may assign a pre-assigned decay time for a
specific track in its rest frame (i.e. decay time is defined in the
proper time) by using the G4PrimaryParticle::SetProperTime() method.
G4VPrimaryGenerator sets the PreAssignedDecayProperTime member of
G4DynamicParticle. G4Decay uses this decay time instead of the
life time of the particle type.

Note on the time threshold for radioactive decay of ions

Since Geant4 version 11.0, a time threshold for the radioactive decay of ions
has been introduced: nuclides with a sampled lifetime longer than this
threshold are ignored (i.e. killed with neither daughters nor
deposited energy). This is aimed to avoid confusing results in applications
where a time window is not explicitly defined, and the effect of very
slow radioactive decays of ions is assumed to be negligible -
which is not always true!

In Geant4 versions 11.0 and 11.1 (and subsequent patches), the default time
threshold was 1027ns, corresponding to about twice the age of the universe.
Starting with Geant4 version 11.2, the default time threshold has been
changed to 1 year.

The motivation was the same as that which brought us to introduce the threshold in
Geant4 version 11.0, i.e. to avoid unexpected differences in the
energy depositions in thick set-ups (e.g. calorimeters or
shielding structures) between physics lists without Radioactive Decay
(e.g. FTFP_BERT, QGSP_BIC, QBBC, etc.) and those with it
(e.g. FTFP_BERT_HP, QGSP_BIC_HP, Shielding, etc.),
when a time window is not explicitly defined by users.
Moreover, in these cases, the results are also depending on the value
of the range threshold for proton (because target nuclei which receive
an elastic recoil above a certain kinetic energy become tracks, and
therefore can have radioactive decays).

For applications where radioactive decays of ions do play an important role,
it is recommended to increase the default time threshold of these decays to
a very high value, e.g. 1.0e+60 years.

This can be done in one of the following three ways:

	Via UI command, e.g.

/process/had/rdm/thresholdForVeryLongDecayTime 1.0e+60 year

(command to be used after /run/initialization)

	Via C++ interface, e.g.

G4HadronicParameters::Instance()->SetTimeThresholdForRadioactiveDecay(1.0e+60*CLHEP::year)

(to be placed in your main program before run initialization)

	Via the second parameter of the constructor of the class:

G4RadioactiveDecay (for analogue mode only) or

G4Radioactivation (for both analogue or biased mode), e.g.

G4RadioactiveDecay("RadioactiveDecay", 1.0e+60*CLHEP::year)

or G4Radioactivation("Radioactivation", 1.0e+60*CLHEP::year)

(this is for custom physics lists, before run initialization).

In the examples, we have followed the first method.

Gamma-nuclear and Lepto-nuclear Processes

Gamma-nuclear and lepto-nuclear reactions are handled in Geant4 as
hybrid processes which typically require both electromagnetic and
hadronic models for their implementation. While neutrino-induced
reactions are not currently provided, the Geant4 hadronic framework is
general enough to include their future implementation as a hybrid of
weak and hadronic models.

The general scheme followed is to factor the full interaction into an
electromagnetic (or weak) vertex, in which a virtual particle is
generated, and a hadronic vertex in which the virtual particle interacts
with a target nucleus. In most cases the hadronic vertex is implemented
by an existing Geant4 model which handles the intra-nuclear propagation.

The cross sections for these processes are parameterizations, either
directly of data or of theoretical distributions determined from the
integration of lepton-nucleon cross sections double differential in
energy loss and momentum transfer.

Electro-nuclear reactions in Geant4 are handled by the classes
G4ElectronNuclearProcess and G4PositronNuclearProcess, which are
both implmented by G4ElectroVDNuclearModel. This model consists of
three sub-models: code which generates the virtual photon from the
lepton-nucleus vertex, the Bertini-style cascade to handle the low and
medium energy photons, and the FTFP model to handle the high energy
photons.

Muon-nuclear reactions are handled similarly. The process
G4MuonNuclearProcess can be assigned the G4MuonVDNuclearModel
which in turn is implemented by three sub-models: virtual gamma
generation code, Bertini-style cascade and the FTFP model.

Resonance effects

Note that the model that generates secondary particles does not take
resonance effects into account. This may be particularly important in the
region of the giant dipole resonance, at ~20MeV for high-Z materials (an
important region for shielding in some medical applications.) Here, about
2/3 of photonuclear interactions may not produce neutrons.

In order to obtain correct photonuclear production in this regime, the user
should use a LEND, data-driven model. Alternatively, if the environment
variable G4CASCADE_CHECK_PHOTONUCLEAR is set, the model will ensure that,
for incident energies less than 50 MeV, the mass of the nucleus changes
during the interaction.

Optical Photon Processes

A photon is considered to be optical when its
wavelength is much greater than the typical atomic spacing. In Geant4
optical photons are treated as a class of particle distinct from their
gamma cousins. Optical photons have different processes than gamma
particles. An important use case for optical photons is that they interact
with boundaries between volumes, undergoing reflection, refraction, etc.

Note

There is no transition between
the optical photon and gamma particle classes: a gamma will never become
an optical photon.

Optical photons are generated in Geant4 by

	Cerenkov effect (class G4Cerenkov)

	Scintillation (class G4Scintillation)

The source code for these classes is in the source/processes/electromagnetic/xrays directory.

Optical photons interact through the processes

	Absorption (class G4OpAbsorption)

	Rayleigh scattering (class G4OpRayleigh)

	Mie scattering (class G4OpMieHG)

	Wave-length shifting (classes G4OpWLS and G4OpWLS2)

	Boundary scattering (class G4OpBoundary)

The source code for these classes is in the source/processes/optical directory.

Optical photons are generated in
Geant4 without regard to energy conservation and their energy must therefore
not be tallied as part of the energy balance of an event.

The are several steps to simulate optical photons in Geant4.

	The optical photon and optical processes must be defined and configured

	Optical properties need to be assigned to relevant materials and surfaces

	If an optical photon is a primary particle, its polarization should be set

Defining optical processes: G4OpticalPhysics constructor

The most straightforward way of using optical physics is to use the
G4OpticalPhysics constructor in main(), as in the extended optical
examples. This automatically includes all the optical physics processes and
provides a default configuration. The configuration is stored in the class
G4OpticalParameters, and can be accessed via the class
G4OpticalParametersMessenger. Both macro commands and C++ methods are
available.

An example of using G4OpticalPhysics is shown in
Listing 70.

Listing 70 An example of using the G4OpticalPhysics constructor in main().

#include "G4OpticalPhysics.hh"

...

G4VModularPhysicsList* physicsList = new FTFP_BERT; // for example
G4OpticalPhysics* opticalPhysics = new G4OpticalPhysics();

physicsList->RegisterPhysics(opticalPhysics);
runManager->SetUserInitialization(physicsList);

// to set parameters in code, if wanted
auto opticalParams = G4OpticalParameters::Instance();
opticalParams->SetWLSTimeProfile("delta");

See the
sections for each process for details on process-specific commands in
the class G4OpticalParametersMessenger. There
are two general commands:

	/process/optical/verbose int sets the verbosity of all processes to the
given value. 0 is silent, 1 is printing during initialization only, 2 is
printing during tracking

	/process/optical/processActivation name bool is used to deactivate
individual processes. name may be one of Cerenkov, Scintillation,
OpAbsorption, OpRayleigh, OpMieHG, OpBoundary, OpWLS, OWLS2. By default,
all the processes are activated.

The optical parameters can be printed by invoking G4OpticalParameters::Instance()->Dump().

Note

In version 10.7, redundant commands were marked as deprecated,
but were still available. In version 11, these commands have
been removed.

Setting the polarization

For the simulation of optical photons to work correctly in Geant4, they
must have a linear polarization. This is unlike most other
particles in Geant4 but is automatically and correctly done for optical
photons that are generated as secondaries by existing processes in
Geant4. If the user wishes to start optical photons as primary
particles, they must set the linear polarization using
particle gun methods, the General Particle Source, or their
PrimaryGeneratorAction. For an unpolarized source, the linear
polarization should be sampled randomly for each new primary photon. See
the extended optical examples for methods to set the polarization.

Defining material properties

The optical properties of the medium which are key to the implementation
of these types of processes are stored as entries in a
G4MaterialPropertiesTable which is a private data member
of the G4Material class.

Each entry in the G4MaterialPropertiesTable consists of a
key and value pair. The key is used to retrieve
the corresponding value. Keys are defined in two enums (and thus are
G4ints). Keys are also available as G4Strings.
Properties are added using the G4String key, but may be accessed by either
the G4String key or the G4int key.
Material property names are listed in tables for each process, below.

These properties may be independent of photon energy (denoted "Constant"
or "Const") or they may be expressed as a function of the photon's energy.
In the case of Constant parameters, the value is a G4double. Methods to
access the Constant parameters have "Const" in their names.

In the case of energy-dependent properties, the value is a
G4MaterialPropertyVector (which is a typedef to G4PhysicsFreeVector).
Energy dependent properties may be added by specifying a G4MaterialPropertyVector,
or by passing two std::vectors of type G4double. The first vector is the energy and
the second vector is the property value at that energy. The numbers of elements in
the two vectors must be the same (if std::vectors are used, Geant4 will check
that the numbers of elements in the two vectors are the same).

For backwards compatibility, energy dependent properties may also be created by
specifying two C arrays of doubles. In this case, it is up to the user to
ensure that both arrays have the same number of values, and the number of values
must be passed as an argument.

Typically, a user only needs to add properties. Authors of processes that need
these properties will need to access the values. Methods to add properties are:

	void AddConstProperty(const G4String& key, G4double PropertyValue)

	void AddConstProperty(const char* key, G4double PropertyValue)

	G4MaterialPropertyVector* AddProperty(const G4String& key, const std::vector<G4double>& photonEnergies, const std::vector<G4double>& propertyValues, G4bool createNewKey = false, G4bool spline = false)

	G4MaterialPropertyVector* AddProperty(const char* key, G4double* PhotonEnergies, G4double* PropertyValues, G4int NumEntries, G4bool createNewKey = false, G4bool spline = false)

	void AddProperty(const G4String& key, G4MaterialPropertyVector* opv, G4bool createNewKey = false)

	void AddProperty(const char* key, G4MaterialPropertyVector* opv, G4bool createNewKey = false)

	void AddProperty(const G4String& key, const G4String& mat)

The createNewKey argument, if false, will check that the key string is one of the
default keys. See User-defined properties for more
information. The spline argument enables spline interpolation of the data.

An example of adding material properties to a material
is shown in Listing 71. In this
example the interpolation of the G4MaterialPropertyVector is to be done
by a spline fit. The default is a linear interpolation.

Listing 71 Example of optical properties added to a G4MaterialPropertiesTable
and linked to a G4Material

G4Material* scintillator = new G4Material(/*...*/);

std::vector<G4double> energy = {2.034*eV, 3.*eV, 4.136*eV};
std::vector<G4double> rindex = {1.3435, 1.351, 1.3608};
std::vector<G4double> absorption = {344.8*cm, 850.*cm, 1450.0*cm};

G4MaterialPropertiesTable* MPT = new G4MaterialPropertiesTable();

// property independent of energy
MPT->AddConstProperty("SCINTILLATIONYIELD", 100./MeV);

// properties that depend on energy
MPT->AddProperty("RINDEX", energy, rindex);
MPT->AddProperty("ABSLENGTH", energy, absorption);

scintillator->SetMaterialPropertiesTable(MPT);

Note

Starting in version 11.0, Geant4 will check that the property name
is in the list of pre-defined properties. This avoids errors due to
spelling mistakes. If you want to define a new property name, see
User-defined properties.

Note

Digitized data of refractive indices for many materials can be accessed for instance at https://refractiveindex.info.

Pre-defined properties

Starting in version 11.0, some optical material properties are defined in
Geant4. Currently, these are the refractive indices for "Air", "Water", "PMMA", and
"Fused Silica". The precise values are found in
source/materials/include/G4OpticalMaterialProperties.hh.

To use them, add them to the material properties table as follows:

G4MaterialPropertiesTable* MT = new G4MaterialPropertiesTable();
MT->AddProperty("RINDEX", "Fused Silica");

User-defined properties

One may create their own properties, for example, for use in custom
processes. To facilitate this, the various AddProperty()/AddConstProperty()
methods have a default argument createNewKey. Set this to true
to allow a new key name.

myMPT->AddConstProperty("USERDEFINEDCONST", 3.14, true);

This value may accessed by the string name:

G4double val = myMPT->GetConstProperty("USERDEFINEDCONST");

but there is a potential speed-up. Material properties are stored internally
in a vector. To access a material property, first find the index of the
property (e.g. at initialization), then use the index during the event loop.

G4int index = myMPT->GetConstPropertyIndex("USERDEFINEDCONST");
...
G4double val = myMPT->GetConstProperty(index);

It is possible to test if a property has been defined. In the case of constant
properties, the methods ConstPropertyExists(const G4String& key),
ConstPropertyExists(const char* key), ConstPropertyExists(const G4int index)
return true if the property is defined, false otherwise. For energy-dependent
properties, the GetProperty(...) methods return nullptr if the
property has not been defined.

Cerenkov Effect

The radiation of Cerenkov light occurs when a charged particle moves
through a dispersive medium faster than the group velocity of light in
that medium. Photons are emitted on the surface of a cone, whose opening
angle with respect to the particle's instantaneous direction decreases
as the particle slows down. At the same time, the frequency of the
photons emitted increases, and the number produced decreases. When the
particle velocity drops below the local speed of light, the radiation
ceases and the emission cone angle collapses to zero. The photons
produced by this process have an inherent polarization perpendicular to
the cone's surface at production.

To generate Cerenkov optical photons in a material, refractive index
must be specified using the material property name
RINDEX.

The flux, spectrum, polarization and emission of Cerenkov radiation in
the AlongStepDoIt method of the class G4Cerenkov follow
well-known formulae, with two inherent computational limitations. The
first arises from step-wise simulation, and the second comes from the
requirement that numerical integration calculate the average number of
Cerenkov photons per step. The process makes use of a G4PhysicsTable
which contains incremental integrals to expedite this calculation.

The time and position of Cerenkov photon emission are calculated from
quantities known at the beginning of a charged particle's step. The step
is assumed to be rectilinear even in the presence of a magnetic field.
The user may limit the step size by specifying a maximum (average)
number of Cerenkov photons created during the step, using the
setMaxPhotons command. The actual number generated will necessarily be
different due to the Poissonian nature of the production. In the present
implementation, the production density of photons is distributed evenly
along the particle's track segment, even if the particle has slowed
significantly during the step. The step can also be limited with the
setMaxBetaChange command, where the argument is the allowed
change in percent.

The large number of optical photons that can be produced
(about 300/cm in water) can fill the available memory. Geant4 by default
will track the Cerenkov photons produced in a step before continuing to track
the primary particle. This may be changed using the setTrackSecondariesFirst
command.

Configuration

Material property names used in the process are given in the following table.

Table 4 Material properties for the Cerenkov process.

	Name

	Type

	Description

	Unit Category

	RINDEX

	Energy-dependent

	Refractive index

	Unitless

These parameters are available to configure the process.

	Set the step size to limit the number of photons produced (on average)
to a given value (an integer N)

	macro command: /process/optical/cerenkov/setMaxPhotons N

	C++ statement: G4OpticalParameters::Instance()->SetMaxNumPhotonsPerStep(G4int);

	default value: 100

	Set the maximum change in [image: \beta = v/c] in a step, expressed in percent.

	macro command: /process/optical/cerenkov/setMaxBetaChange X.X

	C++ statement: G4OpticalParameters::Instance()->SetMaxBetaChangePerStep(G4double);

	default value: 10.0

	Specify whether to add Cerenkov photons to the stack, and track them.

	macro command: /process/optical/cerenkov/setStackPhotons true

	C++ statement: G4OpticalParameters::Instance()->SetCerenkovStackPhotons(G4bool);

	default value: true

	Specify whether to track secondaries produced in the step before continuing with primary.

	macro command: /process/optical/cerenkov/setTrackSecondariesFirst true

	C++ statement: G4OpticalParameters::Instance()->SetCerenkovTrackSecondariesFirst(G4bool);

	default value: true

	Set the verbosity of the process. 0 = silent; 1 = initialisation; 2 = during tracking

	macro command: /process/optical/cerenkov/verbose

	C++ statement: G4OpticalParameters::Instance()->SetCerenkovVerbosity(G4int);

	default value: 1

Scintillation

A scintillating material is characterised by the number of optical photons
produced (the yield), their spectrum, and the distribution of emission times.
The yield may be dependent on the type of primary particle. The distribution
of emission times can be characterised by an exponential rise time, and
a decay with one or more time constants.
Starting
with Geant4 version 10.7, it is possible to specify up to three decay time
constants, for particle-independent and particle-dependent yields. This new method
uses different material
property names than used in previous versions. The method used in previous versions
is no longer available in Geant4 version 11.0. All of the capabilities of the
previous method are available with the new method.

The scintillation yield may depend on the type of primary
particle. In this case, the material parameter names are modified from the
case where the yield is independent of primary particle.

Each photon's
frequency is sampled from the empirical spectrum. The photons originate
evenly along the track segment and are emitted uniformly into the [image: 4\pi]
solid angle with a
random linear polarization perpendicular to their momentum direction, and an emission
time characteristic for the scintillation component.

Important

Starting in Geant4 version 11.0, only the new method (called "enhanced" in version
10.7) is available to specify decay time constants. It is no longer necessary to
set the optical parameter setEnhancedTimeConstants to true.

Scintillation independent of particle type

If the scintillation yield is independent of particle type, the yield
is specified using the material constant property SCINTILLATIONYIELD. The
mean number of optical photons in a step is calculated as the
SCINTILLATIONYIELD property, times the yield factor, times either the
VisibleEnergyDepositAtAStep (if Birks' saturation is used) or the total
energy deposit (otherwise). (Note the yield factor is redundant here and
should not be used. See the description of the old scintillation methods for
its use.) The property SCINTILLATIONYIELD is expressed in number per energy.

If the calculated mean number of optical photons for the step is
less than or equal to 10, the actual number is determined from a Poisson
distribution with that mean, then converted to an integer. If the mean number
of photons is greater than 10, the number of photons is chosen from a Gaussian
distribution with that mean, and a sigma equal to the square root of the the
mean times a factor called the resolution scale. This factor is set using the
material constant property RESOLUTIONSCALE. A resolution scale of zero
produces no fluctuation.

There may be 1 to 3 decay component with independent spectra and rise and
decay time constants.

If there is one component, specify the decay time constant with the material
constant property SCINTILLATIONTIMECONSTANT1. If a non-zero rise time is
wanted, set the optical parameter setFiniteRiseTime to true, and set the
material constant property SCINTILLATIONRISETIME1 to the
desired value.
The creation time of the photon is chosen from a distribution with these
characteristics.

The energy spectrum of the emitted photons is specified using the
energy-dependent material property SCINTILLATIONCOMPONENT1.

If there are 2 or 3 decay component, the time constant, rise time, and
spectrum must be specified for the additional component. The property names
are the same as for the first component, with the "1" at
the end of the property name replaced with "2" or "3". Additionally, the
fraction of photons in each component must be specified. Set the material
constant properties SCINTILLATIONYIELD1, SCINTILLATIONYIELD2, and
SCINTILLATIONYIELD3 (if there are three components) to the relative amount
of photons produced in each component. The values will be automatically
normalized. The spectra are specified using the material properties
SCINTILLATIONCOMPONENT2 and SCINTILLATIONCOMPONENT3. The values of
the time constants do not need to be ordered (i.e.,
SCINTILLATIONTIMECONSTANT2 can be greater or less than
SCINTILLATIONTIMECONSTANT1).

Scintillation dependent on particle type

The scintillation yield, and the strength of each component, may depend on
particle type. If so, set the optical parameter setByParticleType true,
and specify a yield vector for each particle type using material property names
such as ALPHASCINTILLATIONYIELD. The mean number of photons produced in the
step is calculated as the difference in the value of the yield vector at the
pre-step kinetic energy of the primary particle, and the value of the yield
vector at the pre-step kinetic energy minus the energy deposit in the step:

ScintillationYield = yieldVector->Value(PreStepKineticEnergy)
 - yieldVector->Value(PreStepKineticEnergy - StepEnergyDeposit);

The relative amounts of photons produced in each component are specified
using the material constant properties with key names such as
ALPHASCINTILLATIONYIELD1, etc. If there is only one component for a primary
particle, it is not necessary to specify the per-component yield e.g.
ALPHASCINTILLATIONYIELD1.

Note

Starting in Geant4 version 11.2, it is possible to specify different decay time
constants for different particles. Existing code will continue to work
without change.

The decay time constants may either be the same for all particles, or specified
for particular particles. In order for the time constants to be different for
different particles, material constant properties such as PROTONSCINTILLATIONTIMECONSTANT1
need to be specified. For any given particle, if this property is not specified, the
value specified by SCINTILLATIONTIMECONSTANT1 is used (and similarly for channels
and 3). In this way, existing code will run unchanged.

The rise time constants and the emission spectra are not dependent on
particle type. These are specified in the same way as for the scintillation
yield independent of particle type. RESOLUTIONSCALE also is equivalent.

Listing 72 Specification of scintillation properties in DetectorConstruction using enhanced time constants (from extended example LXe).

//Liquid Xenon
fLXe = new G4Material("LXe",z=54.,a=131.29*g/mole,density=3.020*g/cm3);

std::vector<G4double> lxe_Energy = {7.0*eV, 7.07*eV, 7.14*eV};

std::vector<G4double> lxe_SCINT = {0.1, 1.0, 0.1};
std::vector<G4double> lxe_RIND = {1.59, 1.57, 1.54};
std::vector<G4double> lxe_ABSL = {35.*cm, 35.*cm, 35.*cm};
fLXe_mt = new G4MaterialPropertiesTable();
fLXe_mt->AddProperty("SCINTILLATIONCOMPONENT1", lxe_Energy, lxe_SCINT);
fLXe_mt->AddProperty("SCINTILLATIONCOMPONENT2", lxe_Energy, lxe_SCINT);
fLXe_mt->AddProperty("RINDEX", lxe_Energy, lxe_RIND);
fLXe_mt->AddProperty("ABSLENGTH", lxe_Energy, lxe_ABSL);
fLXe_mt->AddConstProperty("SCINTILLATIONYIELD", 12000./MeV);
fLXe_mt->AddConstProperty("RESOLUTIONSCALE", 1.0);
fLXe_mt->AddConstProperty("SCINTILLATIONTIMECONSTANT1", 20.*ns);
fLXe_mt->AddConstProperty("SCINTILLATIONTIMECONSTANT2", 45.*ns);
fLXe_mt->AddConstProperty("SCINTILLATIONYIELD1", 1.0);
fLXe_mt->AddConstProperty("SCINTILLATIONYIELD2", 0.0);
fLXe->SetMaterialPropertiesTable(fLXe_mt);

// Set the Birks Constant for the LXe scintillator
fLXe->GetIonisation()->SetBirksConstant(0.126*mm/MeV);

Configuration

These parameters are available to configure the scintillation process.

	Enable particle-dependent yields

	macro command: /process/optical/scintillation/setByParticleType

	C++ statement: G4OpticalParameters::Instance()->SetScintByParticleType(G4bool val)

	default value: false

	Record track information

	macro command: /process/optical/scintillation/setTrackInfo

	C++ statement: G4OpticalParameters::Instance()->SetScintTrackInfo(G4bool val)

	default value: false

	Whether to track secondaries before resuming tracking of primary particle

	macro command: /process/optical/scintillation/setTrackSecondariesFirst

	C++ statement: G4OpticalParameters::Instance()->SetScintTrackSecondariesFirst(G4bool val)

	default value: true

	Whether to use a finite rise time for the secondary emission time

	macro command: /process/optical/scintillation/setFiniteRiseTime

	C++ statement: G4OpticalParameters::Instance()->SetScintFiniteRiseTime(G4bool val)

	default value: false

	Whether to add produced optical photons to the stack (the alternative is to kill them)

	macro command: /process/optical/scintillation/setStackPhotons

	C++ statement: G4OpticalParameters::Instance()->SetScintStackPhotons(G4bool val)

	default value: true

	Set the verbosity level. 0 = silent, 1 = initialisation, 2 = during tracking

	macro command: /process/optical/scintillation/verbose

	C++ statement: G4OpticalParameters::Instance()->SetScintVerboseLevel(G4int val)

	default value: 1

Table 5 Material properties for the optical scintillation process.

	Name

	Type

	Description

	Unit category

	ALPHASCINTILLATIONYIELD

	Energy-dependent

	Yield vector for alphas

	1/Energy

	ALPHASCINTILLATIONYIELD1

	Constant

	Relative yield of component 1 for alphas

	Unitless

	ALPHASCINTILLATIONYIELD2

	Constant

	Relative yield of component 2 for alphas

	Unitless

	ALPHASCINTILLATIONYIELD3

	Constant

	Relative yield of component 3 for alphas

	Unitless

	DEUTERONSCINTILLATIONYIELD

	Energy-dependent

	Yield vector for deuterons

	1/Energy

	DEUTERONSCINTILLATIONYIELD1

	Constant

	Relative yield of component 1 for deuterons

	Unitless

	DEUTERONSCINTILLATIONYIELD2

	Constant

	Relative yield of component 2 for deuterons

	Unitless

	DEUTERONSCINTILLATIONYIELD3

	Constant

	Relative yield of component 3 for deuterons

	Unitless

	ELECTRONSCINTILLATIONYIELD

	Energy-dependent

	Yield vector for electrons

	1/Energy

	ELECTRONSCINTILLATIONYIELD1

	Constant

	Relative yield of component 1 for electrons

	Unitless

	ELECTRONSCINTILLATIONYIELD2

	Constant

	Relative yield of component 2 for electrons

	Unitless

	ELECTRONSCINTILLATIONYIELD3

	Constant

	Relative yield of component 3 for electrons

	Unitless

	IONSCINTILLATIONYIELD

	Energy-dependent

	Yield vector for ions

	1/Energy

	IONSCINTILLATIONYIELD1

	Constant

	Relative yield of component 1 for ions

	Unitless

	IONSCINTILLATIONYIELD2

	Constant

	Relative yield of component 2 for ions

	Unitless

	IONSCINTILLATIONYIELD3

	Constant

	Relative yield of component 3 for ions

	Unitless

	PROTONSCINTILLATIONYIELD

	Energy-dependent

	Yield vector for protons

	1/Energy

	PROTONSCINTILLATIONYIELD1

	Constant

	Relative yield of component 1 for protons

	Unitless

	PROTONSCINTILLATIONYIELD2

	Constant

	Relative yield of component 2 for protons

	Unitless

	PROTONSCINTILLATIONYIELD3

	Constant

	Relative yield of component 3 for protons

	Unitless

	RESOLUTIONSCALE

	Constant

	Factor to vary width of yield distribution

	Unitless

	SCINTILLATIONCOMPONENT1

	Energy-dependent

	Energy spectrum for decay component 1

	Unitless

	SCINTILLATIONCOMPONENT2

	Energy-dependent

	Energy spectrum for decay component 2

	Unitless

	SCINTILLATIONCOMPONENT3

	Energy-dependent

	Energy spectrum for decay component 3

	Unitless

	SCINTILLATIONRISETIME1

	Constant

	Rise time for component 1

	Time

	SCINTILLATIONRISETIME2

	Constant

	Rise time for component 2

	Time

	SCINTILLATIONRISETIME3

	Constant

	Rise time for component 3

	Time

	SCINTILLATIONTIMECONSTANT1

	Constant

	Time constant for component 1

	Time

	SCINTILLATIONTIMECONSTANT2

	Constant

	Time constant for component 2

	Time

	SCINTILLATIONTIMECONSTANT3

	Constant

	Time constant for component 3

	Time

	SCINTILLATIONYIELD

	Constant

	Mean yield (number of particle produce per energy)

	1/Energy

	SCINTILLATIONYIELD1

	Constant

	Relative yield of component 1

	Unitless

	SCINTILLATIONYIELD2

	Constant

	Relative yield of component 2

	Unitless

	SCINTILLATIONYIELD3

	Constant

	Relative yield of component 3

	Unitless

	TRITONSCINTILLATIONYIELD

	Energy-dependent

	Yield vector for tritons

	1/Energy

	TRITONSCINTILLATIONYIELD1

	Constant

	Relative yield of component 1 for tritons

	Unitless

	TRITONSCINTILLATIONYIELD2

	Constant

	Relative yield of component 2 for tritons

	Unitless

	TRITONSCINTILLATIONYIELD3

	Constant

	Relative yield of component 3 for tritons

	Unitless

	PROTONSCINTILLATIONTIMECONSTANT1

	Constant

	Time constant for component 1 for protons

	Time

	PROTONSCINTILLATIONTIMECONSTANT2

	Constant

	Time constant for component 2 for protons

	Time

	PROTONSCINTILLATIONTIMECONSTANT3

	Constant

	Time constant for component 3 for protons

	Time

	DEUTERONSCINTILLATIONTIMECONSTANT1

	Constant

	Time constant for component 1 for deuterons

	Time

	DEUTERONSCINTILLATIONTIMECONSTANT2

	Constant

	Time constant for component 2 for deuterons

	Time

	DEUTERONSCINTILLATIONTIMECONSTANT3

	Constant

	Time constant for component 3 for deuterons

	Time

	TRITONSCINTILLATIONTIMECONSTANT1

	Constant

	Time constant for component 1 for tritons

	Time

	TRITONSCINTILLATIONTIMECONSTANT2

	Constant

	Time constant for component 2 for tritons

	Time

	TRITONSCINTILLATIONTIMECONSTANT3

	Constant

	Time constant for component 3 for tritons

	Time

	ALPHASCINTILLATIONTIMECONSTANT1

	Constant

	Time constant for component 1 for alphas

	Time

	ALPHASCINTILLATIONTIMECONSTANT2

	Constant

	Time constant for component 2 for alphas

	Time

	ALPHASCINTILLATIONTIMECONSTANT3

	Constant

	Time constant for component 3 for alphas

	Time

	IONSCINTILLATIONTIMECONSTANT1

	Constant

	Time constant for component 1 for ions

	Time

	IONSCINTILLATIONTIMECONSTANT2

	Constant

	Time constant for component 2 for ions

	Time

	IONSCINTILLATIONTIMECONSTANT3

	Constant

	Time constant for component 3 for ions

	Time

	ELECTRONSCINTILLATIONTIMECONSTANT1

	Constant

	Time constant for component 1 for electrons

	Time

	ELECTRONSCINTILLATIONTIMECONSTANT2

	Constant

	Time constant for component 2 for electrons

	Time

	ELECTRONSCINTILLATIONTIMECONSTANT3

	Constant

	Time constant for component 3 for electrons

	Time

Absorption

The implementation of optical photon bulk absorption,
G4OpAbsorption, is trivial in that the process merely kills the
particle. The procedure requires the user to fill the relevant
G4MaterialPropertiesTable with empirical data for the absorption
length, using ABSLENGTH as the property key. The absorption length
is the average distance traveled
by a photon before being absorbed by the medium; i.e., it is the mean
free path returned by the GetMeanFreePath method.

Table 6 Material properties for the optical absorption process.

	Name

	Type

	Description

	Unit category

	ABSLENGTH

	Energy-dependent

	Absorption length

	Length

This G4OpticalParameters command can be used to configure the process.

	Set the verbosity of the absorption process. 0 = silent; 1 = initialisation; 2 = during tracking.

	macro command: /process/optical/absorption/verbose 1

	C++ statement: G4OpticalParameters::Instance()->SetAbsorptionVerboseLevel(G4int verboseLevel);

	default value: 1

Rayleigh Scattering

The differential cross section in Rayleigh scattering, [image: d\sigma/d\Omega], is
proportional to [image: 1+\cos^2 \theta], where [image: \theta] is the angle of
the new polarization vector with respect to the old polarization vector.
The G4OpRayleigh scattering process samples this angle accordingly
and then calculates the scattered photon's new direction by requiring
that it be perpendicular to the photon's new polarization in such a way
that the final direction, initial and final polarizations are all in one
plane. This process thus depends on the particle's polarization (spin).
A photon which does not have a polarization will not be Rayleigh scattered.

The process requires Rayleigh scattering attenuation length data. The Rayleigh scattering
attenuation length is the average distance traveled by a photon before
it is Rayleigh scattered in the medium and it is the distance returned
by the GetMeanFreePath method. The attenuation length may be
provided by the user filling a G4MaterialPropertiesTable with key RAYLEIGH.

The G4OpRayleigh class provides a
method which can be used to calculate the
attenuation coefficient of a medium following the Einstein-Smoluchowski
formula. The derivation of this formula requires the use of statistical mechanics,
includes temperature, and depends on the isothermal compressibility of
the medium. This function is convenient when the Rayleigh attenuation
length is not known from measurement but may be calculated from first
principles using the above material constants. If the material property RAYLEIGH
is not set, the attenuation coefficient will be calculated if either the
material name is "Water", or the material's isothermal compressibility is provided
using the material property ISOTHERMAL_COMPRESSIBILITY. For the material
"Water", a temperature of 10ºC and isothermal compressibility of
7.658 x 10-23 m3/MeV is used.
For other materials, the temperature
is determined by calling them material's GetTemperature(). The calculated attenuation
length may be scaled by provided a material property RS_SCALE_FACTOR.

Table 7 Material properties for the optical Rayleigh scattering process.

	Name

	Type

	Description

	Unit category

	ISOTHERMAL_COMPRESSIBILITY

	Constant

	Isothermal compressibility. Can be
used to calculate mean free path

	Volume/Energy

	RAYLEIGH

	Energy-dependent

	Attenuation length

	Length

	RS_SCALE_FACTOR

	Constant

	If set, multiply the calculated
mean free path by this factor

	Unitless

This G4OpticalParameters command can be used to configure the process.

	Set the verbosity of the Rayleigh scattering process. 0 = silent; 1 = initialisation; 2 = during tracking.

	macro command: /process/optical/rayleigh/verbose 1

	C++ statement: G4OpticalParameters::Instance()->SetRayleighVerboseLevel(G4int verboseLevel);

	default value: 1

Wavelength Shifting

Wavelength shifting (WLS) fibers are used in many high-energy particle
physics experiments. They absorb light at one wavelength and re-emit
light at a different wavelength and are used for several reasons. For
one, they tend to decrease the self-absorption of the detector so that
as much light reaches the PMTs as possible. WLS fibers are also used to
match the emission spectrum of the detector with the input spectrum of
the PMT.

A WLS material is characterized by its photon absorption and photon
emission spectrum and by a possible time delay between the absorption
and re-emission of the photon. Wavelength Shifting may be simulated by
specifying these empirical parameters for each WLS material in the
simulation. It is sufficient to specify a relative spectral distribution as a
function of photon energy for the WLS material. WLSABSLENGTH is the
absorption length of the material as a function of the photon's energy.
WLSCOMPONENT is the relative emission spectrum of the material as a
function of the photon's energy, and WLSTIMECONSTANT accounts for any
time delay which may occur between absorption and re-emission of the
photon. An example is shown in the
Listing 73.

Listing 73 Specification of WLS properties in DetectorConstruction.

std::vector<G4double> PhotonEnergy = { 6.6*eV, 6.7*eV, 6.8*eV, 6.9*eV,
 7.0*eV, 7.1*eV, 7.2*eV, 7.3*eV, 7.4*eV};

std::vector<G4double> RIndexFiber =
 {1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60};
std::vector<G4double> AbsFiber =
 {0.1*mm, 0.2*mm, 0.3*mm, 0.4*cm, 1.0*cm, 10.0*cm, 1.0*m, 10.0*m, 10.0*m};
std::vector<G4double> EmissionFiber =
 {0.0, 0.0, 0.0, 0.1, 0.5, 1.0, 5.0, 10.0, 10.0};

G4Material* WLSFiber = new G4Material(/*...*/);
G4MaterialPropertiesTable* MPTFiber = new G4MaterialPropertiesTable();

MPTFiber->AddProperty("RINDEX", PhotonEnergy, RIndexFiber);
MPTFiber->AddProperty("WLSABSLENGTH", PhotonEnergy, AbsFiber);
MPTFiber->AddProperty("WLSCOMPONENT", PhotonEnergy, EmissionFiber);
MPTFiber->AddConstProperty("WLSTIMECONSTANT", 0.5*ns);

WLSFiber->SetMaterialPropertiesTable(MPTFiber);

The way the WLSTIMECONSTANT is used depends
on the time profile method chosen by the user. If the "exponential" option is
set, the time
delay between absorption and re-emission of the photon is sampled from
an exponential distribution, with the decay term equal to
WLSTIMECONSTANT. If, on the other hand,
the "delta" option is chosen, the time delay is a
delta function and equal to WLSTIMECONSTANT. The default is "delta".

The number of secondaries emitted may be configured. By default, each WLS interaction
generates one secondary. If the material property WLSMEANNUMBERPHOTONS is set,
the number of secondaries is chosen from a Poisson distribution with mean equal to
WLSMEANNUMBERPHOTONS.

Important

New in Geant4 version 10.7: definition of two WLS processes.

It is possible to have a material with two WLS processes. The G4OpticalPhysics
constructor builds two processes by default, named OpWLS and OpWLS2. Usage of
the second process is analogous to the first. The
material property names for the OpWLS2 process are the same as for OpWLS, with
a "2" appended. The time
profile may be chosen to be "exponential" or "delta" using macro or C++ commands.
In order to activate the OpWLS2 process in a material, the user needs to define
the material properties.

Material properties are shown in Table 8.

Table 8 Material properties for WLS processes.

	Name

	Type

	Description

	Unit category

	WLSABSLENGTH

	Energy-dependent

	Absorption length of first WLS process

	Length

	WLSABSLENGTH2

	Energy-dependent

	Absorption length of second WLS process

	Length

	WLSCOMPONENT

	Energy-dependent

	Emission spectrum of first WLS process

	Unitless

	WLSCOMPONENT2

	Energy-dependent

	Emission spectrum of second WLS process

	Unitless

	WLSMEANNUMBERPHOTONS

	Constant

	Mean number of photons emitted per interaction, for first WLS process

	Unitless

	WLSMEANNUMBERPHOTONS2

	Constant

	Mean number of photons emitted per interaction, for second WLS process

	Unitless

	WLSTIMECONSTANT

	Constant

	Time constant for emission, for first WLS process

	Time

	WLSTIMECONSTANT2

	Constant

	Time constant for emission, for second WLS process

	Time

These parameters are available to configure the process:

	Set the time profile of the first WLS process to be either "delta" or "exponential":

	macro command: /process/optical/wls/setTimeProfile value

	C++ statement: G4OpticalParameters::Instance()->SetWLSTimeProfile(const G4String& val);

	default value: delta

	Set the verbosity of the first WLS process. 0 = silent; 1 = initialisation; 2 = during tracking.

	macro command: /process/optical/wls/verbose 1

	C++ statement: G4OpticalParameters::Instance()->SetWLSVerboseLevel(G4int verboseLevel);

	default value: 1

	Set the time profile of the second WLS process to be either "delta" or "exponential":

	macro command: /process/optical/wls/setTimeProfile value

	C++ statement: G4OpticalParameters::Instance()->SetWLSTimeProfile(const G4String& val);

	default value: delta

	Set the verbosity of the second WLS process. 0 = silent; 1 = initialisation; 2 = during tracking.

	macro command: /process/optical/wls/verbose 1

	C++ statement: G4OpticalParameters::Instance()->SetWLSVerboseLevel(G4int verboseLevel);

	default value: 1

Mie Scattering

Mie Scattering (or Mie solution) is an analytical solution of Maxwell's
equations for scattering of optical photons by spherical particles. It
is significant only when the radius of the scattering object is of order
of the wave length. The analytical expressions for Mie Scattering are
complicated since they are a series sum of Bessel functions. One
common approximation made is called Henyey-Greenstein (HG). The
implementation in Geant4 follows the HG approximation (for details see
the Physics Reference Manual#31)
and the treatment of polarization and
momentum are similar to that of Rayleigh scattering. We require the
final polarization direction to be perpendicular to the momentum
direction. We also require the final momentum, initial polarization, and
final polarization to be in the same plane.

The process requires a G4MaterialPropertiesTable to be filled by the
user with Mie scattering length data (entered with the name MIEHG)
analogous to Rayleigh scattering. The Mie scattering attenuation length
is the average distance traveled by a photon before it is Mie scattered
in the medium and it is the distance returned by the GetMeanFreePath
method. In practice, the user not only needs to provide the attenuation
length of Mie scattering, but also needs to provide the constant
parameters of the approximation [image: g_{f}], [image: g_{b}],
and [image: r_{f}], with
AddConstProperty and with the names MIEHG_FORWARD, MIEHG_BACKWARD,
and MIEHG_FORWARD_RATIO, respectively; see extended example optical/OpNovice.

Table 9 Material properties for the optical Mie scattering process.

	Name

	Type

	Description

	Unit category

	MIEHG

	Energy-dependent

	Attenuation length

	Length

	MIEHG_BACKWARD

	Constant

	Parameter used in sampling of
scattering direction

	Unitless

	MIEHG_FORWARD

	Constant

	Parameter used in sampling of
scattering direction

	Unitless

	MIEHG_FORWARD_RATIO

	Constant

	Parameter used in sampling of
scattering direction

	Unitless

This G4OpticalParameters command can be used to configure the process.

	Set the verbosity of the Mie scattering process. 0 = silent; 1 = initialisation; 2 = during tracking.

	macro command: /process/optical/mie/verbose 1

	C++ statement: G4OpticalParameters::Instance()->SetMieVerboseLevel(G4int verboseLevel);

	default value: 1

Boundary Process

Optical photons interact with boundaries between volumes, for example, to
reflect or refract. There are various methods of specifying a surface and
assigning properties to it.

Reference: E. Hecht and A. Zajac, Optics [Hecht1974]

When a photon arrives at a medium boundary its behavior depends on the
nature of the two materials that join at that boundary. Medium
boundaries may be formed between two dielectric materials or a
dielectric and a metal.

In the case of an interface between a dielectric
and a metal, the photon can be absorbed by the metal or reflected back
into the dielectric. If the photon is absorbed it can be detected
according to the photoelectron efficiency of the metal.

As expressed in Maxwell's equations, Fresnel reflection and refraction
are intertwined through their relative probabilities of occurrence.
Therefore neither of these processes, nor total internal reflection, are
viewed as individual processes deserving separate class implementation.
Nonetheless, an attempt was made to adhere to the abstraction of having
independent processes by splitting the code into different methods where
practicable.

The program defaults to the GLISUR model and polished surface finish
when no specific model and surface finish is specified by the user. In
the case of a dielectric-metal interface, or when the GLISUR model is
specified, the only surface finish options available are polished or
ground. For dielectric-metal surfaces, the G4OpBoundaryProcess
also defaults to unit reflectivity and zero detection efficiency. In
cases where the user specifies the UNIFIED model
(Fig. 18), but does not otherwise
specify the model reflection probability constants, the default becomes
Lambertian reflection.

When an optical photon arrives at a boundary it is absorbed if the
medium of the volume being left behind has no index of refraction
defined. A photon is also absorbed in case of a dielectric-dielectric
polished or ground surface when the medium about to be entered has no
index of refraction. It is absorbed for backpainted surfaces when the
surface has no index of refraction.

The boundary process may produce warnings that can likely be ignored. These
warnings result from the way the boundary process handles changes to
which volume the particle is in. If the step length is 0, the boundary
status is set to StepTooSmall and the appropriate group velocity is set.
In practice, rather than comparing the step length to 0, the step is compared
to the geometrical tolerance. For steps with length slightly over the geometric
tolerance, it is not clear in the code logic which volume the photon is entering,
so the group velocity is not set and a warning issued.

-------- WWWW ------- G4Exception-START -------- WWWW -------
*** G4Exception : OpBoun06
 issued by : G4OpBoundaryProcess
G4OpBoundaryProcess: Opticalphoton step length: 2.46916e-09 mm.
This is larger than the threshold 1e-09 mm to set status StepTooSmall.
Boundary scattering may be incorrect.

*** This is just a warning message. ***
-------- WWWW -------- G4Exception-END --------- WWWW -------

In most cases this warning may be ignored. It may be suppressed by setting
optical verbosity, or boundary process verbosity, to 0.

Specifying the surface

The physical surface object specifies which model the boundary
process should use to simulate interactions with that surface. In
addition, the physical surface can have a material property table all
its own. The usage of this table allows all specular constants to be
wavelength dependent. In case the surface is painted or wrapped (but not
a cladding), the table may include the thin layer's index of refraction.
This allows the simulation of boundary effects at the intersection
between the medium and the surface layer, as well as the Lambertian
reflection at the far side of the thin layer. This occurs within the
process itself and does not invoke the G4Navigator. Combinations of
surface finish properties, such as polished or ground and front
painted or back painted, enumerate the different situations which can
be simulated.

There are three methods of specifying an optical surface.

	For the simple case of a perfectly smooth interface between two
dielectric materials, all the user needs to provide are the refractive
indices (RINDEX) of the two materials stored in their respective
G4MaterialPropertiesTables.

	A skin surface is the surface entirely surrounding a logical volume. This is useful
where a volume is coated with a reflector and placed into many different mother
volumes. A limitation is that the skin surface can only have one and the same optical property
for all of the enclosed volume's sides. An optical surface is created and defined using
G4OpticalSurface. This surface is assigned to a logical volume using
the class G4LogicalSkinSurface.

	A border surface is defined by specifying the ordered pair of physical volumes
touching at the surface. Because the pair of physical volumes is ordered, the user
may specify different optical properties for photons arriving from the reverse side
of the same interface. For the optical boundary process
to use a border surface, the two volumes must have been positioned with
G4PVPlacement. The ordered combination can exist at many places in
the simulation. An optical surface is created and defined using G4OpticalSurface.
This surface is assigned to the ordered pair of physical volumes using
the class G4LogicalBorderSurface.

If the geometry boundary has a
border surface this surface takes precedence, otherwise the program
checks for skin surfaces. The skin surface of the daughter volume is
taken if a daughter volume is entered, or else the program checks for a
skin surface of the current volume. When the optical photon leaves a
volume without entering a daughter volume the skin surface of the
current volume takes precedence over that of the volume about to be
entered.

Listing 74 Defining border and skin surfaces (from extended example OpNovice).

#include "G4LogicalBorderSurface.hh"
#include "G4LogicalSkinSurface.hh"
#include "G4OpticalSurface.hh"

// The experimental Hall
//
G4Box* expHall_box = new G4Box("World", fExpHall_x, fExpHall_y, fExpHall_z);

G4LogicalVolume* expHall_log =
 new G4LogicalVolume(expHall_box, air, "World", 0, 0, 0);

G4VPhysicalVolume* expHall_phys =
 new G4PVPlacement(0, G4ThreeVector(), expHall_log, "World", 0, false, 0);

// The Water Tank
//
G4Box* waterTank_box = new G4Box("Tank", fTank_x, fTank_y, fTank_z);

G4LogicalVolume* waterTank_log =
 new G4LogicalVolume(waterTank_box, water, "Tank", 0, 0, 0);

G4VPhysicalVolume* waterTank_phys = new G4PVPlacement(
 0, G4ThreeVector(), waterTank_log, "Tank", expHall_log, false, 0);

// The Air Bubble
//
G4Box* bubbleAir_box = new G4Box("Bubble", fBubble_x, fBubble_y, fBubble_z);

G4LogicalVolume* bubbleAir_log =
 new G4LogicalVolume(bubbleAir_box, air, "Bubble", 0, 0, 0);

new G4PVPlacement(0, G4ThreeVector(0., 2.5 * m, 0.), bubbleAir_log, "Bubble",
 waterTank_log, false, 0);

G4OpticalSurface* opWaterSurface = new G4OpticalSurface("WaterSurface");
opWaterSurface->SetType(dielectric_LUTDAVIS);
opWaterSurface->SetFinish(Rough_LUT);
opWaterSurface->SetModel(DAVIS);

G4LogicalBorderSurface* waterSurface = new G4LogicalBorderSurface(
 "WaterSurface", waterTank_phys, expHall_phys, opWaterSurface);

G4OpticalSurface* opAirSurface = new G4OpticalSurface("AirSurface");
opAirSurface->SetType(dielectric_dielectric);
opAirSurface->SetFinish(polished);
opAirSurface->SetModel(glisur);

G4LogicalSkinSurface* airSurface =
 new G4LogicalSkinSurface("AirSurface", bubbleAir_log, opAirSurface);

Surface models: Defining the boundary properties

There are several models to describe the interactions of optical photons at a surface.
These are defined in an emum:

Listing 75 Optical surface models.

enum G4OpticalSurfaceModel
{
 glisur, // original GEANT3 model
 unified, // UNIFIED model
 LUT, // Look-Up-Table model (LBNL model)
 DAVIS, // DAVIS model
 dichroic // dichroic filter
};

The model is specified by calling the SetModel(G4int model) method of the surface.

No surface defined

In the special case where no surface has been defined, but the two volumes defining the
surface have the refractive index defined using the material property RINDEX,
the surface is taken to be perfectly smooth, and both materials are taken to be
dielectric. The photon can undergo total internal reflection, refraction or reflection,
depending on the photon's wavelength, angle of incidence, and the
refractive indices on both sides of the boundary. Furthermore,
reflection and transmission probabilities are sensitive to the state of
linear polarization.

The UNIFIED model

One implementation of the G4OpBoundaryProcess class employs the
UNIFIED model
[Levin1996] of the DETECT program [Knoll1988]. It applies to
dielectric-dielectric interfaces and tries
to provide a realistic simulation, which deals with all aspects of
surface finish and reflector coating. The surface may be assumed as
smooth and covered with a metallized coating representing a specular
reflector with given reflection coefficient, or painted with a diffuse
reflecting material where Lambertian reflection occurs. The surfaces may
or may not be in optical contact with another component and most
importantly, one may consider a surface to be made up of micro-facets
with normal vectors that follow given distributions around the nominal
normal for the volume at the impact point. For very rough surfaces, it
is possible for the photon to inversely aim at the same surface again
after reflection of refraction and so multiple interactions with the
boundary are possible within the process itself and without the need for
relocation by G4Navigator.

[image: Diagram of the UNIFIED Model for Optical Surfaces (courtesy A. Shankar)]

Fig. 18 Diagram of the UNIFIED Model for Optical Surfaces (courtesy A.
Shankar)

The UNIFIED model (Fig. 18) provides
for a range of different reflection mechanisms. The specular lobe
constant (material property name SPECULARLOBECONSTANT) represents
the reflection probability about the normal of a
micro facet. The specular spike constant (material property name
SPECULARSPIKECONSTANT), in turn, illustrates the
probability of reflection about the average surface normal. The diffuse
lobe constant is for the probability of internal Lambertian reflection,
and finally the back-scatter spike constant (material property name
BACKSCATTERCONSTANT) is for the case of several
reflections within a deep groove with the ultimate result of exact
back-scattering. The four probabilities add up to one, with the
diffuse lobe constant being calculated by the code from other
other three values that the user entered. The reader may consult the
reference for a thorough description of the model.

It is possible to specify that a given fraction of photons are absorbed at the surface, or
transmitted without change in direction or polarization. This is applicable for
dielectric_dielectric interfaces that are not backpainted. The material properties
REFLECTIVITY and TRANSMITTANCE are used. By default, REFLECTIVITY equals 1 and
TRANSMITTANCE equals 0. At a surface interaction, a random number is chosen. If the
random number is greater than the sum of the values of REFLECTIVITY and TRANSMITTANCE
at the photon energy, the photon is absorbed. Otherwise, if the random number is greater than
the REFLECTIVITY value, the photon is transmitted. Otherwise, the usual calculation of
scattering takes place.

If a photon is absorbed at the boundary, it may by detected--that is, its status
set to "Detect" and its energy deposited locally. The material property EFFICIENCY
is used to specify the fraction of photons detected.

The sigma_alpha parameter allows sepcification of the surface roughness. The facet
normal is chosen from a Gaussian distribution with this sigma, with a maximum of
the lower of 1 and 4 times sigma_alpha.

Listing 76 Dielectric-dielectric surface properties defined via the G4OpticalSurface.

G4VPhysicalVolume* volume1;
G4VPhysicalVolume* volume2;

G4OpticalSurface* OpSurface = new G4OpticalSurface("name");

G4LogicalBorderSurface* Surface = new
 G4LogicalBorderSurface("name",volume1,volume2,OpSurface);

OpSurface->SetType(dielectric_dielectric);
OpSurface->SetModel(unified);
OpSurface->SetFinish(groundbackpainted);
OpSurface->SetSigmaAlpha(0.1);

std::vector<G4double> pp = {2.038*eV, 4.144*eV};
std::vector<G4double> specularlobe = {0.3, 0.3};
std::vector<G4double> specularspike = {0.2, 0.2};
std::vector<G4double> backscatter = {0.1, 0.1};
std::vector<G4double> rindex = {1.35, 1.40};
std::vector<G4double> reflectivity = {0.3, 0.5};
std::vector<G4double> efficiency = {0.8, 0.1};

G4MaterialPropertiesTable* SMPT = new G4MaterialPropertiesTable();

SMPT->AddProperty("RINDEX", pp, rindex);
SMPT->AddProperty("SPECULARLOBECONSTANT", pp, specularlobe);
SMPT->AddProperty("SPECULARSPIKECONSTANT", pp, specularspike);
SMPT->AddProperty("BACKSCATTERCONSTANT", pp, backscatter);
SMPT->AddProperty("REFLECTIVITY", pp, reflectivity);
SMPT->AddProperty("EFFICIENCY", pp, efficiency);

OpSurface->SetMaterialPropertiesTable(SMPT);

The Glisur model

The original GEANT3.21 implementation
of this process is also available via the GLISUR methods flag, as shown in
Listing 77. Note that there is considerable overlap of the Glisur
and UNIFIED models in the code. The surface roughness is specified with the
polish parameter.

Listing 77 Dielectric metal surface properties defined via the G4OpticalSurface.

G4LogicalVolume* volume_log;

G4OpticalSurface* OpSurface = new G4OpticalSurface("name");

G4LogicalSkinSurface* Surface = new
 G4LogicalSkinSurface("name",volume_log,OpSurface);

OpSurface->SetType(dielectric_metal);
OpSurface->SetFinish(ground);
OpSurface->SetModel(glisur);
OpSurface->SetPolish(0.8);

G4MaterialPropertiesTable* OpSurfaceProperty = new G4MaterialPropertiesTable();

OpSurfaceProperty->AddProperty("REFLECTIVITY", pp, reflectivity);
OpSurfaceProperty->AddProperty("EFFICIENCY", pp, efficiency);

OpSurface->SetMaterialPropertiesTable(OpSurfaceProperty);

LBNL look-up tables (LUT)

Janecek and Moses [Janecek2010]
built an instrument for measuring the angular reflectivity distribution
inside of BGO crystals with common surface treatments and reflectors
applied. These results have been incorporated into the Geant4 code. A
third class of reflection type besides dielectric_metal and
dielectric_dielectric is added: dielectric_LUT. The distributions have
been converted to 21 look-up-tables (LUT); so far for 1 scintillator
material (BGO) x 3 surface treatments x 7 reflector materials. The
modified code allows the user to specify the surface treatment
(rough-cut, chemically etched, or mechanically polished), the attached
reflector (Lumirror, Teflon, ESR film, Tyvek, or TiO2 paint), and the
bonding type (air-coupled or glued). The glue used is MeltMount, and the
ESR film used is VM2000. Each LUT consists of measured angular
distributions with 4º by 5º resolution in theta and phi, respectively,
for incidence angles from 0º to 90º, in 1º-steps. The code might
in the future be updated by adding more LUTs, for instance, for other
scintillating materials (such as LSO or NaI). To use these LUT the user
has to download them from Geant4 Software Download#32
and set an environment variable, G4REALSURFACEDATA, to the directory
of geant4/data/RealSurface2.2.

The enumeration G4OpticalSurfaceFinish includes:

polishedlumirrorair, // mechanically polished surface, with lumirror
polishedlumirrorglue, // mechanically polished surface, with lumirror & meltmount
polishedteflonair, // mechanically polished surface, with teflon
polishedtioair, // mechanically polished surface, with tio paint
polishedtyvekair, // mechanically polished surface, with tyvek
polishedvm2000air, // mechanically polished surface, with esr film
polishedvm2000glue, // mechanically polished surface, with esr film & meltmount
etchedlumirrorair, // chemically etched surface, with lumirror
etchedlumirrorglue, // chemically etched surface, with lumirror & meltmount
etchedteflonair, // chemically etched surface, with teflon
etchedtioair, // chemically etched surface, with tio paint
etchedtyvekair, // chemically etched surface, with tyvek
etchedvm2000air, // chemically etched surface, with esr film
etchedvm2000glue, // chemically etched surface, with esr film & meltmount
groundlumirrorair, // rough-cut surface, with lumirror
groundlumirrorglue, // rough-cut surface, with lumirror & meltmount
groundteflonair, // rough-cut surface, with teflon
groundtioair, // rough-cut surface, with tio paint
groundtyvekair, // rough-cut surface, with tyvek
groundvm2000air, // rough-cut surface, with esr film
groundvm2000glue // rough-cut surface, with esr film & meltmount

To use an LBNL look-up-table, all the user needs to specify for an
G4OpticalSurface is: SetType(dielectric_LUT), SetModel(LUT) and
for example, SetFinish(polishedtyvekair).

Note that the LBNL look-up tables were the first optical surface LUT implemented in
Geant4. Where the term "LUT" is used, it often refers to the LBNL LUT.

Davis look-up tables (LUTDAVIS)

Another model for optical surface interactions is called the LUT Davis
model [RoncaliCherry2013], [Stockhoff2017], [Roncali2017]. The model
is based on measured surface data and allows the user to choose from a
list of available surface finishes. Provided are a rough and a polished
L(Y)SO surface that can be used without reflector, or in combination
with a specular reflector (e.g. ESR) or a Lambertian reflector
(e.g. Teflon). The specular reflector can be coupled to the crystal
with air or optical grease. Teflon tape is wrapped around the crystal
with 4 layers.

Table 10 Surface names of available LUTs.

	
	Bare

	Teflon

	ESR + Air

	ESR + Optical Grease

	Rough

	Rough_LUT

	RoughTeflon_LUT

	RoughESR_LUT

	RoughESRGrease_LUT

	Polished

	Polished_LUT

	PolishedTeflon_LUT

	PolishedESR_LUT

	PolishedESRGrease_LUT

In the LUT database, typical roughness parameters obtained from the
measurements are provided to characterize the type of surface modelled:

(2)[image: \mbox{ROUGH} &: R_a = 0.48 \mu \mbox{m}, \sigma = 0.57 \mu \mbox{m}, R_{pv} = 3.12 \mu \mbox{m} \\ \mbox{POLISHED} &: R_a = 20.8 \mbox{ nm}, \sigma = 26.2 \mbox{ nm}, R_{pv} = 34.7 \mbox{ nm}]

with [image: R_a] = average roughness; [image: \sigma] = rms roughness,
[image: R_{pv}] = peak-to-valley ratio.

The detector surface, called Detector_LUT, defines a polished surface
coupled to a photodetector with optical grease or a glass interface
(similar index of refraction 1.5). To use Detector_LUT, the surface property
EFFICIENCY must be greater than 0. Any surface can be used as a detector
surface when the EFFICIENCY is set to 1.

To enable the LUT Davis Model, the user needs to specify for a
G4OpticalSurface: SetType(dielectric_LUTDAVIS), SetModel(DAVIS) and also,
for example, SetFinish(Rough_LUT). The user also
has to download data files from Geant4 Software Download#33
and set an environment variable, G4REALSURFACEDATA, to the directory
of geant4/data/RealSurface2.2.

Background

The crystal topography is obtained with atomic force microscopy (AFM).
From the AFM data, the probability of reflection (1) and the reflection
directions (2) are computationally determined, for incidence angles
ranging from 0° to 90°. Each LUT is computed for a given surface and
reflector configuration. The reflection probability in the LUT combines
two cases: directly reflected photons from the crystal surface and
photons that are transmitted to the reflector surface and later re-enter
the crystal. The key operations of the reflection process are the
following: The angle between the incident photon (Old Momentum) and the
surface normal are calculated. The probability of reflection is
extracted from the first LUT. A Bernoulli test determines whether the
photon is reflected or transmitted. In case of reflection two angles are
drawn from the reflection direction LUT.

[image: ../_images/LUT_figure1.png]

Fig. 19 Old Momentum to New Momentum. The old momentum is the
unit vector that describes the incident photon. The
reflected/transmitted photon is the New Momentum described by two angles
[image: \phi] and [image: \theta].

Thin film optical coatings

L.Cappellugola, M. Dupont, S. Curtoni and C. Morel, Aix Marseille Univ.

Photons can be transmitted through a thin film that has a thickness of the order of light wavelength.
Interference phenomena and frustrated transmission beyond the limit angle have then to be considered.

New in version 11.1, Geant4can account for thin film interfaces. This is achieved
by defining a new method that provides a transmission probability for optical tracking of optical
photons. This new method is called CoatedDielectricDielectric() and considers only
two physical and logical media, and the refractive index and thickness of the thin film separating
these two media.

Reflectance and transmittance of an optical coating

Let [image: r_{ij}] be the Fresnel coefficient describing an interface between media [image: i] and
[image: j], with refractive indices [image: n_{i}] and [image: n_{j}]. If the incidence angle
[image: \theta_{i}] is greater than the limit angle [image: \theta_{\rm lim}], the term
[image: n_{j}cos(\theta_{j})] in the Fresnel coefficients with
[image: n_{i}sin(\theta_{i}) = n_{j}sin(\theta_{j})] will be replaced by
[image: i\gamma = \sqrt{n_{i}^2\sin{\theta_{i}}^2-n_{j}^2}]. Hence we get for [image: \theta>\theta_{l}]:

[image: r_{TE} = \frac{n_{i}cos(\theta_{i})-i\gamma}{n_{i}cos(\theta_{i})+i\gamma} \label{rTE}]

[image: r_{TM} = \frac{n_{i}i\gamma - n_{j}^{2}cos(\theta_{i})}{n_{i}i\gamma + n_{j}^{2}cos(\theta_{i})} \label{rTM}]

In case of a transmission from medium 1 to medium 3 through a thin passivation film (medium 2),
the reflection coefficient for incidence angles lesser and greater than the limit angle
[image: \theta_{\rm lim}=\arcsin(n_{2}/n_{1})] is given by:

(3)[image: r_{\theta<\theta_{\rm lim}} = \frac{r_{12} + r_{23}e^{2i\beta'}}{1+r_{12}r_{23}e^{2i\beta'}}]

(4)[image: r_{\theta>\theta_{\rm lim}} = \frac{r_{12} + r_{23}e^{2\beta''}}{1+r_{12}r_{23}e^{2\beta''}}]

where [image: \beta'=k_{2}d\cos{\theta_{2}}] and [image: \beta''=-kd\gamma] with [image: d] the layer
thickness and [image: k_{2} = 2\pi/\lambda_{2} = 2\pi n_2 /\lambda] the photon wavenumber
in medium 2 with [image: \lambda] and [image: k] the photon wavelength and wavenumber in vacuum.

Integration of frustrated transmission in Geant4

The main method of G4OpBoundaryProcess class is the PostStepDoIt() method. This method starts
by getting refractive indices of both media on each side of the interface, instantiating the
Type, Model and Finish properties of this optical surface and calling the corresponding
function in order to analyse the interaction on the interface correctly.

A new surface type named coated is used for an interface between two dielectric
volumes separated by a thin film and a new method named CoatedDielectricDielectric(), which is
called by PostStepDoIt().
Only the two volumes on each side of the thin film have to be physically and logically defined.
The surface can be parametrized with two arrays named CoatedRindex and CoatedThickness,
which correspond to the thin film layer refractive index and thickness, respectively, as a function of wavelength.
Frustrated transmission for incidence angles superior to the limit angle can be enabled or
disabled via the boolean parameter CoatedFrustratedTransmission in order to assess the
impact of frustrated transmission.

An example is given with the extended example OpNovice2 and macro coated.mac.

Results of the implementation

Transmittance through a thin optical coating

[image: ../_images/ResultatsCDD.png]

Fig. 20 Transmittance as a function of wavelength through an interface with a thin film. In blue and
green: transmittances for a normal incidence, in orange and yellow: transmittances for a [image: 50^\circ]
incidence. Curves represent theoretical transmittances for a simple interface (dotted line) and for
a thin film interface (continuous lines). Markers represent the transmittance estimated by
the Geant4 simulation for a simple interface (empty dots) and for a thin film interface (full dots).

We fix [image: n_{1}=n_{3}=1.5] and [image: n_{2}=1.0] (the limit angle between medium 1 and 2
is [image: \theta_{l}=41.8^\circ]. Two examples are presented in Fig. 20 for different
coating thicknesses [image: d] and incidence angle [image: \theta]. The first example stands for a
simple interface, comprising only one dioptre from medium 1 to medium 2. The theoretical
transmittance, which is given by:

(5)[image: T = 1 - R = 1 - rr^{*}]

with [image: r=r_{TE}=r_{TM}] given by the equations above for [image: \theta_{i}=\theta_{j}=0] corresponding
to a normal incidence, is presented with dashed blue line and the fraction of photons transmitted through
this dioptre estimated by the Geant4 simulation of 2,800,000 visible photons are represented by blue empty
dots. The second example highlights the consequences of light transmission through a thin layer by adding
a medium 3 after the medium 2 in such a way that the thickness [image: d] of the medium 2 is smaller than
the wavelength of the light. Theoretical transmittances for different thicknesses [image: d] and incidence
angles [image: \theta] ([image: \theta = 0] for a normal incidence and [image: \theta = 50^\circ] for an
incidence angle superior to the limit angle [image: \theta_{\rm lim}]) are represented with continuous lines.
The fraction of photons transmitted through these different interfaces estimated by the Geant4
simulation of 2,800,000 visible photons are represented by full dots.

In case of an oblique incidence, the transmittance for both the Transverse Electric (TE) and the
Transverse Magnetic (TM) polarizations are shown and compared to the theoretical transmittances
using (5) with [image: r = r_{TE}] or [image: r = r_{TM}], respectively.
For an incidence angle superior to the limit angle (orange curves), the transmittance is
non-zero because of the frustrated transmission of light.

The perfect agreement between the simulated and theoretical transmittances assess the correct
implementation of the model in the Geant4 software.

Transmittance through a window optically coated on both its faces

In this section we model two successive interfaces at the input and output faces of a window of
refractive index [image: n_{3}=2.0] that are optically coated with 100 nm of an oxide of refractive
index [image: n_{2}=1.5]. This coated window is placed in air ([image: n_{1} = 1.0]).

For a normal incidence, the theoretical transmittance involving multiples reflections (MR) of light
inside the window is estimated by [image: T_{MR}]:

[image: T_{MR} = \frac{T^{2}}{1-R^{2}}]

where [image: R = rr^{*}] is the reflectance with [image: r] given by the Eqs. (3) or
(4)
and [image: T=1-R].

[image: ../_images/ResultatsCDD_RM.png]

Fig. 21 Transmittance for normal incidence through a coated window ([image: n_{1}~=~1.0], [image: n_{2}~=~1.5]
and [image: n_{3}~=~2.0]). The continuous line represents the theoretical transmittance and the
markers represents the transmittance estimated by the Geant4 simulation of 2,800,000 visible photons.

Fig. 21 shows the transmittance for a normal incidence through the coated
window estimated by the simulation of 2,800,000 visible photons. Here again, the perfect
agreement between the simulated and theoretical transmittances assess the correct implementation
of the model in the Geant4software.

Complex index of refraction

The reflectivity off a metal surface can also be calculated by way of a
complex index of refraction. Instead of storing the REFLECTIVITY
directly, the user stores the real part (REALRINDEX) and the imaginary
part (IMAGINARYRINDEX) as a function of photon energy separately in the
G4MaterialPropertyTable. Geant4 then calculates the reflectivity
depending on the incident angle, photon energy, degree of TE and TM
polarization, and this complex refractive index.

If it is desired that photons are not absorbed at the surface, but instead are transmitted
into the material, the user can set the transmittance (TRANSMITTANCE) to 1. If this setting
is used together with a ground finish and a non-zero value of sigma_alpha, some photons are
still absorbed at the surface. If the absorption at the surface should be completely
prevented, sigma_alpha must be zero or a polished finish needs to be used.
Additionally, the absorption length (ABSLENGTH) should be defined for the material,
otherwise the material would be fully transparent. Note that Geant4 does not calculate the
absorption length, which is a material property, from the imaginary part of the refractive
index, which is a surface property. The user needs to provide both properties individually.
The macro complexRindex.mac (below) in the example OpNovice2 demonstrates the usage of the complex refractive index.

Listing 78 A macro for use with OpNovice2 demonstrating the usage of the complex index of refraction.

/control/verbose 2
/tracking/verbose 0
/run/verbose 0
/process/optical/verbose 1
/control/cout/ignoreThreadsExcept 0

/opnovice2/worldMaterial G4_Al
/opnovice2/worldProperty GROUPVEL 0.000002 299.792 0.000008 299.792
/opnovice2/worldProperty RINDEX 0.000002 1.38 0.000004 0.28 0.000006 0.13 0.000008 0.077
/opnovice2/worldProperty ABSLENGTH 0.000002 6.75e-9 0.000004 6.65e-9 0.000006 6.96e-9 0.000008 7.45e-9

/opnovice2/boxMaterial G4_AIR
/opnovice2/boxProperty RINDEX 0.000002 1.01 0.000008 1.01
/opnovice2/boxProperty ABSLENGTH 0.000002 1000000 0.000005 2000000 0.000008 3000000

/opnovice2/surfaceModel unified
/opnovice2/surfaceType dielectric_metal
/opnovice2/surfaceFinish polished
/opnovice2/surfaceSigmaAlpha 0 # only relevant for ground finish

/opnovice2/surfaceProperty REALRINDEX 0.000002 1.38 0.000004 0.28 0.000006 0.13 0.000008 0.077
/opnovice2/surfaceProperty IMAGINARYRINDEX 0.000002 7.31 0.000004 3.71 0.000006 2.40 0.000008 1.71
/opnovice2/surfaceProperty TRANSMITTANCE 0.000002 1 0.000006 1
/opnovice2/surfaceProperty SPECULARLOBECONSTANT 0.000002 1 0.000006 1 # only relevant for ground finish

/run/initialize

/gun/particle opticalphoton
/gun/energy 4 eV
/gun/position 90 0 0 cm
/gun/direction 1 0 0
/opnovice2/gun/optPhotonPolar 0. deg
/opnovice2/gun/randomDirection true

/analysis/setFileName complexRindex_0
/analysis/h1/set 20 90 0 90 # deg
/analysis/h1/set 21 90 0 90 # deg
/run/printProgress 100000
/run/beamOn 500000

/analysis/setFileName complexRindex_90
/opnovice2/gun/optPhotonPolar 90. deg
/run/beamOn 500000

Dichroic filter

A dielectric-dichroic boundary may be specified by supplying a dichroic vector
to the optical surface.

Configuration

Table 11 Material and surface properties for the optical boundary scattering process.

	Name

	Type

	Material or surface

	Description

	BACKSCATTERCONSTANT

	Energy-dependent

	Surface

	Unified model

	EFFICIENCY

	Energy-dependent

	Surface

	Chance of an absorbed photon to be detected

	COATEDFRUSTRATEDTRANSMISSION

	Constant

	Surface

	Whether to use frustrated transmission for
thin coatings. Values are either 1 (on) or
0 (off)

	GROUPVEL

	Energy-dependent

	Material

	If specified, set the photon velocity to
this value on entering the material, if
undergoing Fresnel refraction or transmission

	IMAGINARYRINDEX

	Energy-dependent

	Either

	Imaginary part of complex refractive index

	REFLECTIVITY

	Energy-dependent

	Surface

	1 minus the absorption coefficient

	REALRINDEX

	Energy-dependent

	Either

	Real part of complex refractive index

	RINDEX

	Energy-dependent

	Either

	Refractive index

	COATEDRINDEX

	Energy-dependent

	Surface

	Refractive index of thin coating

	SPECULARLOBECONSTANT

	Energy-dependent

	Surface

	Unified model

	SPECULARSPIKECONSTANT

	Energy-dependent

	Surface

	Unified model

	SURFACEROUGHNESS

	Constant

	Surface

	Parameter to express surface roughness for
dielectric_dielectric surfaces, leading to
Lambertian scattering

	COATEDTHICKNESS

	Energy-dependent

	Surface

	Thickness of thin coating

	TRANSMITTANCE

	Energy-dependent

	Surface

	For dielectric_dielectric surfaces

These G4OpticalParameters commands can be used to configure the process.

	Set the verbosity of the boundary scattering process. 0 = silent; 1 = initialisation; 2 = during tracking.

	macro command: /process/optical/boundary/verbose 1

	C++ statement: G4OpticalParameters::Instance()->SetBoundaryVerboseLevel(G4int verboseLevel);

	default value: 1

	Call the sensitive detector automatically.

	macro command: /process/optical/boundary/setInvokeSD

	C++ statement: G4OpticalParameters::Instance()->SetBoundaryInvokeSD(G4bool val)

	default value: false

Parameterisation

In this section we describe how to use the parameterisation or "fast
simulation" facilities of Geant4. Examples are provided in the
examples/extended/parameterisations directory.

Generalities:

The Geant4 parameterisation facilities allow you to shortcut the
detailed simulation in a given volume and for given particle types in
order for you to provide your own implementation of the physics and of
the detector response. This allows to make an alternative modelling of
the physics processes, usually approximate and faster than the detailed
simulation.

Overtaking the detailed Geant4 simulation (tracking) requires the user to
specify 3 main components of the parameterisation:

	Where the particles are parameterised;

	Which particles are parameterised:

	static conditions (particle type, PDG, charge, ...)

	dynamic conditions (energy, direction, ...)

	What happens instead of the detailed simulation:

	where the particle is moved

	what are the created secondaries

	is the primary particle killed

	what (and where) energy is deposited

Note: It is user responsibility to invoke Hit method of the
sensitive detector

1. Where

Parameterisations are bound to a G4Region object, which, in the
case of fast simulation can be called an envelope. A G4Region has a
G4LogicalVolume object (or a series of G4LogicalVolume objects) as a root,
and the G4Region is attached to this volume and all its ancestors:

G4Region(const G4String&) // constructor also registers to G4RegionStore
void G4Region::AddRootLogicalVolume (G4LogicalVolume*) // attach root volume to region

Envelopes often correspond to the outer volumes of (sub-)detectors: electromagnetic
calorimeters, tracking chambers, etc.

With Geant4 it is also possible to define envelopes by overlaying a
parallel ("ghost") geometry as discussed in Parameterisation Using Ghost/Parallel Geometries.

2. Which particles

Parameterisation is usually specified only for certain particles. Those particles must
have attached G4FastSimulationManagerProcess to their list of processes. For users
of modular physics lists (G4VModularPhysicsList) --- from which reference physics
lists (FTFP_BERT, QGSP_BIC,...) are derived --- it is enough to use the helper class
G4FastSimulationPhysics and activate the parameterisation for each particle type:

FTFP_BERT* physicsList = new FTFP_BERT; // G4VModularPhysicsList
auto fastSimulationPhysics = new G4FastSimulationPhysics(); // helper
fastSimulationPhysics->ActivateFastSimulation("e-"); // for envelope in mass geometry
fastSimulationPhysics->ActivateFastSimulation("pi+","pionGhostWorld"); // for envelopes in parallel geometry
physicsList->RegisterPhysics(fastSimulationPhysics); // attach to the physics list

Geant4 will take into account the parameterisation process at tracking for any
step that starts in any root G4LogicalVolume of the G4Region that has been declared
as an envelope. It will proceed by first asking the available parameterisation models for
that particle (models with static conditions fulfilled by that particle). Existing
models will be checked (in the order they were added) if one of them (and only one)
wants to issue a trigger (meaning the dynamic conditions are met).
If yes, it will invoke its parameterisation. In this case, the tracking and physics
(detailed simulation) will not apply be applied to the particle in the step.
In case no trigger is issued, the simulation continues as usual, with other processes
being taken into account.

Parameterisations resembles a "user stepping action" but are more advanced because:

	parameterisation code is considered only in the G4Region to which it is bound;

	parameterisation code is considered anywhere in the G4Region,
that is, any volume in which the track is located (mother, daughter, sub-daughter, ...);

	Geant4 will provide information to your parameterisation code about
the current root volume of the G4Region in which the track is travelling.

3. What happens

Implementation of the parameterisation must be made deriving from the G4VFastSimulationModel
abstract class. Models are attached to the G4Region
and will be considered only if particle meets the selection criteria and is within the
geometrical hierarchy tree of the root logical volume of the G4Region. The G4Region
is specified in the model constructor, together with the model name:

// constructor adds this model to G4FastSimulationManager of given envelope
G4VFastSimulationModel(const G4String&, G4Region*)

Selection criteria are to be defined in G4VFastSimulationModel implementation:

// specify the static conditions (particle type, PDG, charge, ...)
virtual G4bool G4VFastSimulationModel::IsApplicable (const G4ParticleDefinition&) = 0
// specify the dynamic conditions (momentum, direction, position, distance to boundary, ...)
virtual G4bool G4VFastSimulationModel::ModelTrigger (const G4FastTrack&) = 0

As particle is not transported by Geant4, it is therefore responsibility of the model
to describe what happens to the particle in place of the standard simulation: where the particle
goes to (or to kill it), how its momentum is changed, what is the deposited energy (user needs
to register manually all deposits in the sensitive detector or use helper class
G4FastSimHitMaker), and what secondary particles are created. Those details should be
implemented within:

// input information: G4FastTrack
// output information: G4FastStep
virtual G4bool G4VFastSimulationModel::DoIt(const G4FastTrack&, G4FastStep&) = 0

Geant4 contains an implementation of the Gflash parameterisation model (see more in
Gflash Parameterisation) and several examples in extended/parameterisations directory.

Overview of Parameterisation Components

The Geant4 components which allow the implementation and control of parameterisations are:

	G4VFastSimulationModel
	This is the abstract class for the implementation of
parameterisations. You must inherit from it to implement your
concrete parameterisation model.

	G4Region
	As mentioned before, an envelope of parameterisation in Geant4 is
a G4Region. The parameterisation is bound to the G4Region by
setting a G4FastSimulationManager pointer to it.

Fig. 22 shows how the
G4VFastSimulationModel and
G4FastSimulationManager objects are bound to the G4Region.
Then for all root G4LogicalVolume's held by the G4Region, the fast
simulation code is active.

[image: ../_images/ComponentsWithRegion.jpg]

Fig. 22 G4VFastSimulationModel and G4FastSimulationManager objects.

	G4FastSimulationManager
	The G4VFastSimulationModel objects are attached to the
G4Region through a G4FastSimulationManager. This object will
manage the list of models and will message them at tracking time.

	G4FastSimulationManagerProcess
	This is an implementation of G4VProcess. It invokes the parameterisation models if trigger
conditions are met (particle is within an envelope, of certain type, etc.). It must be set
in the process list of the particles you want to parameterise (e.g. using physics constructor
G4FastSimulationPhysics on top of any modular physics list - since 10.3 release). If added
manually, one must remember that in presence of the parallel world, the ordering of processes matters.

	G4GlobalFastSimulationManager
	This a singleton class which provides the management of the
G4FastSimulationManager objects and some ghost facilities.

	G4FastSimHitMaker
	This is a helper class that can be employed in the fast simulation models.
It allows to deposit energy at given position (G4FastHit), provided it is
located within the sensitive detector that derives from G4VFastSimSensitiveDetector
base class. An extended example extended/parameterisations/Par03 demonstrates how to use
G4FastSimHitMaker to create multiple deposits from the fast simulation model.
Such model should create energy deposits, and for each one call the method
G4FastSimHitMaker::make(const G4FastHit& aHit, const G4FastTrack& aTrack)
so that sensitive detector can be located, and hits stored in hit collection, as implemented
in the sensitive detector class user implementation.

	G4VFastSimSensitiveDetector
	This is a base class for a sensitive detector that allows to easily store hits created in the
fast simulation models. It must me used in addition to inheritance from the usual base
class G4VSensitiveDetector for processing of energy deposited in G4Step.
ProcessHits(...) method must be implemented and describe how hits should be saved in the
hit collections. It is invoked by Hit method which is public and can be called directly
in the fast simulation model (if sensitive detector is known to the model), or via the
helper class G4FastSimHitMaker that will locate appropriate volume and retrieve its
sensitive detector. An extended example extended/parameterisations/Par03 demonstrates
how to use G4VFastSimSensitiveDetector to deposit energy from fast simulation and
compare it to the detailed simulation.

The G4VFastSimulationModel Abstract Class

Constructors

The G4VFastSimulationModel class has two constructors.

	G4VFastSimulationModel(const G4String& aName):
	Here aName identifies the parameterisation model.

	G4VFastSimulationModel(const G4String& aName, G4Region*, G4bool IsUnique=false):
	In addition to the model name, this constructor accepts a
G4Region pointer. The needed G4FastSimulationManager object
is constructed if necessary, passing to it the G4Region pointer and
the Boolean value. If it already exists, the model is simply added
to this manager. Note that the G4VFastSimulationModel object
will not keep track of the G4Region passed in the constructor.
The Boolean argument is there for optimisation purposes: if you know
that the G4Region has a unique root G4LogicalVolume,
uniquely placed, you can set the Boolean value to true.

Virtual methods

The G4VFastSimulationModel has pure virtual methods which must
be overridden in your concrete class:

	G4VFastSimulationModel(const G4String& aName):
	Here aName identifies the parameterisation model.

	G4bool ModelTrigger(const G4FastTrack&):
	You must return true when the dynamic conditions to trigger your
parameterisation are fulfilled. G4FastTrack provides access to the
current G4Track, gives simple access to the current root
G4LogicalVolume related features (its G4VSolid, and
G4AffineTransform references between the global and the root
G4LogicalVolume local coordinates systems) and simple access to the
position and momentum expressed in the root G4LogicalVolume
coordinate system. Using these quantities and the G4VSolid methods,
you can for example easily check how far you are from the root
G4LogicalVolume boundary, or if the particle is entering or escaping
the volume.

	G4bool IsApplicable(const G4ParticleDefinition&):
	In your implementation, you must return true when your model is
applicable to the G4ParticleDefinition passed to this method. The
G4ParticleDefinition provides all intrinsic particle information
(mass, charge, spin, name ...).

If you want to implement a model which is valid only for certain
particle types, it is recommended for efficiency that you use the
static pointer of the corresponding particle classes.

As an example, in a model valid for gammas only, the
IsApplicable() method should take the form:

#include "G4Gamma.hh"

G4bool MyGammaModel::IsApplicable(const G4ParticleDefinition& partDef)
{
 return &partDef == G4Gamma::GammaDefinition();
}

	void DoIt(const G4FastTrack&, G4FastStep&):
	The details of your parameterisation will be implemented in this
method. The G4FastTrack reference provides the input information,
and the final state of the particles after parameterisation must be
returned through the G4FastStep reference (what is the changed energy
and position, what are the secondaries, which particles are killed).
Tracking for the final state secondary particles is requested after your
parameterisation has been invoked.

The G4FastSimulationManager Class

G4FastSimulationManager functionalities regarding the use of ghost
volumes are explained in
Parameterisation Using Ghost/Parallel Geometries.

Constructor

	G4FastSimulationManager(G4Region *anEnvelope, G4bool IsUnique=false):
	This is the only constructor. You specify the G4Region by providing
its pointer. The G4FastSimulationManager object will bind itself to
this G4Region. If you know that this G4Region has a single root
G4LogicalVolume, placed only once, you can set the IsUnique boolean
to true to allow some optimisation.

Note that if you choose to use the G4VFastSimulationModel(const
G4String&, G4Region*, G4bool) constructor for your model, the
G4FastSimulationManager will be constructed using the given
G4Region* and G4bool values of the model constructor.

Management of parameterisation models

The following two methods provide the usual management functions.

	void AddFastSimulationModel(G4VFastSimulationModel*)

	void RemoveFastSimulationModel(G4VFastSimulationModel*)

Messenger

To ease the communication with G4FastSimulationManager a messenger class
was introduced. List of available commands:

/param/ // Fast Simulation print/control commands.
/param/showSetup // Show fast simulation setup (for each world: fast simulation manager
 // process - which particles, region hierarchy - which models)
/param/listEnvelopes <ParticleName (default:all)> // List all the envelope names for a
 // given particle (or for all particles if without parameters).
/param/listModels <EnvelopeName (default:all)> // List all the Model names for a given
 // envelope (or for all envelopes if without parameters).
/param/listIsApplicable <ModelName (default:all)> // List all the Particle names a given
 // model is applicable (or for all models if without parameters).
/param/ActivateModel <ModelName> // Activate a given Model.
/param/InActivateModel <ModelName> // InActivate a given Model.

The G4FastSimulationManagerProcess Class

This G4VProcess serves as an interface between the tracking and the
parameterisation. You usually don't need to set it up directly, as you
can conveniently rely on the helper tool G4FastSimulationPhysics
(see Section 2. Which particles)
for this. At tracking (stepping) time, it collaborates with the
G4FastSimulationManager of the current volume, if any, to allow the
models to trigger. If no manager exists or if no model issues a trigger,
the tracking goes on normally.

Parallel/Ghost Geometry

In order to register G4FastSimulationManagerProcess operating on the regions from
the parallel geometry, it must be constructed passing the world name. Otherwise,
the mass geometry is used (and its navigator).

Moreover, G4FastSimulationManagerProcess must be registered to G4ProcessManager
as continuous and discrete process, as it provides navigation in the ghost
world to limit the step on ghost boundaries. Hence it is important to maintain
the ordering of the along-step execution:

[n-3] ...
[n-2] Multiple Scattering
[n-1] G4FastSimulationManagerProcess
[n] G4Transportation

Since 10.3 release it is convenient to use G4FastSimulationPhysics on top of
a modular physics list. To use fast simulation in the parallel geometry (register
G4FastSimulationManagerProcess) one can do (from Par01 example):

// --
// -- PhysicsList and fast simulation activation:
// --
// -- Create a physics list (note : FTFP_BERT is a G4VModularPhysicsList
// -- which allows to use the subsequent G4FastSimulationPhysics tool to
// -- activate the fast simulation):
FTFP_BERT* physicsList = new FTFP_BERT;
// -- Create helper tool, used to activate the fast simulation:
G4FastSimulationPhysics* fastSimulationPhysics = new G4FastSimulationPhysics();
fastSimulationPhysics->BeVerbose();
// -- activation of fast simulation for particles having fast simulation models
// -- attached in the mass geometry:
fastSimulationPhysics->ActivateFastSimulation("e-");
fastSimulationPhysics->ActivateFastSimulation("e+");
fastSimulationPhysics->ActivateFastSimulation("gamma");
// -- activation of fast simulation for particles having fast simulation models
// -- attached in the parallel geometry:
fastSimulationPhysics->ActivateFastSimulation("pi+","pionGhostWorld");
fastSimulationPhysics->ActivateFastSimulation("pi-","pionGhostWorld");
// -- Attach the fast simulation physics constructor to the physics list:
physicsList->RegisterPhysics(fastSimulationPhysics);
// -- Finally passes the physics list to the run manager:
runManager->SetUserInitialization(physicsList);

If you wish to register manually G4FastSimulationManagerProcess to all
the particles as a discrete and continuous process:

void MyPhysicsList::addParameterisation()
{
 G4FastSimulationManagerProcess*
 theFastSimulationManagerProcess = new G4FastSimulationManagerProcess();
 theParticleIterator->reset();
 while((*theParticleIterator)())
 {
 G4ParticleDefinition* particle = theParticleIterator->value();
 G4ProcessManager* pmanager = particle->GetProcessManager();
 pmanager->AddProcess(theFastSimulationManagerProcess, -1, 0, 0);
 }
}

The G4GlobalFastSimulationManager Singleton Class

This class is a singleton which can be accessed as follows:

#include "G4GlobalFastSimulationManager.hh"
...
...
G4GlobalFastSimulationManager* globalFSM;
globalFSM = G4GlobalFastSimulationManager::getGlobalFastSimulationManager();
...
...

Presently, you will mainly need to use the G4GlobalFastSimulationManager
if you use ghost geometries.

Parameterisation Using Ghost/Parallel Geometries

In some cases, volumes of the tracking geometry do not allow envelopes
to be defined. This may be the case with a geometry coming from a CAD
system. Since such a geometry is flat, a parallel geometry must be used
to define the envelopes.

Another interesting case involves defining an envelope which groups the
electromagnetic and hadronic calorimeters of a detector into one volume.
This may be useful when parameterising the interaction of charged pions.
You will very likely not want electrons to see this envelope, which
means that ghost geometries have to be organised by particle flavours.

Using ghost geometries implies some more overhead in the
parameterisation mechanism for the particles sensitive to ghosts, since
navigation is provided in the ghost geometry by the
G4FastSimulationManagerProcess. Usually, however, only a few volumes
will be placed in this ghost world, so that the geometry computations
will remain rather cheap.

For details on how to use fast simulation with the parallel/world
geometry please consult
The G4FastSimulationManagerProcess Class.

Gflash Parameterisation

This section describes how to use the Gflash parameterisation. Gflash is a
concrete implementation based on the equations and parameters
of the original Gflash package from H1(hep-ex/0001020, Grindhammer &
Peters, see physics manual) and uses the fast simulation facilities of
Geant4 described above. Briefly, whenever a e-/e+ particle enters the
calorimeter, it is parameterised if it has a minimum energy and the
shower is expected to be contained in the calorimeter (or 'parameterisation
envelope'). If this is fulfilled the particle is
killed, no secondaries are created, and instead the energy is deposited
according to the Gflash equations. Examples, provided in
examples/extended/parametrisation/gflash/, show how to interface
Gflash to your application. The simulation time is measured, so the user
can immediately see the speed increase resulting from the use of Gflash.

Using the Gflash Parameterisation

To use Gflash 'out of the box' the following steps are necessary:

	The user must add the fast simulation process:

G4VModularPhysicsList* physicsList = new FTFP_BERT();
G4FastSimulationPhysics* fastSimulationPhysics = new G4FastSimulationPhysics();
fastSimulationPhysics->ActivateFastSimulation("e-");
physicsList->RegisterPhysics(fastSimulationPhysics);

	The envelope in which the parameterisation should be performed must
be created and specified (below: G4Region* fRegion) and the
GFlashShowerModel must be assigned to this region. Furthermore, the
classes GFlashParticleBounds (which provides thresholds for the
parameterisation like minimal energy etc.), GflashHitMaker (a helper
class to generate hits in the sensitive detector) and
GFlashHomoShowerParameterisation (which does the computations) must be
constructed and attached to the GFlashShowerModel:

G4Material* pbWO4 = nistManager->FindOrBuildMaterial("G4_PbWO4");
fFastShowerModel = new GFlashShowerModel("fFastShowerModel", fRegion);
fParameterisation = new GFlashHomoShowerParameterisation(pbWO4);
fFastShowerModel->SetParameterisation(*fParameterisation);
fParticleBounds = new GFlashParticleBounds();
fFastShowerModel->SetParticleBounds(*fParticleBounds);
fHitMaker = new GFlashHitMaker();
fFastShowerModel->SetHitMaker(*fHitMaker);

The user must set the material of the calorimeter, since the
computation depends on the material.

	It is mandatory to use G4VGFlashSensitiveDetector as (additional)
base class for the sensitive detector:

class ExGflash1SensitiveDetector: public G4VSensitiveDetector, public G4VGFlashSensitiveDetector

Here it is necessary to implement a separate interface, where the
Gflash spots are processed:

virtual G4bool ProcessHits(G4GFlashSpot*aSpot,G4TouchableHistory*);

A separate interface is used, because the Gflash spots naturally
contain less information than the full simulation.

Since the parameters in the Gflash package are taken from fits to full
simulations with Geant3, with limited number of materials, and on specific range
of electron energy, some re-tuning might be necessary for good
agreement with Geant4 showers. Such parameterisation may be moreover made
independent on material (currently atomic number Z) reducing the number of parameters.
The tuning procedure is described in hep-ex/0001020 and there is on-going work to
automate that procedure and make available in Geant4. For the moment, the
only way to alter the parameters is to provide an implementation of
GVFlashHomoShowerTuning class and pass it to the class that calculates the
showers profiles, etc.:

GFlashHomoShowerParameterisation(G4Material * aMat, GVFlashHomoShowerTuning * aPar = 0);

For information, there is also a preliminary (still not validated) implementation of
a parameterisation for sampling calorimeters. The user must specify the active
and passive material, as well as the thickness of the active and passive layer.
The sampling structure of the calorimeter is taken into account by using
an "effective medium" to compute the shower shape.

All material properties needed are calculated automatically. If tuning
is required, the user can pass his own parameter set in the class
GFlashSamplingShowerTuning. Here the user can also set his
calorimeter resolution.

All in all the constructor looks the following:

GFlashSamplingShowerParamterisation(G4Material * Mat1, G4Material * Mat2,G4double d1,G4double d2,
GVFlashSamplingShowerTuning * aPar = 0);

Transportation Process

A Transportation process is required for every particle which is tracked
in a simulation. The Geant4 transportation processes are responsible for
several key functions for tracking:

	polling the Geometry Modeller via G4Navigator to obtain the distance to
the next boundary for uncharged particles or charged particles in a volume /
region without an electromagnetic field;

	handing off the tracking of charged particles in an EM field to
G4PropagatorInField which finds either the endpoint of integration of the
equations of motion of the particle or the state of the particle at the
location in which it intersects with the next volume boundary;

	updating the time of flight of the particle, using the full step length
(not the geometrical step length, which is reduced by multiple scattering.)

	killing tracks which are found to loop inside a (magnetic) field, without
making adequate progress after O(thousand) integration steps. A description
of this is provided below.

Transportation comes in two flavours:

	the ‘standard’ G4Transportation process, used for most applications, and

	the G4CoupledTransportation process, which is activated when multiple geometries
are active.

Multiple geometries can be created in order to cope with different use cases:

	when a mass overlay geometry is used to overlap a set of ‘top’ volume onto a
complex existing geometry,

	when the Geant4 scoring and/or biasing capabilities are activated.

The registration of the relevant Transportation process is handled by the
G4PhysicsListHelper, which chooses the correct type depending on whether
any of the features which require parallel geometries have been used.

In brief there is one main difference between G4Transportation and
G4CoupledTransportation. The G4Transportation process uses the
G4Navigator of the Geant4 Geometry Modeller to obtain the distance to
the next boundary along a straight line (for a neutral particle, or a charged
particle in zero field). The G4CoupledTransportation process uses the
G4PathFinder class to obtain the shortest length to a boundary amongst the
geometries registered for the current particle - in effect multiplexing the
different geometries.

In addition the transportation processes estimates the time of flight
for the current step. For a neutral particle or a charged particle inside
a pure magnetic field, this is estimated from the initial and final velocity
of the particle. This taking into account roughly the effect of energy
loss from ionisation. Since the full path length is used (rather than the
geometrical one) the path lengthening due to multiple scattering is also
taken into account.

For a charged particle in an EM field with a non-zero electric component,
or a gravity field, the time of flight is calculated taking into account
the change in velocity.

For the propagation in an external field, electromagnetic or other, the
Transportation processes rely on the capabilities of G4PropagatorInField
and the integration methods detailed in the subsection
ElectroMagnetic Field

Note that the integration currently is done without taking into account
either energy loss along the trajectory of motion or multiple scattering,
which is applied independently at the endpoint (if it is not on a boundary.)

Further details about the caveats and control of transportation within a
magnetic field are given in the Appendix: Transportation in Magnetic Field - Further Details.

Footnotes

	#1

	https://geant4.web.cern.ch/collaboration/working_groups/electromagnetic

	#2

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/html/index.html

	#3

	https://geant4.web.cern.ch/download

	#4

	https://geant4.web.cern.ch/download

	#5

	https://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/html/index.html

	#6

	https://nrc-cnrc.github.io/EGSnrc/doc/pirs509a-beamnrc.pdf

	#7

	http://geant4-dna.org

	#8

	https://geant4.web.cern.ch/collaboration/working_groups/electromagnetic

	#9

	http://geant4-dna.org

	#10

	https://doi.org/10.1063/1.4972191

	#11

	http://geant4-dna.org

	#12

	http://geant4-dna.org

	#13

	http://geant4.in2p3.fr/styled-3

	#14

	http://dx.doi.org/10.1002/xrs.1301

	#15

	https://doi.org/10.1016/j.nimb.2015.08.012

	#16

	https://twiki.cern.ch/twiki/bin/view/Geant4/LoweMuElec

	#17

	https://www.ge.infn.it/geant4/physics/pixe/index.html

	#18

	http://ieeexplore.ieee.org/document/5341442/

	#19

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/html/index.html

	#20

	https://www.ge.infn.it/geant4/physics/pixe/erosita.html

	#21

	https://geant4.web.cern.ch/download

	#22

	https://www.ge.infn.it/geant4/physics/pixe/index.html

	#23

	https://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/html/index.html

	#24

	https://www-nds.iaea.org/photonuclear

	#25

	https://geant4.web.cern.ch/download

	#26

	https://www-nds.iaea.org/geant4/

	#27

	http://t2.lanl.gov/nis/data.html

	#28

	http://t2.lanl.gov/nis/data.html

	#29

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/html/index.html

	#30

	https://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/html/index.html

	#31

	https://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/html/index.html

	#32

	https://geant4.web.cern.ch/download

	#33

	https://geant4.web.cern.ch/download

Particles

Basic concepts

There are three levels of classes to describe particles in Geant4.

	G4ParticleDefinition
	defines a particle

	G4DynamicParticle
	describes a particle interacting with materials

	G4Track
	describes a particle traveling in space and time

G4ParticleDefinition aggregates information to characterize a
particle's properties, such as name, mass, spin, life time, and decay
modes. G4DynamicParticle aggregates information to describe the
dynamics of particles, such as energy, momentum, polarization, and
proper time, as well as "particle definition" information.
G4Track (see Tracking) includes all information
necessary for tracking in a detector simulation, such as time, position,
and step, as well as "dynamic particle" information.

Definition of a particle

There are a large number of elementary particles and nuclei. Geant4
provides the G4ParticleDefinition class to represent particles, and
various particles, such as the electron, proton, and gamma have their
own classes derived from G4ParticleDefinition.

We do not need to make a class in Geant4 for every kind of particle in
the world. There are more than 100 types of particles defined in Geant4
by default. Which particles should be included, and how to implement
them, is determined according to the following criteria. (Of course, the
user can define any particles he wants. Please see the User's Guide:
For ToolKit Developers).

Particle List in Geant4

This list includes all particles in Geant4 and you can see properties of
particles such as

	PDG encoding

	mass and width

	electric charge

	spin, isospin and parity

	magnetic moment

	quark contents

	life time and decay modes

Here is a list of particles in Geant4. This list is generated
automatically by using Geant4 functionality, so listed values are same
as those in your Geant4 application (as far as you do not change source
codes).

Categories

	gluon / quarks /
di-quarks

	leptons

	mesons

	baryons

	ions

	others

Classification of particles

	elementary particles which should be tracked in Geant4 volumes

All particles that can fly a finite length and interact with
materials in detectors are included in this category. In addition,
some particles with a very short lifetime are included for user's
convenience.

	stable particles

Stable means that the particle can not decay, or has a very small
possibility to decay in detectors, e.g., gamma, electron, proton,
and neutron.

	long life (>10-14sec) particles

Particles which may travel a finite length, e.g., muon, charged
pions.

	short life particles that decay immediately in Geant4

For example, pi0, eta

	K0 system

K0 "decays" immediately into K0S or
K0L, and then K0S/
K0L decays according to its life time and decay
modes.

	optical photon

Gamma and optical photon are distinguished in the simulation view,
though both are the same particle (photons with different
energies). For example, optical photon is used for Cerenkov light
and scintillation light.

	geantino/charged geantino

Geantino and charged geantino are virtual particles for simulation
which do not interact with materials and undertake transportation
processes only.

	nuclei

Any kinds of nucleus can be used in Geant4, such as alpha(He-4),
uranium-238 and excited states of carbon-14. In addition, Geant4
provides hyper-nuclei. Nuclei in Geant4 are divided into two groups
from the viewpoint of implementation.

	light nuclei

Light nuclei frequently used in simulation, e.g., alpha, deuteron,
He3, triton.

	heavy nuclei (including hyper-nuclei)

Nuclei other than those defined in the previous category.

	light anti-nuclei

Light anti-nuclei, for example, anti-alpha.

	light hyper-nuclei

Light hyper-nuclei and anti-hyper-nuclei, for example hyper-alpha and anti-hyper-alpha

Note that G4ParticleDefinition represents nucleus state and
G4DynamicParticle represents atomic state with some nucleus. Both
alpha particle with charge of +2e and helium atom with no charge
aggregates the same "particle definition" of G4Alpha, but different
G4DynamicParticle objects should be assigned to them. (Details can be
found below)

	short-lived particles

Particles with very short life time decay immediately and are never
tracked in the detector geometry. These particles are usually used
only inside physics processes to implement some models of
interactions. G4VShortLivedParticle is provided as the base class
for these particles. All classes related to particles in this
category can be found in shortlived sub-directory under the
particles directory.

	quarks/di-quarks: For example, all 6 quarks.

	gluon

	baryon excited states with very short life: For example, spin 3/2
baryons and anti-baryons

	meson excited states with very short life: For example, spin 1
vector bosons

Implementation of particles

Single object created in the initialization: Categories a, b-1

These particles are frequently used for tracking in Geant4. An
individual class is defined for each particle in these categories. The
object in each class is unique. The user can get pointers to these
objects by using static methods in their own classes. The unique object
for each class is created when its static method is called in the
"initialization phase:.

On-the-fly creation: Category b-2

Ions will travel in a detector geometry and should be tracked, however,
the number of ions which may be used for hadronic processes is so huge
that ions are dynamically created by requests from processes (and
users). Each ion corresponds to one object of the G4Ions class.
G4IonTable class is a dictionary for ions. G4IonTable::GetIon()
method to create ions on the fly. (G4IonTable::FIndIon() method
returns pointer to the specified ion. If the ion does not exists, it
returns zero without creating any ion.

G4NucleiPropertiesTableAME03 contains a table of measured mass
values of about 3100 stable nuclei (ground states).
G4NucleiPropertiesTheoreticalTable theoretical mass values of about
8000 nuclei (ground states). G4IsotopeTable describes properties of
ions (exited energy, decay modes, life time and magnetic moments), which
are used to create ions. G4NuclideTable is provided as a list of
nuclei in Geant4. It contains about 2900 ground states and 4000 excited
states. Users can register his/her G4IsotopeTable to the
G4IonTable.

Processes attached to heavy ions are same as those for G4GenericIon
class. In other words, you need to create G4GenericIon and attach
processes to it if you want to use heavy ions.

G4ParticleGun can shoot any heavy ions with /gun/ions command after
ion is selected by /gun/particle command.

Dynamic creation by processes: Category c

Particle types in this category are are not created by default, but will
only be created by request from processes or directly by users. Each
shortlived particle corresponds to one object of a class derived from
G4VshortLivedParticle, and it will be created dynamically during the
initialization phase.

G4ParticleDefinition

The G4ParticleDefinition class has "read-only" properties to
characterize individual particles, such as name, mass, charge, spin, and
so on. These properties are set during initialization of each particle.
Methods to get these properties are listed in
Table 12.

Table 12 Methods to get particle properties.

	G4String GetParticleName()

	particle name

	G4double GetPDGMass()

	mass

	G4double GetPDGWidth()

	decay width

	G4double GetPDGCharge()

	electric charge

	G4double GetPDGSpin()

	spin

	G4double GetPDGMagneticMoment()

	magnetic moment (0: not defined or no magnetic moment)

	G4int GetPDGiParity()

	parity (0:not defined)

	G4int GetPDGiConjugation()

	charge conjugation (0:not defined)

	G4double GetPDGIsospin()

	iso-spin

	G4double GetPDGIsospin3()

	3rd-component of iso-spin

	G4int GetPDGiGParity()

	G-parity (0:not defined)

	G4String GetParticleType()

	particle type

	G4String GetParticleSubType()

	particle sub-type

	G4int GetLeptonNumber()

	lepton number

	G4int GetBaryonNumber()

	baryon number

	G4int GetPDGEncoding()

	particle encoding number by PDG

	G4int GetAntiPDGEncoding()

	encoding for anti-particle of this particle

Table 13 shows the methods of
G4ParticleDefinition for getting information about decay modes and
the life time of the particle.

Table 13 Methods to get particle decay modes and life time.

	G4bool GetPDGStable()

	stable flag

	G4double GetPDGLifeTime()

	life time

	G4DecayTable* GetDecayTable()

	decay table

Users can modify these properties, though the other properties listed
above can not be change without rebuilding the libraries.

Each particle has its own G4ProcessManger object that manages a list
of processes applicable to the particle.(see
Managing Processes)

Dynamic particle

The G4DynamicParticle class has kinematics information for the
particle and is used for describing the dynamics of physics processes.
The properties in G4DynamicParticle are listed in the
Table 14.

Table 14 Methods to set/get values.

	G4double theDynamicalMass

	dynamical mass

	G4ThreeVector theMomentumDirection

	normalized momentum vector

	G4ParticleDefinition* theParticleDefinition

	definition of particle

	G4double theDynamicalSpin

	dynamical spin (i.e. total angular momentum as a ion/atom)

	G4ThreeVector thePolarization

	polarization vector

	G4double theMagneticMoment

	dynamical magnetic moment (i.e. total magnetic moment as a ion/atom)

	G4double theKineticEnergy

	kinetic energy

	G4double theProperTime

	proper time

	G4double theDynamicalCharge

	dynamical electric charge (i.e. total electric charge as a ion/atom)

	G4ElectronOccupancy* theElectronOccupancy

	electron orbits for ions

Here, the dynamical mass is defined as the mass for the dynamic
particle. For most cases, it is same as the mass defined in
G4ParticleDefinition class (i.e. mass value given by
GetPDGMass() method). However, there are two exceptions.

	resonance particle

	ions

Resonance particles have large mass width and the total energy of decay
products at the center of mass system can be different event by event.

As for ions, G4ParticleDefintion defines a nucleus and
G4DynamicParticle defines an atom. G4ElectronOccupancy describes
state of orbital electrons. So, the dynamic mass can be different from
the PDG mass by the mass of electrons (and their binding energy). In
addition, the dynamical charge, spin and magnetic moment are those of
the atom/ion (i.e. including nucleus and orbit electrons).

Decay products of heavy flavor particles are given in many event
generators. In such cases, G4VPrimaryGenerator sets this information
in *thePreAssignedDecayProducts. In addition, decay time of the
particle can be set arbitrarily time by using
PreAssignedDecayProperTime.

Footnotes

Production Threshold versus Tracking Cut

General considerations

We have to fulfill two contradictory requirements. It is the
responsibility of each individual process to produce secondary
particles according to its own capabilities. On the other hand, it is
only the Geant4 kernel (i.e., tracking) which can ensure an overall
coherence of the simulation.

The general principles in Geant4 are the following:

	Each process has its intrinsic limit(s) to produce secondary
particles.

	All particles produced (and accepted) will be tracked up to zero
range.

	Each particle has a suggested cut in range (which is converted to
energy for all materials), and defined via a SetCut() method (see
Range Cuts).

Points 1 and 2 imply that the cut associated with the particle is a
(recommended) production threshold of secondary particles.

Set production threshold (SetCut methods)

As already mentioned, each kind of particle has a suggested production
threshold. Some of the processes will not use this threshold (e.g.,
decay), while other processes will use it as a default value for their
intrinsic limits (e.g., ionisation and bremsstrahlung).

See Range Cuts to see how to set the
production threshold.

Apply cut

The DoIt methods of each process can produce secondary particles.
Two cases can happen:

	a process sets its intrinsic limit greater than or equal to the
recommended production threshold. OK. Nothing has to be done (nothing
can be done !).

	a process sets its intrinsic limit smaller than the production
threshold (for instance 0).

The list of secondaries is sent to the SteppingManager via a
ParticleChange object.

Before being recopied to the temporary stack for later tracking, the
particles below the production threshold will be kept or deleted
according to the safe mechanism explained hereafter.

	The ParticleDefinition (or ParticleWithCuts) has a Boolean data
member: ApplyCut.

	ApplyCut is OFF: do nothing. All the secondaries are stacked (and
then tracked later on), regardless of their initial energy. The
Geant4 kernel respects the best that the physics can do, but neglects
the overall coherence and the efficiency. Energy conservation is
respected as far as the processes know how to handle correctly the
particles they produced! This is the main used during Geant4
tracking.

	ApplyCut in ON: this feature is not normally used but is
potentially available; the TrackingManager checks the range of each
secondary against the production threshold and against the safety.
The particle is stacked if range > min(cut,safety).

	If not, check if the process has nevertheless set the flag
"good for tracking" and then stack it (see
Why produce secondaries below threshold in some processes? below for the explanation of the
GoodForTracking flag).

	If not, recuperate its kinetic energy in the
localEnergyDeposit, and set tkin=0.

	Then check in the ProcessManager if the vector of
ProcessAtRest is not empty. If yes, stack the particle for
performing the "Action At Rest" later. If not, and only in
this case, abandon this secondary.

With this sophisticated mechanism we have the global cut that we wanted,
but with energy conservation, and we respect boundary constraint
(safety) and the wishes of the processes (via "good for tracking").
Note, that for electromagnetic processes for gamma incident a specific
ApplyCut option is used which guarantees energy balance and is more
efficient because secondary tracks are not produced at all.

Why produce secondaries below threshold in some processes?

A process may have good reasons to produce particles below the
recommended threshold:

	checking the range of the secondary versus geometrical quantities
like safety may allow one to realize the possibility that the
produced particle, even below threshold, will reach a sensitive part
of the detector;

	another example is the gamma conversion: the positron is always
produced, even at zero energy, for further annihilation;

	if a process is rare there is not practical reason make it complicate
checking cut value.

These secondary particles are sent to the "Stepping Manager" with a
flag GoodForTracking to pass the filter explained in the previous
section (even when ApplyCut is ON).

Cuts in stopping range or in energy?

The cuts in stopping range allow one to say that the energy has been
released at the correct space position, limiting the approximation
within a given distance. On the contrary, cuts in energy imply
accuracies of the energy depositions which depend on the material.

Summary

In summary, we do not have tracking cuts; we only have production
thresholds in range. All particles produced and accepted are tracked up
to zero range.

It must be clear that the overall coherency that we provide cannot go
beyond the capability of processes to produce particles down to the
recommended threshold.

In other words a process can produce the secondaries down to the
recommended threshold, and by interrogating the geometry, or by
realizing when mass-to-energy conversion can occur, recognize when
particles below the threshold have to be produced.

Special tracking cuts

One may need to cut given particle types in given volumes for
optimisation reasons. This decision is under user control, and can
happen for particles during tracking as well.

The user must be able to apply these special cuts only for the desired
particles and in the desired volumes, without introducing an overhead
for all the rest.

The approach is as follows:

	special user cuts are registered in the UserLimits class (or its
descendant), which is associated with the logical volume class.

The current default list is:

	max allowed step size

	max total track length

	max total time of flight

	min kinetic energy

	min remaining range

The user can instantiate a UserLimits object only for the desired
logical volumes and do the association.

The first item (max step size) is automatically taken into account by
the G4 kernel while the others items must be managed by the user, as
explained below.

Example(see basic/B2/B2a or B2b): in the Tracker region, in
order to force the step size not to exceed one half of the Tracker
chamber thickness (chamberWidth), it is enough to put the
following code in B2a::DetectorConstruction::DefineVolumes():

G4double maxStep = 0.5*chamberWidth;
fStepLimit = new G4UserLimits(maxStep);
trackerLV->SetUserLimits(fStepLimit);

and in PhysicsList, the process G4StepLimiter needs to be
attached to each particle's process manager where step limitation in
the Tracker region is required:

// Step limitation seen as a process
G4StepLimiter* stepLimiter = new G4StepLimiter();
pmanager->AddDiscreteProcess(StepLimiter);

If a provided Geant4 physics list is used, as FTFP_BERT in B2
example, then the G4StepLimiterPhysics, which will take care of
attaching the G4StepLimiter process to all particles, can be
added to the physics list in the main() function:

G4VModularPhysicsList* physicsList = new FTFP_BERT;
physicsList->RegisterPhysics(new G4StepLimiterPhysics());
runManager->SetUserInitialization(physicsList);

The G4UserLimits class is in source/global/management.

	Concerning the others cuts, the user must define dedicated
process(es). He registers this process (or its descendant) only for
the desired particles in their process manager. He can apply his cuts
in the DoIt of this process, since, via G4Track, he can
access the logical volume and UserLimits.

An example of such process (called UserSpecialCuts) is provided in
the repository, but not inserted in any process manager of any
particle.

Example: neutrons. One may need to abandon the tracking of
neutrons after a given time of flight (or a charged particle in a
magnetic field after a given total track length ... etc ...).

Example(see basic/B2/B2a or B2b): in the Tracker region, in order to
force the total time of flight of the neutrons not to exceed 10
milliseconds, put the following code in
B2a::DetectorConstruction::DefineVolumes():

G4double maxTime = 10*ms;
fStepLimit = new G4UserLimits(DBL_MAX,DBL_MAX,maxTime);
trackerLV->SetUserLimits(fStepLimit);

and put the following code in a physics list:

G4ProcessManager* pmanager = G4Neutron::Neutron->GetProcessManager();
pmanager->AddProcess(new G4UserSpecialCuts(),-1,-1,1);

If a provided Geant4 physics list is used, then a
SpecialCutsBuilder class can be defined in a similar way as
G4StepLimiterPhysics and added to the physics list in the
main() function:

G4VModularPhysicsList* physicsList = new FTFP_BERT;
physicsList->RegisterPhysics(new SpecialCutsBuilder());
runManager->SetUserInitialization(physicsList);

(The default G4UserSpecialCuts class is in
source/processes/transportation.)

Footnotes

Cuts per Region

General Concepts

Beginning with Geant4 version 5.1, the concept of a region has been
defined for use in geometrical descriptions. Details about regions and
how to use them are available in Sub-detector Regions. As
an example, suppose a user defines three regions, corresponding to the
tracking volume, the calorimeter and the bulk structure of a detector.
For performance reasons, the user may not be interested in the detailed
development of electromagnetic showers in the insensitive bulk
structure, but wishes to maintain the best possible accuracy in the
tracking region. In such a use case, Geant4 allows the user to set
different production thresholds ("cuts") for each geometrical region.
This ability, referred to as "cuts per region", is also a new feature
provided by the Geant4 5.1 release. The general concepts of production
thresholds were presented in the Production Threshold versus Tracking Cut.

Please note that this new feature is intended only for users who

	are simulating the most complex geometries, such as an LHC detector,
and

	are experienced in simulating electromagnetic showers in matter.

We strongly recommend that results generated with this new feature be
compared with results using the same geometry and uniform production
thresholds. Setting completely different cut values for individual
regions may break the coherent and comprehensive accuracy of the
simulation. Therefore cut values should be carefully optimized, based on
a comparison with results obtained using uniform cuts.

Default Region

The world volume is treated as a region by default. A G4Region
object is automatically assigned to the world volume and is referred to
as the "default region". The production cuts for this region are the
defaults which are defined in the UserPhysicsList. Unless the user
defines different cut values for other regions, the cuts in the default
region will be used for the entire geometry.

Please note that the default region and its default production cuts are
created and set automatically by G4RunManager. The user is not
allowed to set a region to the world volume, nor to assign other
production cuts to the default region.

Assigning Production Cuts to a Region

In the SetCuts() method of the user's physics list, the user must
first define the default cuts. Then a G4ProductionCuts object must
be created and initialized with the cut value desired for a given
region. This object must in turn be assigned to the region object, which
can be accessed by name from the G4RegionStore. An example
SetCuts() code follows.

Listing 79 Setting production cuts to a region

void MyPhysicsList::SetCuts()
{
 // default production thresholds for the world volume
 SetCutsWithDefault();

 // Production thresholds for detector regions
 G4Region* region;
 G4String regName;
 G4ProductionCuts* cuts;

 regName = "tracker";
 region = G4RegionStore::GetInstance()->GetRegion(regName);
 cuts = new G4ProductionCuts;
 cuts->SetProductionCut(0.01*mm); // same cuts for gamma, proton, e- and e+
 region->SetProductionCuts(cuts);

 regName = "calorimeter";
 region = G4RegionStore::GetInstance()->GetRegion(regName);
 cuts = new G4ProductionCuts;
 cuts->SetProductionCut(0.01*mm,G4ProductionCuts::GetIndex("gamma"));
 cuts->SetProductionCut(0.1*mm,G4ProductionCuts::GetIndex("e-"));
 cuts->SetProductionCut(0.1*mm,G4ProductionCuts::GetIndex("e+"));
 cuts->SetProductionCut(0.1*mm,G4ProductionCuts::GetIndex("proton"));
 region->SetProductionCuts(cuts);
}

Footnotes

Physics Table

General Concepts

In Geant4, physics processes use many tables of cross sections, energy
losses and other physics values. Before the execution of an event loop,
PreparePhysicsTable() and BuildPhysicsTable() methods of
G4VProcess are invoked for all processes and as a part of
initialisation procedure cross section tables are prepared. Energy loss
processes calculate cross section and/or energy loss values for each
pair of material and production cut value used in geometry for a give
run. A change in production cut values therefore require these cross
sections to be re-calculated. Cross sections for hadronic processes and
gamma processes do not depend on the production cut but sampling of
final state may depend on cuts, so full re-initialisation is performed.

The G4PhysicsTable class is used to handle cross section tables.
G4PhysicsTable is a collection of instances of G4PhysicsVector
(and derived classes), each of which has cross section values for a
particle within a given energy range traveling in a material. By default
the linear interpolation is used, alternatively spline may be used if
the flag of spline is activated by SetSpline method of the
G4PhysicsVector

Material-Cuts Couple

Users can assign different production cuts to different regions (see
Cuts per Region). This means that if the same material is used in
regions with different cut values, the processes need to prepare several
different cross sections for that material.

The G4ProductionCutsTable has G4MaterialCutsCouple objects, each
of which consists of a material paired with a cut value. These
G4MaterialCutsCouples are numbered with an index which is the same
as the index of a G4PhysicsVector for the corresponding
G4MaterialCutsCouplein the G4PhysicsTable. The list of
MaterialCutsCouples used in the current geometry setup is updated
before starting the event loop in each run.

File I/O for the Physics Table

Calculated physics tables for electromagnetic processes can be stored in
files. The user may thus eliminate the time required for the calculation
of physics tables by retrieving them from the files.

Using the built-in user command "storePhysicsTable" (see
Built-in Commands), stores physics tables in files. Information
on materials and cuts defined in the current geometry setup are stored
together with physics tables because calculated values in the physics
tables depend on MaterialCutsCouple. Note that physics tables are
calculated before the event loop, not in the initialization phase. So,
at least one event must be executed before using the
"storePhysicsTable" command.

Calculated physics tables can be retrieved from files by using the
"retrievePhysicsTable" command. Materials and cuts from files are
compared with those defined in the current geometry setup, and only
physics vectors corresponding to the MaterialCutsCouples used in the
current setup are restored. Note that nothing happens just after the
"retrievePhysicsTable" command is issued. Restoration of physics
tables will be executed in parallel with the calculation of physics
tables.

Building the Physics Table

In the G4RunManagerKernel::RunInitialization() method, after the
list of MaterialCutsCouples is updated, the
G4VUserPhysicsList::BuildPhysicsTable() method is invoked to build
physics tables for all processes.

Initially, the G4VProcess::PreparePhysicsTable() method is invoked.
Each process creates G4PhysicsTable objects as necessary. It then
checks whether the MaterialCutsCouples have been modified after a
run to determine if the corresponding physics vectors can be used in the
next run or need to be re-calculated.

Next, the G4VProcess::RetrievePhysicsTable() method is invoked if
the G4VUserPhysicsList::fRetrievePhysicsTable flag is asserted.
After checking materials and cuts in files, physics vectors
corresponding to the MaterialCutsCouples used in the current setup
are restored.

Finally, the G4VProcess::BuildPhysicsTable() method is invoked and
only physics vectors which need to be re-calculated are built.

At the end of program G4PhysicsTable should be deleted. Before
deletion of a table it should be cleaned up using the method
G4PhysicsTable::clearAndDestroy(). This method should be called in a
middle of the run if an old table is removed and a new one is created.

Footnotes

User Limits

General Concepts

The user can define artificial limits affecting to the Geant4 tracking.

G4UserLimits(G4double uStepMax = DBL_MAX,
 G4double uTrakMax = DBL_MAX,
 G4double uTimeMax = DBL_MAX,
 G4double uEkinMin = 0.,
 G4double uRangMin = 0.);

where:

	uStepMax

	Maximum step length

	uTrakMax

	Maximum total track length

	uTimeMax

	Maximum global time for a track

	uEkinMin

	Minimum remaining kinetic energy for a track

	uRangMin

	Minimum remaining range for a track

Note that uStepMax is affecting to each step, while all other limits
are affecting to a track.

The user can assign G4UserLimits to logical volume and/or to a
region. User limits assigned to logical volume do not propagate to
daughter volumes, while User limits assigned to region propagate to
daughter volumes unless daughters belong to another region. If both
logical volume and associated region have user limits, those of logical
volume win.

A G4UserLimits object must be instantiated for the duration of whatever
logical volume or region to which it is assigned. It is the
responsibility of the user's code to delete the object after the
assigned volume(s)/region(s) have been deleted.

Processes co-working with G4UserLimits

In addition to instantiating G4UserLimits and setting it to logical
volume or region, the user has to assign the following process(es) to
particle types he/she wants to affect. If none of these processes is
assigned, that kind of particle is not affected by G4UserLimits.

	Limitation to step (uStepMax)
	G4StepLimiter process must be defined to affected particle
types. This process limits a step, but it does not kill a track.

	Limitations to track (uTrakMax, uTimeMax, uEkinMin, uRangMin)
	G4UserSpecialCuts process must be defined to affected particle
types. This process limits a step and kills the track when the track
comes to one of these limits. Step limitation occurs only for the
final step.

Example of G4UserLimits can be found in examples/basic/B2 : see
B2a::DetectorConstruction (or B2b::DetectorConstruction). The
G4StepLimiter process is added in the Geant4 physics list via the
G4StepLimiterPhysics class in the main() function in
exampleB2a.cc (or exampleB2b.cc).

Footnotes

Track Error Propagation

The error propagation package serves to propagate one particle together
with its error from a given trajectory state until a user-defined target
is reached (a surface, a volume, a given track length,...).

Physics

The error propagator package computes the average trajectory that a
particle would follow. This means that the physics list must have the
following characteristics:

	No multiple scattering

	No random fluctuations for energy loss

	No creation of secondary tracks

	No hadronic processes

It has also to be taken into account that when the propagation is done
backwards (in the direction opposed to the one the original track
traveled) the energy loss has to be changed into an energy gain.

All this is done in the G4ErrorPhysicsList class, that is
automatically set by G4ErrorPropagatorManager as the Geant4 physics
list. It sets G4ErrorEnergyLoss as unique electromagnetic process.
This process uses the Geant4 class G4EnergyLossForExtrapolator to
compute the average energy loss for forwards or backwards propagation.
To avoid getting too different energy loss calculation when the
propagation is done forwards (when the energy at the beginning of the
step is used) or backwards (when the energy at the end of the step is
used, always smaller than at the beginning) G4ErrorEnergyLoss
computes once the energy loss and then replaces the original energy loss
by subtracting/adding half of this value (what is approximately the same
as computing the energy loss with the energy at the middle of the step).
In this way, a better calculation of the energy loss is obtained with a
minimal impact on the total CPU time.

The user may use his/her own physics list instead of
G4ErrorPhysicsList. As it is not needed to define a physics list
when running this package, the user may have not realized that somewhere
else in his/her application it has been defined; therefore a warning
will be sent to advert the user that he is using a physics list
different to G4ErrorPhysicsList. If a new physics list is used, it
should also initialize the G4ErrorMessenger with the classes that
serve to limit the step:

G4ErrorEnergyLoss* eLossProcess = new G4ErrorEnergyLoss;
G4ErrorStepLengthLimitProcess* stepLengthLimitProcess = new G4ErrorStepLengthLimitProcess;
G4ErrorMagFieldLimitProcess* magFieldLimitProcess = new G4ErrorMagFieldLimitProcess;
new G4ErrorMessenger(stepLengthLimitProcess, magFieldLimitProcess, eLossProcess);

To ease the use of this package in the reconstruction code, the physics
list, whether G4ErrorPhysicsList or the user's one, will be
automatically initialized before starting the track propagation if it
has not been done by the user.

Trajectory state

The user has to provide the particle trajectory state at the initial
point. To do this it has to create an object of one of the children
classes of G4ErrorTrajState, providing:

	Particle type

	Position

	Momentum

	Trajectory error matrix

G4ErrorTrajState(const G4String& partType,
 const G4Point3D& pos,
 const G4Vector3D& mom,
 const G4ErrorTrajErr& errmat = G4ErrorTrajErr(5,0));

A particle trajectory is characterized by five independent variables as
a function of one parameter (e.g. the path length). Among the five
variables, one is related to the curvature (to the absolute value of the
momentum), two are related to the direction of the particle and the
other two are related to the spatial location.

There are two possible representations of these five parameters in the
error propagator package: as a free trajectory state, class
G4ErrorTrajStateFree, or as a trajectory state on a surface, class
G4ErrorTrajStateonSurface.

Free trajectory state

In the free trajectory state representation the five trajectory
parameters are

	G4double fInvP

	G4double fLambda

	G4double fPhi

	G4double fYPerp

	G4double fZPerp

where fInvP is the inverse of the momentum. fLambda and fPhi
are the dip and azimuthal angles related to the momentum components in
the following way:

p_x = p cos(lambda) cos(phi) p_y = p cos(lambda) sin(phi) p_z = p sin(lambda),
that is, lambda = 90 - theta, where theta is the usual angle
with respect to the Z axis.

fYperp and fZperp are the coordinates of the trajectory in a
local orthonormal reference frame with the X axis along the particle
direction, the Y axis being parallel to the X-Y plane (obtained by the
vectorial product of the global Z axis and the momentum).

Trajectory state on a surface

In the trajectory state on a surface representation the five trajectory
parameters are

	G4double fInvP

	G4double fPV

	G4double fPW

	G4double fV

	G4double fW

where fInvP is the inverse of the momentum; fPV and fPW are
the momentum components in an orthonormal coordinate system with axis U,
V and W; fV and fW are the position components on this
coordinate system.

For this representation the user has to provide the plane where the
parameters are calculated. This can be done by providing two vectors, V
and W, contained in the plane:

G4ErrorSurfaceTrajState(const G4String& partType,
 const G4Point3D& pos,
 const G4Vector3D& mom,
 const G4Vector3D& vecV,
 const G4Vector3D& vecW,
 const G4ErrorTrajErr& errmat = G4ErrorTrajErr(5,0));

or by providing a plane

G4ErrorSurfaceTrajState(const G4String& partType,
 const G4Point3D& pos,
 const G4Vector3D& mom,
 const G4Plane3D& plane,
 const G4ErrorTrajErr& errmat = G4ErrorTrajErr(5,0));

In this second case the vector V is calculated as the vector in the
plane perpendicular to the global vector X (if the plane normal is equal
to X, Z is used instead) and W is calculated as the vector in the plane
perpendicular to V.

Trajectory state error

The 5X5 error matrix should also be provided at the creation of the
trajectory state as a G4ErrorTrajErr object. If it is not provided a
default object will be created filled with null values.

Currently the G4ErrorTrajErr is a G4ErrorSymMatrix, a simplified
version of CLHEP HepSymMatrix.

The error matrix is given in units of GeV and cm. Therefore you should
do the conversion if your code is using other units.

Targets

The user has to define up to where the propagation must be done: the
target. The target can be a surface G4ErrorSurfaceTarget, which is
not part of the Geant4 geometry. It can also be the surface of a Geant4
volume G4ErrorGeomVolumeTarget, so that the particle will be stopped
when it enters this volume. Or it can be that the particle is stopped
when a certain track length is reached, by implementing a
G4ErrorTrackLengthTarget.

Surface target

When the user chooses a G4ErrorSurfaceTarget
as target, the track is propagated until the surface is reached. This
surface is not part of Geant4 geometry, but usually traverses many
Geant4 volumes. The class G4ErrorNavigator
takes care of the double navigation: for each step the step length is
calculated as the minimum of the step length in the full geometry (up to
a Geant4 volume surface) and the distance to the user-defined surface.
To do it, G4ErrorNavigator inherits from G4Navigator
and overwrites the methods ComputeStep() and ComputeSafety().
Two types of surface are currently supported (more types could be
easily implemented at user request): plane and cylindrical.

Plane surface target

G4ErrorPlaneSurfaceTarget
implements an infinite plane surface. The surface can be given as the
four coefficients of the plane equation
ax+by+cz+d = 0:

G4ErrorPlaneSurfaceTarget(G4double a=0,
 G4double b=0,
 G4double c=0,
 G4double d=0);

or as the normal to the plane and a point contained in it:

G4ErrorPlaneSurfaceTarget(const G4Normal3D &n,
 const G4Point3D &p);

or as three points contained in it:

G4ErrorPlaneSurfaceTarget(const G4Point3D &p1,
 const G4Point3D &p2,
 const G4Point3D &p3);

Cylindrical surface target

G4ErrorCylSurfaceTarget
implements an infinite-length cylindrical surface (a cylinder without
end-caps). The surface can be given as the radius, the translation and
the rotation

G4ErrorCylSurfaceTarget(const G4double& radius,
 const G4ThreeVector& trans=G4ThreeVector(),
 const G4RotationMatrix& rotm=G4RotationMatrix());

or as the radius and the affine transformation

G4ErrorCylSurfaceTarget(const G4double& radius,
 const G4AffineTransform& trans);

Geometry volume target

When the user chooses a G4ErrorGeomVolumeTarget as target, the track
is propagated until the surface of a Geant4 volume is reached. User can
choose if the track will be stopped only when the track enters the
volume, only when the track exits the volume or in both cases.

The object has to be instantiated giving the name of a logical volume
existing in the geometry:

G4ErrorGeomVolumeTarget(const G4String& name);

Track Length target

When the user chooses a G4ErrorTrackLengthTarget as target, the
track is propagated until the given track length is reached.

The object has to be instantiated giving the value of the track length:

G4ErrorTrackLengthTarget(const G4double maxTrkLength);

It is implemented as a G4VDiscreteProcess and it limits the step in
PostStepGetPhysicalInteractionLength. To ease its use, the process
is registered to all particles in the constructor.

Managing the track propagation

The user needs to propagate just one track, so there is no need of run
and events. neither of G4VPrimaryGeneratorAction.
G4ErrorPropagator creates a track from the information given in the
G4ErrorTrajState and manages the step propagation. The propagation
is done by the standard Geant4 methods, invoking
G4SteppingManager::Stepping() to propagate each step.

After one step is propagated, G4ErrorPropagator takes cares of
propagating the track errors for this step, what is done by
G4ErrorTrajStateFree::PropagateError(). The equations of error
propagation are only implemented in the representation of
G4ErrorTrajStateFree. Therefore if the user has provided instead a
G4ErrorTrajStateOnSurface object, it will be transformed into a
G4ErrorTrajStateFree at the beginning of tracking, and at the end it
is converted back into G4ErrorTrajStateOnSurface on the target
surface (on the normal plane to the surface at the final point).

The user
G4VUserTrackingAction::PreUserTrackingAction(const G4Track*) and
G4VUserTrackingAction::PreUserTrackingAction(const G4Track*) are
also invoked at the beginning and at the end of the track propagation.

G4ErrorPropagator stops the tracking when one of the three
conditions is true:

	Energy is exhausted

	World boundary is reached

	User-defined target is reached

In case the defined target is not reached,
G4ErrorPropagator::Propagate() returns a negative value.

The propagation of a trajectory state until a user defined target can be
done by invoking the method of G4ErrorPropagatorManager

G4int Propagate(G4ErrorTrajState* currentTS, const G4ErrorTarget* target,
 G4ErrorMode mode = G4ErrorMode_PropForwards);

You can get the pointer to the only instance of G4ErrorPropagatorManager
with

G4ErrorPropagatorManager* g4emgr = G4ErrorPropagatorManager::GetErrorPropagatorManager();

Another possibility is to invoke the propagation step by step, returning
control to the user after each step. This can be done with the method

G4int PropagateOneStep(G4ErrorTrajState* currentTS,
 G4ErrorMode mode = G4ErrorMode_PropForwards);

In this case you should register the target first with the command

G4ErrorPropagatorData::GetG4ErrorPropagatorData()->SetTarget(theG4eTarget);

Error propagation

As in the GEANT3-based GEANE package, the error propagation is based on
the equations of the European Muon Collaboration, that take into
account:

	Error from curved trajectory in magnetic field

	Error from multiple scattering

	Error from ionization

The formulas assume propagation along an helix. This means that it is
necessary to make steps small enough to assure magnetic field
constantness and not too big energy loss.

Limiting the step

There are three ways to limit the step. The first one is by using a
fixed length value. This can be set by invoking the user command:

G4UImanager::GetUIpointer()->ApplyCommand("/geant4e/limits/stepLength MY_VALUE MY_UNIT");

The second one is by setting the maximum percentage of energy loss in
the step (or energy gain is propagation is backwards). This can be set
by invoking the user command:

G4UImanager::GetUIpointer()->ApplyCommand("/geant4e/limits/energyLoss MY_VALUE");

The last one is by setting the maximum difference between the value of
the magnetic field at the beginning and at the end of the step. Indeed
what is limited is the curvature, or exactly the value of the magnetic
field divided by the value of the momentum transverse to the field.
This can be set by invoking the user command:

G4UImanager::GetUIpointer()->ApplyCommand("/geant4e/limits/magField MY_VALUE");

The classes that limit the step are implemented as Geant4 processes.
Therefore, the invocation of the above-mentioned commands should only be
done after the initialization (for example after
G4ErrorPropagatorManager::InitGeant4e().

Footnotes

Exotic Physics

The Geant4 toolkit has recently been extended to include "exotic
physics". This covers the area of phonon propagation and crystal
channelling. These two domains are applicable for Dark Matter
experiments (phonon excitation) and beam extraction and collimation
(crystal channelling). The framework within Geant4 is similar in that a
macroscopic periodic crystal lattice is required for both and wave
functions are propagated within the medium (rather than discrete
particles as in the case of conventional Geant4). Contained here is a
brief description of how to modify a Geant4 application to include the
crystal as both a material and a geometry (plane orientations).

Physics

For a more complete description and understanding the user is referred
to the extended examples category "exoticphysics" and the references
therein.

Material

The implementation of solid-state processes in Geant4 requires the
addition of two important features, the crystal unit cell with all its
parameters and the support for other data required by the processes. The
extended data for a material is stored in a class derived from the
virtual class G4VMaterialExtension. The G4ExtenededMaterial
class collects the pointers to concrete instances of
G4VMaterialExtension. The G4CrystalExtension class is a derived
class of G4VMaterialExtension and collects information on the
physics properties of a perfect crystal. In particular, the class
contains a pointer to a G4CrystalUnitCell object, the elasticity
tensor, a map of G4CrystalAtomBase objects associated with a
G4Element and a vector of G4AtomicBond. The
G4CrystalUnitCell class collects information on the mathematical
description of the crystal unit cell, i.e. the sizes and the angles of
the unit cell, the space group, the Bravais lattice and the lattice
system, and methods for the calculation of the volume in the direct and
reciprocal space, the spacing between two planes, the angle between two
planes, and for the filling of the reduced elasticity tensor. The
G4CrystalExtension constructor takes as argument a pointer to a
G4Material object and has to be registered to the
G4ExtendedMaterial to which it is attached. The
G4CrystalAtomBase class stores the position of atoms in the crystal
unit cell. Since the G4CrystalAtomBase class is mapped to a
G4Element in the G4CrystalMaterial, each G4Element should
have an associated G4CrystalAtomBase. The G4AtomicBond class
contains information on the atomic bond in the crystal. For each
instance of the class two G4Elements have to be specified as well as
the atom number in the G4CrystalAtomBase associated to the
G4Element.

Geometry

The G4LogicalCrystalVolume accepts only a pointer to a
G4CrystalExtension in its constructor and stores the definition of
the orientation of the crystalline structure with respect to the solid
to which it is attached. By convention, the crystal < 100 > direction is
by default set parallel to the {[1,0,0]} direction in the Geant4
reference system, and the < 010 > axis lays on the plane which contains
the [1,0,0] and [0,1,0] directions in the Geant4 reference system.

Footnotes

User Actions

	User Actions

	Mandatory User Actions and Initializations
	G4VUserDetectorConstruction

	Physics Lists

	User Action Initialization

	Optional User Actions
	Usage of User Actions

	Killing Tracks in User Actions and Energy Conservation

	User Information Classes
	G4VUserEventInformation

	G4VUserTrackInformation

	G4VUserPrimaryVertexInformation and G4VUserPrimaryTrackInformation

	G4VUserRegionInformation

	Multiple User Actions
	Exceptions

Footnotes

User Actions

Geant4 has two user initialization classes and one user action class
whose methods the user must override in order to implement a simulation.
They require the user to define the detector, specify the physics to be
used, and define how initial particles are to be generated. These
classes are described in Mandatory User Actions and Initializations.

Additionally, users may define any of several optional user actions, to
collect data during event generation from steps, tracks, or whole
events, to accumulate data during runs, or to modify the state of new
tracks as they are created. These user actions are described in
Optional User Actions.

To support the accumulation of data in the actions mentioned above,
users may define subclasses for some of the container objects used
during event generation and tracking. These are described in
User Information Classes.

Footnotes

Mandatory User Actions and Initializations

Three user initialization class objects are registered with the run
manager (Manage the run procedures) in the user's main()
program, which takes ownership. The user must not delete these objects
directly, and they must be created using 'new'. Within the
G4UserActionInitialization class (
User Action Initialization), the user must instantiate and
register a concrete G4VUserPrimaryGeneratorAction subclass, which
generates the primary particles for each event.

G4VUserDetectorConstruction

Listing 80 G4VUserDetectorConstruction

class G4VUserDetectorConstruction
{
 public:
 G4VUserDetectorConstruction();
 virtual ~G4VUserDetectorConstruction();

 public:
 virtual G4VPhysicalVolume* Construct() = 0;
 virtual void ConstructSDandField() = 0;
};

In the Construct() method, material and geometry has to be
described. Detailed discussions on material and geometry are given in
How to Specify Materials in the Detector and How to Define a Detector Geometry.
Detector sensitivity and electromagnetic field should be defined in
ConstructSDandField(), as objects defined in this method are
thread-local if they are used in multi-threaded mode. Detailed
discussions on Detector sensitivity and electromagnetic field are given
in Hits and Electromagnetic Field.

Physics Lists

The concept of a physics list arises from the fact that Geant4 can not
offer a single modeling algorithm to cover the entire energy domain from
zero to the TeV scale, for all known processes and particles. Instead, a
combination of ideas and approaches is typically used to perform a
simulation task.

A schematic view of the Geant4 modeling of the processes of particle
passage through matter may be presented as follows:

	Physics Model = final state generator

	Physics Process = cross section + model

	Physics List = list of processes for each particle

The "patchwork" concept is especially true in the Geant4 hadronic
physics domain: models are valid only over finite energy ranges, and
there maybe competing models in the same range or one model maybe
working better than the other for a specific group of particles, while
its competitor may be better for other species. For this reason models
have to be combined to cover the large energy range; every two adjacent
models may have an overlap in their validity range.

G4VUserPhysicsList

This is an abstract class for constructing particles and processes. An
introduction into the concept of the Geant4 Physics List and the Geant4
Physics Processes is also given in How to Specify Physics Processes and
further in Physics Processes.

While the fabrication of a physics list is, in principle, a choice of a
user, the toolkit is distributed with a number of pre-fabricated physics
lists for the convenience of many user applications. These physics lists
are supported by the Geant4 development team and can be recommended for
specific physics tasks. However, based on the interests and needs of a
specific project, a user may want to implement her or his own custom
physics list.

The following sections offer several examples that show how to
instantiate or select one or another pre-fabricated Physics List from
the Geant4 standard collection, as well as guidance composing a custom
Physics List from pre-fabricated components or even entirely from
scratch.

To view the contents of a Physics List, there are two useful methods:
DumpList() and DumpCutValueTable(G4int flag).

Reference Physics Lists

Number of ready to use Physics Lists are available with Geant4 kernel.
Below an example of instantiation of FTFP_BERT Physics List class is
shown. The full set of reference Physics Lists is described in Geant4
web.

Listing 81 Creating FTFP_BERT Physics List.

G4int verbose = 1;
FTFP_BERT* physlist = new FTFP_BERT(verbose);
runManager->SetUserInitialization(physlist);

Building Physics List Using Factory

Geant4 provides a class G4PhysListFactory allowing to defined
Physics List by its name. The last for characters in the name defines an
electromagnetic (EM) physics options. By default standard EM physics is
used, "_EMV" corresponding to standard option1, "_EMX" - to standard
option2, "_LIV" to EM Livermore physics, "_PEN" - to EM Penelope
physics.

Listing 82 Creating Physics List by name.

G4int verbose = 1;
G4PhysListFactory factory;
G4VModularPhysicsList* physlist = factory.GetReferencePhysList("FTFP_BERT_EMV");
physlist.SetVerboseLevel(verbose);
runManager->SetUserInitialization(physlist);

The class G4PhysListFactory provides also another interface allowing
to defined Physics List by the environment variable PHYSLIST.

Listing 83 Creating Physics List by name.

G4int verbose = 1;
G4PhysListFactory factory;
G4VModularPhysicsList* physlist = factory.ReferencePhysList();
physlist.SetVerboseLevel(verbose);
runManager->SetUserInitialization(physlist);

Building Physics List from Physics Builders

Technically speaking, one can implement physics list in a "flat-out"
manner, i.e. specify all necessary particles and associated processes in
a single piece of code, as it will be shown later in this document.
However, for practical purposes it is often more convenient to group
together certain categories and make implementation more modular.

One very useful concept is a Modular Physics List,
G4VModularPhysicsList, that is a sub-class of
G4VUserPhysicsLists and allows a user to organize physics processes
into "building blocks", or "modules", then compose a physics list of
such modules. The concept allows to group together, at a relatively high
level, desired combinations of selected particles and related processes.
One of the advantages of such approach is that it allows to combine
pre-fabricated physics modules that are centrally provided by Geant4
kernel with user's applications.

G4ModularPhysicsList has all the functionalities as
G4VUserPhysicsList class, plus several additional functionalities.
One of the important methods is
RegisterPhysics(G4VPhysicsConstructor*) for "registering" the above
mentioned pre-fabricated physics modules. There also methods for removing
or replacing physics modules.

Example below shows how G4VModularPhysList can be implemented.

Listing 84 Creating Physics List by name.

MyPhysicsList::MyPhysicsList():G4VModularPhysicsList()
{
 G4DataQuestionaire it(photon, neutron, no, no, no, neutronxs);
 G4cout << "<<< Geant4 Physics List: MyPhysicsList " <<G4endl;
 G4cout <<G4endl;
 defaultCutValue = 0.7*mm;
 G4int ver = 1;
 SetVerboseLevel(ver);

 // EM Physics
 RegisterPhysics(new G4EmStandardPhysics(ver));

 // Synchroton Radiation & GN Physics
 RegisterPhysics(new G4EmExtraPhysics(ver));
 // Decays
 RegisterPhysics(new G4DecayPhysics(ver));

 // Hadron physics
 RegisterPhysics(new G4HadronElasticPhysicsXS(ver));
 RegisterPhysics(new G4QStoppingPhysics(ver));
 RegisterPhysics(new G4IonBinaryCascadePhysics(ver));
 RegisterPhysics(new G4HadronInelasticQBBC(ver));

 // Neutron tracking cut
 RegisterPhysics(new G4NeutronTrackingCut(ver));
}

Note that each module to be registered with a Modular Physics List is a
G4VPhysicsConstructor (or a derived object), i.e. a "sublist" that
holds groups of particles and accompanying physics processes. A user can
find these and other similar modules in the source/physics_lists/list
area of Geant4 core code, and can combine selected ones with custom
modules, if desired.

In order to compose a custom physics module, two mandatory methods of a
G4VPhysicsConstructor must be implemented: ConstructParticle()
and ConstructProcess(); beyond that the implementation can be
structured according to the developer's taste.

Another useful concept in the modular approach to composing a Physics
List is the concept of so called "builders". This concept allows to
encapsulate certain implementation details into smaller-scale software
components, and offers the flexibility of re-using those component in
different modules. At the general level, the scheme is this:

	Particles (hadrons) are created, and physics models to be used to
simulate applicable processes are specified, usually in a particular
range of validity.

	Physics processes for each particle type in the builder are created,
and each process is outfitted with one or more hadronic physics
models, as specified.

	If necessary, a cross section data set for a given particle type is
added.

This concept is widely used through the Geant4 hadronic domain, but the
idea would be equally applicable in the electromagnetic area.

All builders can be found in the source/physics_lists/builders
directory. There are basically two types of builders:

	Particle Builders

	Particle-Model Builders

A particle builder is somewhat "superior" here, as it specifies a
particle or a group of particles, what category of processes are
applicable, how to outfit a process with specified model(s), and how
processes are to be registered with the G4ProcessManager. A
particle-model builder instantiates a given model and implements details
of associating it with one or more processes applicable to a given
particle type. Some models can not be instantiated through a single
interface class, but instead they need, in turn, to be composed from
several components (examples are QGS and FTF).

Useful example builders to review and to consider as inspirations can be
the following:

	G4PiKBuilder (.hh and .cc) - groups pions and kaons, together with a
list of associated hadronic processes.

	G4BertiniPiKBuilder (.hh and .cc) - instantiates Bertini cascade
model and implements how to outfit pion and kaon physics processes
with this model. It also sets default validity range for the model.

	G4FTFPPiKBuilder (.hh and .cc) - composes a high energy FTF-based
model and implements how to outfit hadronic processes for pions and
kaons with the model. This example illustrates that a hadronic model
does not always have a single interface class, but it needs to be
created from several components. In particular, in this builder a
"high energy generator" object (G4TheoFSGenerator) is created and is
outfitted with G4FTFModel string model (which also gives this builder
its name), we well as string fragmentation algorithm and
intra-nuclear transport model. Please note that the quasi-elastic
scattering is not set as FTF model has its own mechanism for it. A
cross-section data set is specified for pions. A default validity
range is also specified.

One detail to remember is that, in principle, the validity range for a
given model can be setup for each particle type individually. But in
these referenced applications the validity range is setup to be the same
for a group of particles (i.e. for a number of corresponding inelastic
hadronic processes). Once a builder is instantiated, one can override
the default validity range (via SetMinEnergy or SetMaxEnergy methods),
but the new value will be, again, given to a group of
particles/processes. Also note that the validity range can be overridden
only before calling the Build() method of a builder. Again, the approach
is just a specifics of this particular implementation. Obviously, if a
limited validity range is selected for a specific
particle/model/process, one has to supplement another model or several
models, to cover the entire range.

One more useful class is the `` G4PhysicsListHelper`` which is a service
class that wraps around the technicalities of the physics process
registering in Geant4 and allows a user to easily associate a process
with a particles, without knowing many details about various types of
processes (discrete, continuous, etc.) and their internal ordering with
G4ProcessManager. Curious users may eventually want to go deeper
into details of G4ProcessManager class and, in particular, its group of
AddProcess(...) methods, as it is the basis of G4PhysicsListHelper
implementation. But for practical purposes, the use of
G4PhysicsListHelper is likely to be sufficient in most cases.

Other useful details, including several elements of the software design
philosophy and class diagrams, are given in
How to Specify Physics Processes.

Building Physics List from Scratch

The user must derive a concrete class from G4VUserPhysicsList and
implement three virtual methods:

	ConstructParticle() to instantiate each requested particle type;

	ConstructPhysics() to instantiate the desired physics processes
and register each of them;

	SetCuts(G4double aValue)
to set a cut value in range for all particles in the particle table,
which invokes the rebuilding of the physics table.

At early stage of the initialisation of Geant4 the method
ConstructParticle() of G4VUserPhysicsList is invoked. The
ConstructProcess() method must always invoke the
AddTransportation() method in order to insure particle
transportation. AddTransportation() must never be overridden. This
is done automatically if G4VUserPhysicsList inherits of
G4VModularPhysicsList. It is recommended for users as the most
robust interface to Physics List. Geant4 examples demonstrate different
methods how to create user Physics List.

User Action Initialization

All user action classes must be defined through the protected method
SetUserAction(). Build() methods should be used for defining user
action classes for worker threads as well as for the sequential mode.
BuildForMaster() should be used only for defining UserRunAction for
the master thread. BuildForMaster() is not invoked in the sequential
mode. In case the user uses his/her own SteppingVerbose class, it
must be instantiated in the method InitializeSteppingVerbose() and
returned.

G4VUserActionInitialization

Listing 85 G4VUserActionInitialization

class G4VUserActionInitialization
{
 public:
 G4VUserActionInitialization();
 virtual ~G4VUserActionInitialization();

 public:
 virtual void Build() const = 0;
 virtual void BuildForMaster() const;
 virtual G4VSteppingVerbose* InitializeSteppingVerbose() const;

 protected:
 void SetUserAction(G4VUserPrimaryGeneratorAction*) const;
 void SetUserAction(G4UserRunAction*) const;
 void SetUserAction(G4UserEventAction*) const;
 void SetUserAction(G4UserStackingAction*) const;
 void SetUserAction(G4UserTrackingAction*) const;
 void SetUserAction(G4UserSteppingAction*) const;
};

G4VUserPrimaryGeneratorAction

Listing 86 G4VUserPrimaryGeneratorAction

class G4VUserPrimaryGeneratorAction
{
 public:
 G4VUserPrimaryGeneratorAction();
 virtual ~G4VUserPrimaryGeneratorAction();

 public:
 virtual void GeneratePrimaries(G4Event* anEvent) = 0;
};

Footnotes

Optional User Actions

There are five virtual classes whose methods the user may override in
order to gain control of the simulation at various stages. Each method
of each action class has an empty default implementation, allowing the
user to inherit and implement desired classes and methods.

Objects of user action classes must be registered with G4RunManager
(Manage the run procedures), which takes ownership of them. The
user must not delete these objects directly, and they must be created
using 'new'.

Usage of User Actions

G4UserRunAction

This class has three virtual methods which are invoked by
G4RunManager for each run:

	
	GenerateRun()
	This method is invoked at the beginning of BeamOn. Because the
user can inherit the class G4Run and create his/her own concrete
class to store some information about the run, the GenerateRun()
method is the place to instantiate such an object. It is also the
ideal place to set variables which affect the physics table (such as
production thresholds) for a particular run, because
GenerateRun() is invoked before the calculation of the physics
table.

	
	BeginOfRunAction()
	This method is invoked before entering the event loop. A typical use
of this method would be to initialize and/or book histograms for a
particular run. This method is invoked after the calculation of the
physics tables.

	
	EndOfRunAction()
	This method is invoked at the very end of the run processing. It is
typically used for a simple analysis of the processed run.

Listing 87 G4UserRunAction

class G4UserRunAction
{
 public:
 G4UserRunAction();
 virtual ~G4UserRunAction();

 public:
 virtual G4Run* GenerateRun();
 virtual void BeginOfRunAction(const G4Run*);
 virtual void EndOfRunAction(const G4Run*);
};

G4UserEventAction

This class has two virtual methods which are invoked by
G4EventManager for each event:

	
	beginOfEventAction()
	This method is invoked before converting the primary particles to
G4Track objects. A typical use of this method would be to
initialize and/or book histograms for a particular event.

	
	endOfEventAction()
	This method is invoked at the very end of event processing. It is
typically used for a simple analysis of the processed event. If the
user wants to keep the currently processing event until the end of
the current run, the user can invoke
fpEventManager->KeepTheCurrentEvent(); so that it is kept in
G4Run object. This should be quite useful if you simulate quite
many events and want to visualize only the most interest ones after
the long execution. Given the memory size of an event and its
contents may be large, it is the user's responsibility not to keep
unnecessary events.

Listing 88 G4UserEventAction

class G4UserEventAction
{
 public:
 G4UserEventAction() {;}
 virtual ~G4UserEventAction() {;}
 virtual void BeginOfEventAction(const G4Event*);
 virtual void EndOfEventAction(const G4Event*);
 protected:
 G4EventManager* fpEventManager;
};

G4UserStackingAction

This class has three virtual methods, ClassifyNewTrack, NewStage
and PrepareNewEvent which the user may override in order to control
the various track stacking mechanisms. ExampleN04 could be a good
example to understand the usage of this class.

ClassifyNewTrack() is invoked by G4StackManager whenever a new
G4Track object is "pushed" onto a stack by G4EventManager.
ClassifyNewTrack() returns an enumerator,
G4ClassificationOfNewTrack, whose value indicates to which stack, if
any, the track will be sent. This value should be determined by the
user. G4ClassificationOfNewTrack has four possible values:

	fUrgent - track is placed in the urgent stack

	fWaiting - track is placed in the waiting stack, and will not be simulated
until the urgent stack is empty

	fPostpone - track is postponed to the next event

	fKill - the track is deleted immediately and not stored in any stack.

These assignments may be made based on the origin of the track which is
obtained as follows:

G4int parent_ID = aTrack->get_parentID();

where

	parent_ID = 0 indicates a primary particle

	parent_ID > 0 indicates a secondary particle

	parent_ID < 0 indicates postponed particle from previous event.

NewStage() is invoked when the urgent stack is empty and the
waiting stack contains at least one G4Track object. Here the user
may kill or re-assign to different stacks all the tracks in the
waiting stack by calling the stackManager->ReClassify() method
which, in turn, calls the ClassifyNewTrack() method. If no user
action is taken, all tracks in the waiting stack are transferred to
the urgent stack. The user may also decide to abort the current event
even though some tracks may remain in the waiting stack by calling
stackManager->clear(). This method is valid and safe only if it is
called from the G4UserStackingAction class. A global method of event
abortion is

G4UImanager * UImanager = G4UImanager::GetUIpointer();
UImanager->ApplyCommand("/event/abort");

PrepareNewEvent() is invoked at the beginning of each event. At this
point no primary particles have been converted to tracks, so the
urgent and waiting stacks are empty. However, there may be tracks in
the postponed-to-next-event stack; for each of these the
ClassifyNewTrack() method is called and the track is assigned to the
appropriate stack.

Listing 89 G4UserStackingAction

#include "G4ClassificationOfNewTrack.hh"

class G4UserStackingAction
{
 public:
 G4UserStackingAction();
 virtual ~G4UserStackingAction();
 protected:
 G4StackManager * stackManager;

 public:
//---
// virtual methods to be implemented by user
//---
//
 virtual G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*);
 virtual void NewStage();
 virtual void PrepareNewEvent();
};

G4UserTrackingAction

Listing 90 G4UserTrackingAction

//---
// G4UserTrackingAction.hh
//
// Description:
// This class represents actions taken place by the user at
// the start/end point of processing one track.
//---

class G4UserTrackingAction
{
 public:

 // Constructor & Destructor
 G4UserTrackingAction(){};
 virtual ~G4UserTrackingAction(){}

 // Member functions
 virtual void PreUserTrackingAction(const G4Track*){}
 virtual void PostUserTrackingAction(const G4Track*){}

 protected:

 G4TrackingManager* fpTrackingManager;
};

G4UserSteppingAction

Listing 91 G4UserSteppingAction

//---
// G4UserSteppingAction.hh
//
// Description:
// This class represents actions taken place by the user at each
// end of stepping.
//---

class G4UserSteppingAction
{
 public:

 // Constructor and destructor
 G4UserSteppingAction(){}
 virtual ~G4UserSteppingAction(){}

 // Member functions
 virtual void UserSteppingAction(const G4Step*){}

 protected:

 G4SteppingManager* fpSteppingManager;

};

Killing Tracks in User Actions and Energy Conservation

In either of user action classes described in the previous section, the
user can implement an unnatural/unphysical action. A typical example is
to kill a track, which is under the simulation, in the user stepping
action. In this case the user have to be cautious of the total energy
conservation. The user stepping action itself does not take care the
energy or any physics quantity associated with the killed track.
Therefore if the user want to keep the total energy of an event in this
case, the lost track energy need to be recorded by the user.

The same is true for user stacking or tracking actions. If the user has
killed a track in these actions the all physics information associated
with it would be lost and, for example, the total energy conservation be
broken.

If the user wants the Geant4 kernel to take care the total energy
conservation automatically when he/she has killed artificially a track,
the user has to use a killer process. For example if the user uses
G4UserLimits and G4UserSpecialCuts process, energy of the killed track
is added to the total energy deposit.

Footnotes

User Information Classes

Additional user information can be associated with various Geant4
classes. There are basically two ways for the user to do this:

	derive concrete classes from base classes used in Geant4. These are
classes for run, hit, digit, trajectory and trajectory point, which
are discussed in Optional User Actions for G4Run,
Hits for G4VHit, Digitization for G4VDigit,
and Tracking for G4VTrajectory and
G4VTrajectoryPoint

	create concrete classes from provided abstract base classes and
associate them with classes used in Geant4. Geant4 classes which can
accommodate user information classes are G4Event, G4Track,
G4PrimaryVertex, G4PrimaryParticle and G4Region. These classes are
discussed here.

G4VUserEventInformation

G4VUserEventInformation is an abstract class from which the user can
derive his/her own concrete class for storing user information
associated with a G4Event class object. It is the user's responsibility
to construct a concrete class object and set the pointer to a proper
G4Event object.

Within a concrete implementation of G4UserEventAction, the
SetUserEventInformation() method of G4EventManager may be used to set a
pointer of a concrete class object to G4Event, given that the G4Event
object is available only by "pointer to const". Alternatively, the user
may modify the GenerateEvent() method of his/her own RunManager to
instantiate a G4VUserEventInformation object and set it to G4Event.

The concrete class object is deleted by the Geant4 kernel when the
associated G4Event object is deleted.

G4VUserTrackInformation

This is an abstract class from which the user can derive his/her own
concrete class for storing user information associated with a G4Track
class object. It is the user's responsibility to construct a concrete
class object and set the pointer to the proper G4Track object.

Within a concrete implementation of G4UserTrackingAction, the
SetUserTrackInformation() method of G4TrackingManager may be used to set
a pointer of a concrete class object to G4Track, given that the G4Track
object is available only by "pointer to const".

The ideal place to copy a G4VUserTrackInformation object from a mother
track to its daughter tracks is
G4UserTrackingAction::PostUserTrackingAction().

Listing 92 Copying G4VUserTrackInformation from mother to daughter tracks

void RE01TrackingAction::PostUserTrackingAction(const G4Track* aTrack)
{
 G4TrackVector* secondaries = fpTrackingManager->GimmeSecondaries();
 if(secondaries)
 {
 RE01TrackInformation* info = (RE01TrackInformation*)(aTrack->GetUserInformation());
 size_t nSeco = secondaries->size();
 if(nSeco>0)
 {
 for(size_t i=0; i < nSeco; i++)
 {
 RE01TrackInformation* infoNew = new RE01TrackInformation(info);
 (*secondaries)[i]->SetUserInformation(infoNew);
 }
 }
 }
}

The concrete class object is deleted by the Geant4 kernel when the
associated G4Track object is deleted. In case the user wants to keep the
information, it should be copied to a trajectory corresponding to the
track.

G4VUserPrimaryVertexInformation and G4VUserPrimaryTrackInformation

These abstract classes allow the user to attach information regarding
the generated primary vertex and primary particle. Concrete class
objects derived from these classes should be attached to
G4PrimaryVertex and G4PrimaryParticle class objects,
respectively.

The concrete class objects are deleted by the Geant4 kernel when the
associated G4PrimaryVertex or G4PrimaryParticle class objects are
deleted along with the deletion of G4Event.

G4VUserRegionInformation

This abstract base class allows the user to attach information
associated with a region. For example, it would be quite beneficial to
add some methods returning a Boolean flag to indicate the
characteristics of the region (e.g. tracker, calorimeter, etc.). With
this example, the user can easily and quickly identify the detector
component.

Listing 93 A sample region information class

class RE01RegionInformation : public G4VUserRegionInformation
{
 public:
 RE01RegionInformation();
 ~RE01RegionInformation();
 void Print() const;

 private:
 G4bool isWorld;
 G4bool isTracker;
 G4bool isCalorimeter;

 public:
 inline void SetWorld(G4bool v=true) {isWorld = v;}
 inline void SetTracker(G4bool v=true) {isTracker = v;}
 inline void SetCalorimeter(G4bool v=true) {isCalorimeter = v;}
 inline G4bool IsWorld() const {return isWorld;}
 inline G4bool IsTracker() const {return isTracker;}
 inline G4bool IsCalorimeter() const {return isCalorimeter;}
};

The following code is an example of a stepping action. Here, a track is
suspended when it enters the "calorimeter region" from the "tracker
region".

Listing 94 Sample use of a region information class

void RE01SteppingAction::UserSteppingAction(const G4Step * theStep)
{
 // Suspend a track if it is entering into the calorimeter

 // check if it is alive
 G4Track * theTrack = theStep->GetTrack();
 if(theTrack->GetTrackStatus()!=fAlive) { return; }

 // get region information
 G4StepPoint * thePrePoint = theStep->GetPreStepPoint();
 G4LogicalVolume * thePreLV = thePrePoint->GetPhysicalVolume()->GetLogicalVolume();
 RE01RegionInformation* thePreRInfo
 = (RE01RegionInformation*)(thePreLV->GetRegion()->GetUserInformation());
 G4StepPoint * thePostPoint = theStep->GetPostStepPoint();
 G4LogicalVolume * thePostLV = thePostPoint->GetPhysicalVolume()->GetLogicalVolume();
 RE01RegionInformation* thePostRInfo
 = (RE01RegionInformation*)(thePostLV->GetRegion()->GetUserInformation());

 // check if it is entering to the calorimeter volume
 if(!(thePreRInfo->IsCalorimeter()) && (thePostRInfo->IsCalorimeter()))
 { theTrack->SetTrackStatus(fSuspend); }
}

Footnotes

Multiple User Actions

Starting from Geant4 Version 10.3 it is possible to attach multiple
instances of the same type of user action to a single run manager. This
is achieved via the use of a special proxy classes to which multiple
child user actions are attached. This is allowed for run-, event-,
tracking- and stepping-type user actions
(G4UserRunAction, G4UserEventAction,G4UserTrackingAction,G4UserSteppingAction).

The kernel still sees a single user action of each type, the proxy will
forward the calls from kernel to all the attached child user actions.

Listing 95 An example of the use of the use of multiple user-actions.

#include "G4MultiRunAction.hh"
#include "G4MultiEventAction.hh"
#include "G4MultiTrackingAction.hh"
#include "G4MultiSteppingAction.hh"
//...
void MyUserActionInitialization::Build()
{
 //...
 // Example with multiple-event action, similarly
 // for the other cases
 // multi- user actions extend std::vector
 auto multiAction = new G4MultiEventAction { new MyEventAction1, new MyEventAction2 } ;
 //...
 multiAction->push_back(new MyEventAction3);
 SetUserAction(multiAction);
 //...
}

Exceptions

This functionality is not implemented for the the stacking user action
and primary generation action. There is no multiple
G4UserStackingAction equivalent since this would require a complex
handling of the case in which conflicting classifications are issued.
For the case of G4VUserPrimaryGeneratorAction the use case of the
multiple user actions is already addressed by the design of the class
itself. User can implement one or more generators in the actions.

For the case of G4MultiRunAction only one of the child user actions
can implement the G4UserRunAction::GenerateRun() method returning a
non null, user derived G4Run object, otherwise an exception is
thrown.

Footnotes

Control

	Built-in Commands

	User Interface - Defining New Commands
	G4UImessenger

	G4UIcommand and its derived classes

	An example messenger

	How to control the output of G4cout/G4cerr

Footnotes

Built-in Commands

Geant4 has various built-in user interface commands, each of which
corresponds roughly to a Geant4 category. These commands can be used

	interactively via a (Graphical) User Interface - (G)UI,

	in a macro file via /control/execute <command>,

	within C++ code with the ApplyCommand method of G4UImanager.

Note

The availability of individual commands, the ranges of parameters,
the available candidates on individual command parameters vary
according to the implementation of your application and may even
vary dynamically during the execution of your job.

The following is a short summary of available commands. You can also see
the all available commands by executing 'help' in your UI session.

	List of built-in
commands

Footnotes

User Interface - Defining New Commands

G4UImessenger

G4UImessenger is a base class which represents a messenger that
delivers command(s) to the destination class object. Concrete messengers
are instantiated by, and owned by, the functional classes for which they
provide a user interface; messengers should be deleted by those classes
in their own destructors.

Your concrete messenger should have the following functionalities.

	Construct your command(s) in the constructor of your messenger.

	Destruct your command(s) in the destructor of your messenger.

These requirements mean that your messenger should keep all pointers to
your command objects as its data members.

You can use G4UIcommand derived classes for the most frequent types
of command. These derived classes have their own conversion methods
according to their types, and they make implementation of the
SetNewValue() and GetCurrentValue() methods of your messenger
much easier and simpler.

G4UIcommand objects are owned by the messenger. If instantiated via
new, they should be deleted in the messenger destructor.

For complicated commands which take various parameters, you can use the
G4UIcommand base class, and construct G4UIparameter objects by
yourself. You don't need to delete G4UIparameter object(s).

In the SetNewValue() and GetCurrentValue() methods of your
messenger, you can compare the G4UIcommand pointer given in the
argument of these methods with the pointer of your command, because your
messenger keeps the pointers to the commands. Thus, you don't need to
compare by command name. Please remember, in the cases where you use
G4UIcommand derived classes, you should store the pointers with the
types of these derived classes so that you can use methods defined in
the derived classes according to their types without casting.

G4UImanager/G4UIcommand/G4UIparameter have very powerful type and
range checking routines. You are strongly recommended to set the range
of your parameters. For the case of a numerical value (int or
double), the range can be given by a G4String using C++
notation, e.g., "X > 0 &&
X < 10". For the case of a string type parameter, you can set a
candidate list. Please refer to the detailed descriptions below.

GetCurrentValue() will be invoked after the user's application of
the corresponding command, and before the SetNewValue() invocation.
This GetCurrentValue() method will be invoked only if

	at least one parameter of the command has a range

	at least one parameter of the command has a candidate list

	at least the value of one parameter is omitted and this parameter is
defined as omittable and
currentValueAsDefault

For the first two cases, you can re-set the range or the candidate list
if you need to do so, but these "re-set" parameters are needed only
for the case where the range or the candidate list varies dynamically.

A command can be "state sensitive", i.e., the command can be
accepted only for a certain G4ApplicationState(s). For example,
the /run/beamOn command should not be accepted when Geant4 is
processing another event ("G4State_EventProc" state). You can set
the states available for the command with the AvailableForStates()
method.

G4UIcommand and its derived classes

Methods available for all derived classes

These are methods defined in the G4UIcommand base class which should
be used from the derived classes.

	void SetGuidance(char*)

Define a guidance line. You can invoke this method as many times as
you need to give enough amount of guidance. Please note that the
first line will be used as a title head of the command guidance.

	void availableForStates(G4ApplicationState s1,...)

If your command is valid only for certain states of the Geant4
kernel, specify these states by this method. Currently available
states are G4State_PreInit, G4State_Init, G4State_Idle,
G4State_GeomClosed, and G4State_EventProc. Refer to the
 as a state machine for meaning of each state. Please note that the
Pause state had been removed from G4ApplicationState.

	void SetRange(char* range)

Define a range of the parameter(s). Use C++ notation, e.g.,
"x > 0 && x < 10", with variable name(s) defined by the
SetParameterName() method. For the case of a G4ThreeVector,
you can set the relation between parameters, e.g., "x > y".

G4UIdirectory

This is a G4UIcommand derived class for defining a directory
containing commands. It is owned by, and should be deleted in the
destructor of, the associated G4UImessenger class, after all of its
contained commands have been deleted.

	G4UIdirectory(char* directoryPath)

Constructor. Argument is the (full-path) directory, which must begin
and terminate with "/:.

G4UIcmdWithoutParameter

This is a G4UIcommand derived class for a command which takes no
parameter.

	G4UIcmdWithoutParameter(char* commandPath, G4UImessenger* theMessenger)

Constructor. Arguments are the (full-path) command name and the
pointer to your messenger.

G4UIcmdWithABool

This is a G4UIcommand derived class which takes one Boolean type
parameter.

	G4UIcmdWithABool(char* commandpath,G4UImanager* theMessenger)

Constructor. Arguments are the (full-path) command name and the
pointer to your messenger.

	void SetParameterName(char* paramName, G4bool omittable)

Define the name of the Boolean parameter and set the omittable flag.
If omittable is true, you should define the default value using the
next method.

	void SetDefaultValue(G4bool defVal)

Define the default value of the Boolean parameter.

	G4bool GetNewBoolValue(G4String paramString)

Convert G4String parameter value given by the SetNewValue()
method of your messenger into Boolean.

	G4String convertToString(G4bool currVal)

Convert the current Boolean value to G4String which should be
returned by the GetCurrentValue() method of your messenger.

G4UIcmdWithAnInteger

This is a G4UIcommand derived class which takes one integer type
parameter.

	G4UIcmdWithAnInteger(char* commandpath, G4UImanager* theMessenger)

Constructor. Arguments are the (full-path) command name and the
pointer to your messenger.

	void SetParameterName(char* paramName, G4bool omittable)

Define the name of the integer parameter and set the omittable flag.
If omittable is true, you should define the default value using the
next method.

	void SetDefaultValue(G4int defVal)

Define the default value of the integer parameter.

	G4int GetNewIntValue(G4String paramString)

Convert G4String parameter value given by the SetNewValue()
method of your messenger into integer.

	G4String convertToString(G4int currVal)

Convert the current integer value to G4String, which should be
returned by the GetCurrentValue() method of your messenger.

G4UIcmdWithADouble

This is a G4UIcommand derived class which takes one double type
parameter.

	G4UIcmdWithADouble(char* commandpath, G4UImanager* theMessenger)

Constructor. Arguments are the (full-path) command name and the
pointer to your messenger.

	void SetParameterName(char* paramName, G4bool omittable)

Define the name of the double parameter and set the omittable flag.
If omittable is true, you should define the default value using the
next method.

	void SetDefaultValue(G4double defVal)

Define the default value of the double parameter.

	G4double GetNewDoubleValue(G4String paramString)

Convert G4String parameter value given by the SetNewValue()
method of your messenger into double.

	G4String convertToString(G4double currVal)

Convert the current double value to G4String which should be
returned by the GetCurrentValue() method of your messenger.

G4UIcmdWithAString

This is a G4UIcommand derived class which takes one string type
parameter.

	G4UIcmdWithAString(char* commandpath, G4UImanager* theMessenger)

Constructor. Arguments are the (full-path) command name and the
pointer to your messenger.

	void SetParameterName(char* paramName, G4bool omittable)

Define the name of the string parameter and set the omittable flag.
If omittable is true, you should define the default value using the
next method.

	void SetDefaultValue(char* defVal)

Define the default value of the string parameter.

	void SetCandidates(char* candidateList)

Define a candidate list which can be taken by the parameter. Each
candidate listed in this list should be separated by a single space.
If this candidate list is given, a string given by the user but which
is not listed in this list will be rejected.

G4UIcmdWith3Vector

This is a G4UIcommand derived class which takes one three vector
parameter.

	G4UIcmdWith3Vector(char* commandpath, G4UImanager* theMessenger)

Constructor. Arguments are the (full-path) command name and the
pointer to your messenger.

	void SetParameterName(char* paramNamX, char* paramNamY, char* paramNamZ, G4bool omittable)

Define the names of each component of the three vector and set the
omittable flag. If omittable is true, you should define the default
value using the next method.

	void SetDefaultValue(G4ThreeVector defVal)

Define the default value of the three vector.

	G4ThreeVector GetNew3VectorValue(G4String paramString)

Convert the G4String parameter value given by the
SetNewValue() method of your messenger into a G4ThreeVector.

	G4String convertToString(G4ThreeVector currVal)

Convert the current three vector to G4String, which should be
returned by the GetCurrentValue() method of your messenger.

G4UIcmdWithADoubleAndUnit

This is a G4UIcommand derived class which takes one double type
parameter and its unit.

	G4UIcmdWithADoubleAndUnit(char* commandpath, G4UImanager* theMessenger)

Constructor. Arguments are the (full-path) command name and the
pointer to your messenger.

	void SetParameterName(char* paramName, G4bool omittable)

Define the name of the double parameter and set the omittable flag.
If omittable is true, you should define the default value using the
next method.

	void SetDefaultValue(G4double defVal)

Define the default value of the double parameter.

	void SetUnitCategory(char* unitCategory)

Define acceptable unit category.

	void SetDefaultUnit(char* defUnit)

Define the default unit. Please use this method and the
SetUnitCategory() method alternatively.

	G4double GetNewDoubleValue(G4String paramString)

Convert G4String parameter value given by the SetNewValue()
method of your messenger into double. Please note that the return
value has already been multiplied by the value of the given unit.

	G4double GetNewDoubleRawValue(G4String paramString)

Convert G4String parameter value given by the SetNewValue()
method of your messenger into double but without multiplying the
value of the given unit.

	G4double GetNewUnitValue(G4String paramString)

Convert G4String unit value given by the SetNewValue() method
of your messenger into double.

	G4String convertToString(G4bool currVal, char* unitName)

Convert the current double value to a G4String, which should be
returned by the GetCurrentValue() method of your messenger. The
double value will be divided by the value of the given unit and
converted to a string. Given unit will be added to the string.

G4UIcmdWith3VectorAndUnit

This is a G4UIcommand derived class which takes one three vector
parameter and its unit.

	G4UIcmdWith3VectorAndUnit(char* commandpath, G4UImanager* theMessenger)

Constructor. Arguments are the (full-path) command name and the
pointer to your messenger.

	void SetParameterName(char* paramNamX, char* paramNamY, char* paramNamZ,G4bool omittable)

Define the names of each component of the three vector and set the
omittable flag. If omittable is true, you should define the default
value using the next method.

	void SetDefaultValue(G4ThreeVector defVal)

Define the default value of the three vector.

	void SetUnitCategory(char* unitCategory)

Define acceptable unit category.

	void SetDefaultUnit(char* defUnit)

Define the default unit. Please use this method and the
SetUnitCategory() method alternatively.

	G4ThreeVector GetNew3VectorValue(G4String paramString)

Convert a G4String parameter value given by the SetNewValue()
method of your messenger into a G4ThreeVector. Please note that
the return value has already been multiplied by the value of the
given unit.

	G4ThreeVector GetNew3VectorRawValue(G4String paramString)

Convert a G4String parameter value given by the SetNewValue()
method of your messenger into three vector, but without multiplying
the value of the given unit.

	G4double GetNewUnitValue(G4String paramString)

Convert a G4String unit value given by the SetNewValue()
method of your messenger into a double.

	G4String convertToString(G4ThreeVector currVal, char* unitName)

Convert the current three vector to a G4String which should be
returned by the GetCurrentValue() method of your messenger. The
three vector value will be divided by the value of the given unit and
converted to a string. Given unit will be added to the string.

Additional comments on the SetParameterName() method

You can add one additional argument of G4bool type for every
SetParameterName() method mentioned above. This additional argument
is named currentAsDefaultFlag and the default value of this argument
is false. If you assign this extra argument as true, the default
value of the parameter will be overridden by the current value of the
target class.

An example messenger

This example is of G4ParticleGunMessenger, which is made by
inheriting G4UIcommand.

Listing 96 An example of G4ParticleGunMessenger.hh.

#ifndef G4ParticleGunMessenger_h
#define G4ParticleGunMessenger_h 1

class G4ParticleGun;
class G4ParticleTable;
class G4UIcommand;
class G4UIdirectory;
class G4UIcmdWithoutParameter;
class G4UIcmdWithAString;
class G4UIcmdWithADoubleAndUnit;
class G4UIcmdWith3Vector;
class G4UIcmdWith3VectorAndUnit;

#include "G4UImessenger.hh"
#include "globals.hh"

class G4ParticleGunMessenger: public G4UImessenger
{
 public:
 G4ParticleGunMessenger(G4ParticleGun * fPtclGun);
 ~G4ParticleGunMessenger();

 public:
 void SetNewValue(G4UIcommand * command,G4String newValues);
 G4String GetCurrentValue(G4UIcommand * command);

 private:
 G4ParticleGun * fParticleGun;
 G4ParticleTable * particleTable;

 private: //commands
 G4UIdirectory * gunDirectory;
 G4UIcmdWithoutParameter * listCmd;
 G4UIcmdWithAString * particleCmd;
 G4UIcmdWith3Vector * directionCmd;
 G4UIcmdWithADoubleAndUnit * energyCmd;
 G4UIcmdWith3VectorAndUnit * positionCmd;
 G4UIcmdWithADoubleAndUnit * timeCmd;

};

#endif

Listing 97 An example of G4ParticleGunMessenger.cc.

#include "G4ParticleGunMessenger.hh"
#include "G4ParticleGun.hh"
#include "G4Geantino.hh"
#include "G4ThreeVector.hh"
#include "G4ParticleTable.hh"
#include "G4UIdirectory.hh"
#include "G4UIcmdWithoutParameter.hh"
#include "G4UIcmdWithAString.hh"
#include "G4UIcmdWithADoubleAndUnit.hh"
#include "G4UIcmdWith3Vector.hh"
#include "G4UIcmdWith3VectorAndUnit.hh"
#include <iostream.h>

G4ParticleGunMessenger::G4ParticleGunMessenger(G4ParticleGun * fPtclGun)
:fParticleGun(fPtclGun)
{
 particleTable = G4ParticleTable::GetParticleTable();

 gunDirectory = new G4UIdirectory("/gun/");
 gunDirectory->SetGuidance("Particle Gun control commands.");

 listCmd = new G4UIcmdWithoutParameter("/gun/list",this);
 listCmd->SetGuidance("List available particles.");
 listCmd->SetGuidance(" Invoke G4ParticleTable.");

 particleCmd = new G4UIcmdWithAString("/gun/particle",this);
 particleCmd->SetGuidance("Set particle to be generated.");
 particleCmd->SetGuidance(" (geantino is default)");
 particleCmd->SetParameterName("particleName",true);
 particleCmd->SetDefaultValue("geantino");
 G4String candidateList;
 G4int nPtcl = particleTable->entries();
 for(G4int i=0;i<nPtcl;i++)
 {
 candidateList += particleTable->GetParticleName(i);
 candidateList += " ";
 }
 particleCmd->SetCandidates(candidateList);

 directionCmd = new G4UIcmdWith3Vector("/gun/direction",this);
 directionCmd->SetGuidance("Set momentum direction.");
 directionCmd->SetGuidance("Direction needs not to be a unit vector.");
 directionCmd->SetParameterName("Px","Py","Pz",true,true);
 directionCmd->SetRange("Px != 0 || Py != 0 || Pz != 0");

 energyCmd = new G4UIcmdWithADoubleAndUnit("/gun/energy",this);
 energyCmd->SetGuidance("Set kinetic energy.");
 energyCmd->SetParameterName("Energy",true,true);
 energyCmd->SetDefaultUnit("GeV");
 energyCmd->SetUnitCandidates("eV keV MeV GeV TeV");

 positionCmd = new G4UIcmdWith3VectorAndUnit("/gun/position",this);
 positionCmd->SetGuidance("Set starting position of the particle.");
 positionCmd->SetParameterName("X","Y","Z",true,true);
 positionCmd->SetDefaultUnit("cm");
 positionCmd->SetUnitCandidates("micron mm cm m km");

 timeCmd = new G4UIcmdWithADoubleAndUnit("/gun/time",this);
 timeCmd->SetGuidance("Set initial time of the particle.");
 timeCmd->SetParameterName("t0",true,true);
 timeCmd->SetDefaultUnit("ns");
 timeCmd->SetUnitCandidates("ns ms s");

 // Set initial value to G4ParticleGun
 fParticleGun->SetParticleDefinition(G4Geantino::Geantino());
 fParticleGun->SetParticleMomentumDirection(G4ThreeVector(1.0,0.0,0.0));
 fParticleGun->SetParticleEnergy(1.0*GeV);
 fParticleGun->SetParticlePosition(G4ThreeVector(0.0*cm, 0.0*cm, 0.0*cm));
 fParticleGun->SetParticleTime(0.0*ns);
}

G4ParticleGunMessenger::~G4ParticleGunMessenger()
{
 delete listCmd;
 delete particleCmd;
 delete directionCmd;
 delete energyCmd;
 delete positionCmd;
 delete timeCmd;
 delete gunDirectory;
}

void G4ParticleGunMessenger::SetNewValue(
 G4UIcommand * command,G4String newValues)
{
 if(command==listCmd)
 { particleTable->dumpTable(); }
 else if(command==particleCmd)
 {
 G4ParticleDefinition* pd = particleTable->findParticle(newValues);
 if(pd != NULL)
 { fParticleGun->SetParticleDefinition(pd); }
 }
 else if(command==directionCmd)
 { fParticleGun->SetParticleMomentumDirection(directionCmd->
 GetNew3VectorValue(newValues)); }
 else if(command==energyCmd)
 { fParticleGun->SetParticleEnergy(energyCmd->
 GetNewDoubleValue(newValues)); }
 else if(command==positionCmd)
 { fParticleGun->SetParticlePosition(
 directionCmd->GetNew3VectorValue(newValues)); }
 else if(command==timeCmd)
 { fParticleGun->SetParticleTime(timeCmd->
 GetNewDoubleValue(newValues)); }
}

G4String G4ParticleGunMessenger::GetCurrentValue(G4UIcommand * command)
{
 G4String cv;

 if(command==directionCmd)
 { cv = directionCmd->ConvertToString(
 fParticleGun->GetParticleMomentumDirection()); }
 else if(command==energyCmd)
 { cv = energyCmd->ConvertToString(
 fParticleGun->GetParticleEnergy(),"GeV"); }
 else if(command==positionCmd)
 { cv = positionCmd->ConvertToString(
 fParticleGun->GetParticlePosition(),"cm"); }
 else if(command==timeCmd)
 { cv = timeCmd->ConvertToString(
 fParticleGun->GetParticleTime(),"ns"); }
 else if(command==particleCmd)
 { // update candidate list
 G4String candidateList;
 G4int nPtcl = particleTable->entries();
 for(G4int i=0;i<nPtcl;i++)
 {
 candidateList += particleTable->GetParticleName(i);
 candidateList += " ";
 }
 particleCmd->SetCandidates(candidateList);
 }
 return cv;
}

How to control the output of G4cout/G4cerr

Instead of std::cout and std::cerr, Geant4 uses G4cout and
G4cerr. Output streams from G4cout/G4cerr are handled by
G4UImanager which allows the application programmer to control the
flow of the stream. Output strings may therefore be displayed on another
window or stored in a file. This is accomplished as follows:

	Derive a class from G4UIsession and implement the two methods:

G4int ReceiveG4cout(const G4String& coutString);
G4int ReceiveG4cerr(const G4String& cerrString);

These methods receive the string stream of G4cout and G4cerr,
respectively. The string can be handled to meet specific
requirements. The following sample code shows how to make a log file
of the output stream:

ostream logFile;
logFile.open("MyLogFile");
G4int MySession::ReceiveG4cout(const G4String& coutString)
{
 logFile << coutString << flush;
 return 0;
}

	Set the destination of G4cout/G4cerr using
G4UImanager::SetCoutDestination(session).

Typically this method is invoked from the constructor of
G4UIsession and its derived classes, such as
G4UIGAG/G4UIteminal. This method sets the destination of
G4cout/G4cerr to the session. For example, when the following
code appears in the constructor of G4UIterminal, the method
SetCoutDestination(this) tells UImanager that this instance of
G4UIterminal receives the stream generated by G4cout.

G4UIterminal::G4UIterminal()
{
 UI = G4UImanager::GetUIpointer();
 UI->SetCoutDestination(this);
 // ...
}

Similarly, UI->SetCoutDestination(NULL) must be added to the
destructor of the class.

	Write or modify the main program. To modify exampleB1 to produce
a log file, derive a class as described in step 1 above, and add the
following lines to the main program:

#include "MySession.hh"
main()
{
 // get the pointer to the User Interface manager
 G4UImanager* UI = G4UImanager::GetUIpointer();
 // construct a session which receives G4cout/G4cerr
 MySession * LoggedSession = new MySession;
 UI->SetCoutDestination(LoggedSession);
 // session->SessionStart(); // not required in this case
 // do simulation here ...

 delete LoggedSession;
 return 0;
}

Note

G4cout/G4cerr should not be used in the constructor of a class
if the instance of the class is intended to be used as static.
This restriction comes from the language specification of C++. See
the documents below for details:

	M.A.Ellis, B.Stroustrup, "Annotated C++ Reference Manual",
Section 3.4 [Ellis1990]

	P.J.Plauger, "The Draft Standard C++ Library" [Plauger1995]

Footnotes

Visualization

	Introduction to Visualization
	What Can be Visualized

	You have a Choice of Visualization Drivers

	Choose the Driver that Meets Your Needs

	Controlling Visualization

	Visualization Details

	Adding Visualization to Your Executable
	Installing Visualization Drivers

	How to Realize Visualization Drivers in an Executable

	If you do wish to write your own subclass...

	By default...

	Optionally...

	Visualization Manager

	How to Write the main() Function

	The Visualization Drivers
	Availability of drivers on the supported systems

	OpenGL

	Qt

	Open Inventor

	Open Inventor Extended Viewer

	Open Inventor Qt Viewer

	Qt3D

	ToolsSG

	VTK (Visualisation toolkit)

	HepRepFile

	DAWN

	VRML

	RayTracer

	gMocren

	Visualization of detector geometry tree

	Controlling Visualization from Commands
	Scene, scene handler, and viewer

	Choosing a graphics viewer: /vis/open command

	Create an empty scene: /vis/scene/create command

	Visualization of a physical volume: /vis/drawVolume command

	Visualization of a parameterised volume

	Visualization of a logical volume: /vis/drawLogicalVolume command

	Visualization of trajectories: /vis/scene/add/trajectories command

	Visualization of hits: /vis/scene/add/hits command

	Visualization of fields: /vis/scene/add/magneticField command

	Visualization of Scored Data

	Additional attributes for Hits

	Visualization of histograms (plotting)

	Basic camera workings: /vis/viewer/ commands

	Declare the end of visualization for flushing: /vis/viewer/flush command

	End of Event Action and End of Run Action: /vis/scene/endOfEventAction and /vis/scene/endOfRunAction commands

	HepRep Attributes for Trajectories

	How to save a view.

	How to save a view to an image file

	Culling

	Cut view

	Multithreading commands

	Controlling Visualization from Compiled Code
	G4VVisManager

	Visualization of detector components

	Visualization of trajectories

	Enhanced trajectory drawing

	HepRep Attributes for Trajectories

	Visualization of hits

	HepRep Attributes for Hits

	Visualization of text

	Visualization of polylines and tracking steps

	Visualization User Actions

	Standalone Visualization

	Drawing a solid as a cloud of points

	Visualization Attributes
	Visibility

	Colour

	Forcing attributes

	Other attributes

	Constructors of G4VisAttributes

	How to assign G4VisAttributes to a logical volume

	Additional User-Defined Attributes

	Enhanced Trajectory Drawing
	Default Configuration

	Trajectory Drawing Models

	Controlling from Commands

	Controlling from Compiled Code

	Drawing by time

	Trajectory Filtering
	Controlling from Commands

	Example commands

	Hit and Digi Filtering

	Polylines, Markers and Text
	Polylines

	Markers

	Text

	Making a Movie
	Using /vis/viewer/interpolate

	With a macro loop

	Processing picture files with mpeg2encode

	Qt

	DAWNFILE

	RayTracerX

	Debugging geometry with vis
	Using advanced vis tools

	External Boolean processing

Footnotes

Introduction to Visualization

The Geant4 visualization system was developed in response to a diverse
set of requirements:

	Quick response to study geometries, trajectories and hits

	High-quality output for publications

	Flexible camera control to debug complex geometries

	Tools to show volume overlap errors in detector geometries

	Interactive picking to get more information on visualized objects

No one graphics system is ideal for all of these requirements, and many
of the large software frameworks into which Geant4 has been incorporated
already have their own visualization systems, so Geant4 visualization
was designed around an abstract interface that supports a diverse family
of graphics systems. Some of these graphics systems use a graphics
library compiled with Geant4, such as OpenGL, Qt, while others involve a
separate application, such as HepRApp or DAWN.

Most examples include a vis.mac to perform typical visualization for
that example. The macro includes optional code which you can uncomment
to activate additional visualization features.

What Can be Visualized

Simulation data can be visualized:

	Detector components

	A hierarchical structure of physical volumes

	A piece of physical volume, logical volume, and solid

	Particle trajectories and tracking steps

	Hits of particles in detector components

	Scoring data

	Plots

Other user defined objects can be visualized:

	Polylines, such as coordinate axes

	3D Markers, such as eye guides

	Text, descriptive character strings, comments or titles

	Scales

	Logos

You have a Choice of Visualization Drivers

The many graphics systems that Geant4 supports are complementary to each
other.

	OpenGL

	View directly from Geant4

	Requires addition of GL libraries that are freely available for all
operating systems (and pre-installed on many)

	Rendered, photorealistic image with some interactive features

	zoom, rotate, translate

	Fast response (can usually exploit full potential of graphics hardware)

	Print to EPS (vector and pixel graphics)

	Qt

	View directly from Geant4

	Requires addition of Qt and GL libraries that are freely available
on most operating systems

	Rendered, photorealistic image

	Many interactive features

	zoom, rotate, translate

	Fast response (can usually exploit full potential of graphics
hardware)

	Expanded printing ability (vector and pixel graphics)

	Easy interface to make movies

	Open Inventor

	View directly from Geant4

	Requires addition of Coin3d libraries (freely available for
most Linux systems).

	Rendered, photorealistic image

	Many interactive features

	zoom, rotate, translate

	click to "see inside" opaque volumes

	Fast response (can usually exploit full potential of graphics
hardware)

	Expanded printing ability: vector graphics (with transparency in PDF) and pixel graphics

	Qt3D

	View directly from Geant4

	Requires addition of Qt libraries that are freely available
on most operating systems

	Rendered, photorealistic image

	Many interactive features

	zoom, rotate, translate

	Fast response (can usually exploit full potential of graphics
hardware)

	TSG

	View directly from Geant4

	Based on the ToolsSG library distributed with Geant4.

	Rendered, photorealistic image

	Many interactive features

	zoom, rotate, translate

	Fast response (can usually exploit full potential of graphics
hardware)

	Can also view plots of histograms, etc., accumulated in your application

	Vtk

	View directly from Geant4

	Requires installation of Vtk (vtk.org)

	Rendered, photorealistic image

	Many interactive features

	zoom, rotate, translate

	Fast response (can usually exploit full potential of graphics
hardware)

	HepRepFile

	Create a file to view in a HepRep browser such as HepRApp or FRED

	Requires a HepRep browser (above options work on any operating
system)

	Wireframe or simple area fills (not photorealistic)

	Many interactive features

	zoom, rotate, translate

	click to show attributes (momentum, etc.)

	special projections (FishEye, etc.)

	control visibility from hierarchical (tree) view of data

	Hierarchical view of the geometry

	Export to many vector graphic formats (PostScript, PDF, etc.)

	DAWN

	Create a file to view in the DAWN Renderer

	Requires DAWN, available for all Linux and Windows systems

	Rendered, photorealistic image

	No interactive features

	Highest quality technical rendering - output to vector PostScript

	VRML

	Create a file with VRML2FILE to view in any VRML browser (many
different choices for different browsers and operating systems).

	Rendered, photorealistic image with some interactive features

	zoom, rotate, translate

	Limited printing ability (pixel graphics, not vector graphics)

	RayTracer

	Create a jpeg file

	Forms image by using Geant4's own tracking to follow photons
through the detector

	Can show geometry but not trajectories

	Can render any geometry that Geant4 can handle (such as Boolean
solids)

	Supports shadows, transparency and mirrored surfaces

	gMocren

	Create a gMocren file suitable for viewing in the gMocren volume
data visualization application

	Represents three dimensional volume data such as radiation therapy
dose

	Can also include geometry and trajectory information

	ASCIITree

	Text dump of the geometry hierarchy

	Not graphical

	Control over level of detail to be dumped

	Can calculate mass and volume of any hierarchy of volumes

Choose the Driver that Meets Your Needs

	If you want very responsive photorealistic graphics (and have the
OpenGL libraries installed)

	OpenGL is a good solution (if you have the Motif extensions, this
also gives GUI control)

	If you want to have the User Interface and all Visualization windows
in the same window

	Only Qt can do that

	If you want very responsive photorealistic graphics plus more
interactivity (and have the OpenInventor or Qt libraries installed)

	OpenInventor with or without Qt are good solutions

	Qt3D, TSG and Vtk are also candidates

	If you want GUI control, very responsive photorealistic graphics plus
more interactivity (and have the Qt libraries installed).

	Qt is a good solution

	If you want GUI control, want to be able to pick on items to inquire
about them (identity, momentum, etc.), perhaps want to render to
vector formats, and a wireframe look will do

	HepRepFile will meet your needs

	If you want to render highest quality photorealistic images for use
in a poster or a technical design report, and you can live without
quick rotate and zoom

	DAWN is the way to go

	If you want to render to a 3D format that others can view in a
variety of commodity browsers (including some web browser plug-ins)

	VRML is the way to go

	If you want to visualize a geometry that the other visualization
drivers can't handle, or you need transparency or mirrors, and you
don't need to visualize trajectories

	RayTracer will do it

	If you want to visualization volume data, such as radiation therapy
dose distributions

	gMocren will meet your needs

	If you just want to quickly check the geometry hierarchy, or if you
want to calculate the volume or mass of any geometry hierarchy

	ASCIITree will meet your needs

	You can also add your own visualization driver.

	Geant4's visualization system is modular. By creating just three
new classes, you can direct Geant4 information to your own
visualization system.

Controlling Visualization

Your Geant4 code stays basically the same no matter which driver you
use.

Visualization is performed either with commands or from C++ code.

	Some visualization drivers work directly from Geant4

	OpenGL

	Qt

	Qt3D

	Vtk

	TSG

	OpenInventor

	RayTracer

	ASCIITree

	For other visualization drivers, you first have Geant4 produce a
file, and then you have that file rendered by another application
(which may have GUI control)

	HepRepFile

	DAWN

	VRML2FILE

	gMocren

Visualization Details

The following sections of this guide cover the details of Geant4
visualization:

	Adding Visualization to Your Executable

	The Visualization Drivers

	Controlling Visualization from Commands

	Controlling Visualization from Compiled Code

	Visualization Attributes

	Enhanced Trajectory Drawing

	Polylines, Markers and Text

	Making a Movie

Other useful references for Geant4 visualization outside of this user
guide:

	Macro files vis.mac distributed in Geant4 source in basic examples.

Footnotes

Adding Visualization to Your Executable

This section explains how to incorporate your selected visualization
drivers into the main() function and create an executable for it. In
order to perform visualization with your Geant4 executable, you must
compile it with support for the required visualization driver(s). You
may be dazzled by the number of choices of visualization driver, but you
need not use all of them at one time.

Installing Visualization Drivers

Depending on what has been installed on your system and how the Geant4 install
you are using was configured, several kinds of
visualization driver are available. One or many drivers may be chosen
for realization in compilation, depending on your visualization
requirements. Features and notes on each driver are briefly described in
The Visualization Drivers, along with links to
detailed web pages for the various drivers.

Note that not all drivers can be installed on all systems;
Table 15
in The Visualization Drivers lists all the
available drivers and the platforms on which they can be installed. For
any of the visualization drivers to work, the corresponding graphics
system must be installed beforehand.

Visualization drivers that do not depend on external libraries are by
default incorporated into Geant4 libraries during their installation.
Here "installation of Geant4 libraries" means the generation of Geant4
libraries by compilation. The automatically incorporated visualization
drivers are: DAWNFILE, HepRepFile, HepRepXML, RayTracer,
VRML2FILE and ATree and GAGTree.

The OpenGL, Qt, OpenInventor, Qt3D, TSG, Vtk and RayTracerX drivers are not incorporated by default. These drivers
must be selected when you build the Geant4 Toolkit itself. This
procedure is described in detail in the Installation Guide, to which
you should refer.

How to Realize Visualization Drivers in an Executable

You can realize and use any of the visualization driver(s) you want in
your Geant4 executable, provided they are among the set installed
beforehand into the Geant4 libraries. A warning will appear if this is
not the case.

In order to realize visualization drivers, you must instantiate and
initialize a subclass of G4VisManager that implements the pure
virtual function RegisterGraphicsSystems(). This subclass must be
compiled in the user's domain to force the loading of appropriate
libraries in the right order. The easiest way to do this is to use
G4VisExecutive:

auto visManager = new G4VisExecutive(argc, argv);

If you do wish to write your own subclass...

...you may do so. You will see
how to do this by looking at G4VisExecutive.icc. A typical extract
is:

...
 RegisterGraphicsSystem (new G4DAWNFILE);
...
#ifdef G4VIS_USE_OPENGLX
 RegisterGraphicsSystem (new G4OpenGLImmediateX);
 RegisterGraphicsSystem (new G4OpenGLStoredX);
#endif
...

If you wish to use G4VisExecutive but register an additional
graphics system, XXX say, you may do so either before or after
initializing:

visManager->RegisterGraphicsSystem(new XXX);
visManager->Initialize();

and add the library name to your CMakeLists.txt file:

target_link_libraries(exampleB1 G4visXXX ${Geant4_LIBRARIES})

By default...

...you get the DAWNFILE, HepRepFile, RayTracer,
VRML2FILE and ATree drivers.

Optionally...

...you may install the OpenGL-Xlib, OpenGL-Motif, Qt, OpenInventor, Qt3D, TSG, Vtk and RayTracerX drivers, each of which can be enabled
when configuring your application through CMake options - see Installation
Guide.

For more details, see The Visualization Drivers and pages linked from there.

Visualization Manager

Visualization procedures are controlled by the "Visualization Manager",
a class which must inherit from G4VisManager defined in the
visualization category. Most users will find that they can just use the
default visualization manager, G4VisExecutive. The Visualization
Manager accepts users' requests for visualization, processes them, and
passes the processed requirements to the abstract interface, i.e., to
the currently selected visualization driver.

How to Write the main() Function

In order for your Geant4 executable to perform visualization, you must
instantiate and initialize "your" Visualization Manager in the
main() function. The core of the Visualization Manager is the class
G4VisManager, defined in the visualization category. This class
requires that one pure virtual function be implemented, namely,
void RegisterGraphicsSystems(). The easiest way to do this is to use
G4VisExecutive, as described in Listing 98.

Listing 98 The form of the main() function.

//----- C++ source codes: Instantiation and initialization of G4VisManager
.....
// Your Visualization Manager
#include "G4VisExecutive.hh"
.....
// Instantiation and initialization of the Visualization Manager
G4VisManager* visManager = new G4VisExecutive;
// G4VisExecutive can take a verbosity argument - see /vis/verbose guidance.
// G4VisManager* visManager = new G4VisExecutive("Quiet");
visManager->Initialize();
.....
delete visManager;
//----- end of C++

Do not forget to delete the instantiated Visualization Manager.

Listing 99 shows a complete main() function (but see the examples distributed with Geant4 for more ideas).

Listing 99 A main() function with interaction and visualization.

.....
#include "G4VisExecutive.hh"
#include "G4UIExecutive.hh"
.....
int main(int argc,char** argv)
{
 auto ui = new G4UIExecutive(argc, argv);

 auto* runManager = G4RunManagerFactory::CreateRunManager();

 runManager->SetUserInitialization(new DetectorConstruction);
 auto physicsList = new QBBC;
 runManager->SetUserInitialization(physicsList);
 runManager->SetUserInitialization(new ActionInitialization);

 auto visManager = new G4VisExecutive;
 visManager->Initialize();

 ui->SessionStart();

 delete visManager;
 delete runManager;
 delete ui;
}

The visualization manager prints useful information depending on the verbosity level:

Simple graded message scheme - give first letter or a digit:
 0) quiet, // Nothing is printed.
 1) startup, // Startup and endup messages are printed...
 2) errors, // ...and errors...
 3) warnings, // ...and warnings...
 4) confirmations, // ...and confirming messages...
 5) parameters, // ...and parameters of scenes and views...
 6) all // ...and everything available.

For example, in your main() function, write:

G4VisManager* visManager = new G4VisExecutive("Quiet");

or change with the /vis/verbose command.

Footnotes

The Visualization Drivers

As explained in the Introduction to Visualization, Geant4 provides many
different choices of visualization systems. Features and notes on each
driver are briefly described here along with links to detailed web pages
for the various drivers.

Details are given below for:

	OpenGL

	Qt

	Open Inventor

	Open Inventor Extended Viewer

	Open Inventor Qt Viewer

	Qt3D

	ToolsSG

	VTK (Visualisation toolkit)

	HepRepFile

	DAWN

	VRML

	RayTracer

	gMocren

	ASCIITree

Availability of drivers on the supported systems

Table 15 lists required graphics systems and
supported platforms for the various visualization drivers. Please refer to
the Installation Guide for details of how to build Geant4 with support for
these drivers, and Use of Geant4Config.cmake with find_package in CMake for details on how to configure applications to use them.

Table 15 Required graphics systems and supported platforms for the various
 visualization drivers.

	Driver

	Required Graphics System

	Platform

	OpenGL-Xlib

	OpenGL

	Linux, UNIX, Mac with Xlib

	OpenGL-Motif

	OpenGL

	Linux, UNIX, Mac with Motif

	OpenGL-Win32

	OpenGL

	Windows

	Qt

	Qt, OpenGL

	Linux, UNIX, Mac, Windows

	OpenInventor-Qt

	Open Inventor (Coin3D), Qt, OpenGL

	Linux, UNIX, Mac

	OpenInventor-X

	Open Inventor (Coin3D), OpenGL

	Linux, UNIX, Mac with Xlib and Motif

	OpenInventor-X-Extended

	Open Inventor (Coin3D), OpenGL

	Linux, UNIX, Mac with Xlib and Motif

	OpenInventor-Win32

	Open Inventor, OpenGL

	Windows

	Qt3D

	Qt

	Linux, UNIX, Mac, Windows

	ToolsSG

	OpenGL-ES, Qt or none (off-screen)

	Linux, UNIX, Mac, Windows

	VTK

	VTK (vtk.org)

	Linux, UNIX, Mac

	VRML2FILE

	Most internet browsers

	Linux, UNIX, Mac, Windows

	HepRepFile

	HepRApp or FRED

	Linux, UNIX, Mac, Windows

	DAWNFILE

	Fukui Renderer DAWN

	Linux, UNIX, Mac, Windows

	VRML2FILE

	any VRML viewer

	Linux, UNIX, Mac, Windows

	RayTracer

	any JPEG viewer

	Linux, UNIX, Mac, Windows

	RayTracerX

	X11 (also produces a jpeg file)

	Linux, UNIX, Mac.

	ASCIITree

	None

	Linux, UNIX, Mac, Windows

OpenGL

These drivers have been developed by John Allison and Andrew Walkden
(University of Manchester). It is an interface to the de facto standard
3D graphics library, OpenGL. It is well suited for real-time fast
visualization and demonstration. Fast visualisation is realized with
hardware acceleration, reuse of shapes stored in a display list, etc.

Several versions of the OpenGL drivers are prepared. Versions for Xlib,
Motif, Qt and Win32 platforms are available by default. For each
version, there are two modes: immediate mode and stored mode. The former
has no limitation on data size, and the latter is fast for visualizing
large data repetitively, and so is suitable for animation.

Images can be exported using /vis/ogl/export.

More information can be found here: How to save a view to an image file

If you want to open a OGL viewer, the generic way is:

/vis/open OGL

According to your G4VIS_USE... variables it will open the correct
viewer. By default, it will be open in stored mode. You can specify to
open an "OGLS" or "OGLI" viewer, or even "OGLSXm","OGLIXm",... If you
don't have Motif or Qt, all control is done from Geant4 commands:

/vis/open OGLIX
/vis/viewer/set/viewpointThetaPhi 70 20
/vis/viewer/zoom 2
etc.

But if you have Motif libraries or Qt install, you can control Geant4
from Motif widgets or mouse with Qt:

/vis/open OGLSQt

The OpenGL driver added Smooth shading and Transparency since Geant4
release 8.0.

Further information (OpenGL and Mesa):

	https://www.opengl.org/

	https://www.mesa3d.org

Qt

This driver has been developed by Laurent Garnier (IN2P3, LAL Orsay). It
is an interface to the powerful application framework, Qt, now free on
most platforms. This driver also requires the OpenGL library.

The Qt driver is well suited for real-time fast visualization and
demonstration. Fast visualization is realized with hardware
acceleration, reuse of shapes stored in a display list, etc.
All OpenGL features are implemented in
the Qt driver, but one also gets mouse control of
rotation/translation/zoom, the ability to save your scene in many
formats (both vector and pixel graphics) and an easy interface for
making movies.

Two display modes are available: Immediate mode and Stored mode. The
former has no limitation on data size, and the latter is fast for
visualizing large data repetitively, and so is suitable for animation.

This driver has the feature to open a vis window into the UI window as a
new tab. You can have as many tabs you want and mix them from Stored or
Immediate mode. To see the visualization window in the UI:

/vis/open OGL (Generic way. For Stored mode if you have define your G4VIS_USE_QT variable)
or
/vis/open OGLI (for Immediate mode)
or
/vis/open OGLS (for Stored mode)
or
/vis/open OGLIQt (for Immediate mode)
or
/vis/open OGLSQt (for Stored mode)

Further information (Qt):

	Qt#1

	|Geant4| Visualization Tutorial using the Qt Driver#2

Open Inventor

The original drivers were developed by Jeff Kallenbach (FNAL) and Guy Barrand
(IN2P3) based on the Hepvis class library
originated by
Joe Boudreau (Pittsburgh University). The Open Inventor drivers and the
Hepvis class library are based on the well-established Open Inventor
technology for scientific visualization. They have high extendibility.
They support high interactivity, e.g., attribute editing of picked
objects. Some Open Inventor viewers support "stereoscopic" effects.

It is also possible to save a visualized 3D scene as an
OpenInventor-formatted file, and re-visualize the scene afterwards.

Because it is connected directly to the Geant4 kernel, using same
language as that kernel (C++), OpenInventor systems can have direct
access to Geant4 data (geometry, trajectories, etc.).

Because Open Inventor uses OpenGL for rendering, it supports lighting and
transparency.

Open Inventor provides thumbwheel control to rotate and zoom.

Open Inventor supports picking to ask about data. [Control Clicking] on a
volume turns on rendering of that volume's daughters. [Shift Clicking] a
daughter turns that rendering off: If modeling opaque solid, effect is
like opening a box to look inside.

Further information (HEPVis and OpenScientist):

	Geant4 Inventor Visualization with OpenScientist#3

	Overall OpenScientist Home#4

Further information (OpenInventor):

	Josie Wernecke, "The Inventor Mentor", Addison Wesley (ISBN
0-201-62495-8)

	Josie Wernecke, "The Inventor Toolmaker", Addison Wesley (ISBN
0-201-62493-1)

	"The Open Inventor C++ Reference Manual", Addison Wesley (ISBN
0-201-62491-5)

Open Inventor Extended Viewer

This driver was developed by Rastislav Ondrasek, Pierre-Luc Gagnon and
Frederick Jones (TRIUMF). It extends the functionality of the
OpenInventor driver, described in the previous section, by adding a
number of new features to the viewer.

Although this viewer is still available it has been superseded by the
Open Inventor Qt Viewer (see below).

Open Inventor Qt Viewer

This driver was developed by Frederick Jones (TRIUMF) and is based in part
on the Extended Viewer driver. It is supported
on Linux/Unix/MacOS platforms and requires Qt5 and Coin3D libraries
(Coin and SoQt) to be installed. When resources become available a
Windows version of the driver will be pursued.

This is the preferred Open Inventor viewer and will potentially replace
the older viewers described above. It incorporates all of their
capabilities together with many added functions implemented via
menu bar items, viewer buttons, a navigation panel,
and keyboard and mouse inputs.

Reference path navigation

Most of the added features are concerned with navigation along a
"reference path" which is a piecewise linear path through the geometry.
The reference path can be any particle trajectory, which may be chosen
at run time by selecting a trajectory with the mouse. Via Load and Save
menu items in the File menu, a reference path can also be read from a file and the current
reference path can be written to a file.

Once a reference path is established, the bottom part of the navigation
panel is populated with a list of all elements in the geometry, ordered by their
"distance" along the reference path (based on the perpendicular from the
element center to the path).

Navigation controls

[L,R,U,D refer to the arrow keys on the keyboard]

	Select an element from the list: navigate along the path to the
element's "location" (distance along the reference path).

	Shift-L and Shift-R: navigate to the previous or next element on the
path (with wraparound).

	L and R: rotate 90 degrees around the perpendicular to the reference path

	U and D: rotate 90 degrees around the reference path

	Ctrl-L and Ctrl-R: rotate 90 degrees around the horizontal axis

All these keys have a "repeat" function for continuous motion.

The rotation keys put the camera in a definite orientation, whereas The
Shift-L and Shift-R keys can be used to "fly" along the path in whatever
camera orientation is in effect. NOTE: if this appears to be "stuck",
try switching from orthonormal camera to perspective camera ("cube"
viewer button).

Menu Items:

	Tools / Go to start of reference path: useful if you get lost

	Tools / Invert reference path: flips the direction of travel and the
distance readout

Reference path animation

This is a special mode which flies the camera steadily along the path,
without wraparound. The controls are:

	Tools Menu - Fly along Ref Path: start animation mode

	Page-Up: increase speed

	Page-Down: decrease speed

	U (arrow key): raise camera

	D (arrow key): lower camera

	ESC: exit animation mode

For suitable geometries the U and D keys can be used to get "Star Wars"
style fly-over and fly-under effects.

Bookmarks

At any time, the viewpoint and other camera parameters can be saved in a
file as a labelled "bookmark". The view can then be restored later in
the current run or in another run. Bookmarks are displayed in a list
in the top part of the navigation panel.

The default name for the bookmark file is "bookmarkFile" The first time
a viewpoint is saved, this file will be created if it does not already
exist. When the viewer is first opened, it will automatically read this
file if present and load the viewpoints into the left-hand panel of the
viewer's auxiliary window.

Controls:

	Select bookmark from list: restore this view

	Right-arrow VIEWER button: go to next bookmark

	Left-arrow VIEWER button: go to next bookmark

	"Floppy Disk" button: bookmark the current view. The user can type in a label
for the bookmark, or use the default label provided.

	File Menu - Open Bookmark File: loads an existing bookmark file

	File Menu - New Bookmark File: creates a new bookmark file for
saving subsequent views

Special picking modes

Controls:

	"Arrow +" VIEWER button: enable brief trajectory picking and
mouse-over element readout For trajectories, the list of all
trajectory points is replaced by the first and last point only,
allowing easier identification of the particle without scrolling
back. Passing the mouse over an element will give a readout of the
volume name, material, and position on the reference path.

	"Crosshair" VIEWER button: select new reference path The cursor will
change to a small cross (+) after which a trajectory can be selected
to become the new reference path.

Convenience feature

When using the Open Inventor viewer with a terminal-based UI (e.g. tcsh)
it is now possible to escape from the viewer without using the mouse.

In addition to the File - Escape menu item, pressing the "e" key on the
keyboard will exit from the viewer's secondary event loop. The viewer will
become inactive and control will return to the Geant4 UI prompt.

Qt3D

As of writing for Release 11.1, Qt3D is an "experimental" driver exploiting a recently announced feature of Qt. Qt3D looks like Qt's attempt to get into visualisation as well as user interface. All the same, Qt programming is tough, so please bear with us. Please try it and give us feedback.

It has been developed so far by John Allison. The advantage, as we see it, is that it programs directly over Qt, which is then free to exploit the local system to its advantage. For example, on MacOS, it will in future (they say) build directly on Metal, making us independent of OpenGL (which Apple are deprecating). It is a way of future-proofing Geant4.

If you build with Qt, this driver will be instantiated automatically.

ToolsSG

Developed by Guy Barrand, this driver is based on his ToolsSG package
distributed with Geant4 (which also supports the Geant4 analysis
system). It offers the same features as the OpenGL drivers and comes
with options over X11, Windows or Qt (depending on your CMake
selections during Geant4 build - see Installation Guide). It has the
ability to exploit local graphics systems so that, like Qt3D, it
offers future-proofing for Geant4 visualisation.

Since Geant4 11.1, beside the X11, Windows, Qt "screen" sub-drivers, there is also the
"offscreen" sub-driver permitting to produce file output at the png,
jpeg, gl2ps formats by using only standalone C++ code based on the
standard libraries (no need of extra graphical external packages, all
the code comes within g4tools). This
sub-driver is built by default and can be operated in a pure
batch/offscreen program. In particular it permits to produce
pictures at high resolution adequate for outreach.

ToolsSG also supports plotting. If you have registered histograms with the Geant4 analysis manager, they will be available for plotting at end of run. Example B5 illustrates how to do this.

These drivers use the scene graph logic found in the classes under:

source/externals/g4tools/include/tools/sg

(sg being for "scene graph").

These classes are themselves a subpart of the softinex/inlib and exlib
thesaurus of code accumulated for long
at Orsay (at LAL before 2020 and now at the IJCLab) to help doing
visualization and data analysis for various
projects. (The namespaces inlib and exlib had been changed to "tools"
when importing classes within Geant4
to avoid clashes with apps using both Geant4 and straight
softinex). This scene graph way of doing
visualization is borrowed from the great OpenInventor developed by
Silicon Graphics Incs in the 1980's.
The idea is that a data representation is done by creating a scene
graph which is a tree of "nodes".
For example a tree has in general a first tools::sg::ortho (or
sg::perspective) camera node specifying
a camera projection (position, orientation
and depth of view), some sg::matrix node permitting to position an
object in a 3D space and then some shape
nodes as sg::cube, sg::cylinder or sg::vertices (a node handling a set
of points, lines, segments or triangles)
used to represent a piece of detector or tracks.

Whence having built a scene graph, the rendering is done, typically
after having received some expose event
in a drawing area window, by applying a "render_action" that traverses
the scene graph and asks to the nodes
the actions that will be passed to a specific graphics engine. For
example a shape node (cube, sphere,
polyhedron), when traversed, will give to the render_action the
graphics primitives (points, lines, segments,
triangles) representing that shape. A camera node will give a
projection matrix, a matrix node will give a
model matrix. A common graphics engine being GL-ES, we have the
tools::sg::GL_action
class that does that for GL-ES on macOS, Linux and Windows. We have
also various render_action
to do offscreen rendering (gl2ps_action using gl2ps and zb_action to
render in an in memory z-buffer).
In softinex we have also a exlib::wasm::render to render in
WebAssembly using WebGL and a
exlib::metal::render to render within macOS/Cocoa/Metal, but these are not yet used in Geant4/vis.

In Geant4/vis, the ToolsSG directory contains code to create a viewer
within various windowing systems,
codes which are declared as "drivers" in the vis system. Today
there are the TOOLSSG_QT_GLES and TOOLSSG_XT_GLES to create a viewing area ready for GL-ES rendering if
using the GUI toolkits Qt or Xt/Motif
(activated through the G4UIQt, G4UIXt classes), and TOOLSSG_X11_GLES,
TOOLSSG_WINDOWS_GLES to create a
GL-ES viewing area straight on X11 or Windows windowing systems.

From a user point of view, typical commands to create a ToolsSG viewer
are:

/vis/sceneHandler/create TSG scene-handler-tsg
/vis/viewer/create scene-handler-tsg viewer-tsg 600x600-0+0

or with the compound command:

/vis/viewer/open TSG 600x600-0+0

Someone can specify straight a TOOLSSG_[QT,XT,X11,WINDOWS]_GLES name
driver, but if specifying "TSG",
the G4/vis system will pick the "right one", according to the kind of
GUI or windowing context which is choosen (in general
Qt for now).

Obviously, these drivers must have been built when building/installing
Geant4. With the G4 cmake system, this
is done by specifying the cmake flag:

-DGEANT4_USE_TOOLSSG=XX

where XX is one of: OFF, X11, XT, QT or WIN32.

In the case of "offscreen", someone has to open with:

/vis/viewer/open TSG_OFFSCREEN 600x600

The given size will be the size widthxheight in pixels of the picture in the output file.

When a ToolsSG viewer is created, vis commands
triggering the representation of a piece of
detector or a track are the same as for other drivers. For
example, as can be found in the
examples/basic/B1/vis.mac:

Draw geometry:
/vis/drawVolume
...
Draw smooth trajectories at end of event:
/vis/scene/add/trajectories smooth
...

On a technical point of view, the G4ToolsSceneHandler class is the
place where tools::sg nodes
are created according each Geant4/vis primitive type (G4Polyhedron, G4Polyline, G4Text, etc...).

ToolsSG /vis/tsg specific commands:

The:

/vis/tsg/export

permits to write the content of the current ToolsSG "screen" viewer in a file
at various formats.
Default file is out.eps and default format is gl2ps_eps. Today, available
formats are:

gl2ps_eps: gl2ps producing eps
gl2ps_ps: gl2ps producing ps
gl2ps_pdf: gl2ps producing pdf
gl2ps_svg: gl2ps producing svg
gl2ps_tex: gl2ps producing tex
gl2ps_pgf: gl2ps producing pgf
zb_ps: tools::sg offscreen zbuffer put in a PostScript file.

An example of usage is:

/vis/tsg/export gl2ps_pdf out.pdf

Another command is:

/vis/tsg/plotter/printParameters

It permits to print the available keys used to customize a ToolsSG
plotter. This command is
more documented in the ToolsSG plotting section.

ToolsSG /vis/tsg/offscreen specific commands:

These commands are available when the current viewer is a
TSG_OFFSCREEN one. In this case the default file format is zb_png. The
picture is produced with:

/vis/viewer/rebuild

by using the tools::sg offscreen zbuffer, and is put in a png file with the tools::fpng png file writer.

The default file name is:

g4tsg_offscreen_[format]_[index].[suffix]

with:

index: starting at one and incremented at each file production.
format:
 zb_png: tools::sg offscreen zbuffer put in a png file.
 zb_jpeg: tools::sg offscreen zbuffer put in a jpeg file.
 zb_ps: tools::sg offscreen zbuffer put in a PostScript file.
 gl2ps_eps: gl2ps producing eps
 gl2ps_ps: gl2ps producing ps
 gl2ps_pdf: gl2ps producing pdf
 gl2ps_svg: gl2ps producing svg
 gl2ps_tex: gl2ps producing tex
 gl2ps_pgf: gl2ps producing pgf
suffix: according to the choosen file format: eps, ps, pdf, svg, tex, pgf, png, jpeg.

You can change the file name with:

/vis/tsg/offscreen/set/file <file name>

You can change the automatic file name construction with:

/vis/tsg/offscreen/set/file auto <prefix> <true|false to reset the index>

The default picture size, in pixels, is the one given when doing a:

/vis/open TSG_OFFSCREEN [width]x[height]

for example:

/vis/open TSG_OFFSCREEN 1200x1200

or by taking the default Geant visualization system viewer size (600x600):

/vis/open TSG_OFFSCREEN

But you can change it after an "open" with:

/vis/tsg/offscreen/set/size <width> <height>

We remember that after having opened a ToolsSG offscreen viewer, you have to
do an explicit:

/vis/viewer/rebuild

to produce a file.

About the picture size, note that the gl2ps files will grow with the
number of primitives (gl2ps does not have a zbuffer logic). The "zb"
files will not grow with the number of primitives, but with the size
of the viewer. It should be preferred for scenes with a lot of objects to render. With zb, to have a better rendering, do not hesitate to have a large viewer size.

About transparency, the zb formats handle it. The gl2ps formats don't,
in this case you can use:

/vis/tsg/offscreen/set/transparency false

to not draw the transparent objects.

To have a starting point, go in examples/basic/B1 and play with the
tsg_offscreen.mac macro file to see how to operate all these.

VTK (Visualisation toolkit)

[image: ../_images/vtkIntroExample.jpg]

Example of VtkQt visualisation driver

Developed by Stewart Boogert (University of Manchester) and Laurie Nevay (CERN), this driver exploits the Visualisation
Toolkit VTK (http://vtk.org). Its focus is high performance, pipelined (deferred) and instanced rendering. You need to
install the VTK libraries - see Installation Guide. There is a "native" driver, but also one which melds with Qt if you
also have Qt installed.3 viewers are currently available based on VTK

	VTK viewer

	Description

	VtkNative

	Native viewer (open Cococa, Xwindows, Microsoft windows window

	VtQt

	Integrated with Qt

	VtkOffscreen

	Graphics started but no window open

VTK allows for some functionality not common to the other visualisation systems, the available commands are

	VTK specific command

	Description

	/vis/vtk/add/imageOverlay

	Place an 2D image in scene

	/vis/vtk/add/geometryOverlay

	Place an 3D data in scene

	/vis/vtk/set/clipper

	Add interactive clipper

	/vis/vtk/set/cutter

	Add interactive cutter

	/vis/vtk/set/hud

	Set Head up display (0,1)

	/vis/vtk/set/polyhedronPipeline

	Set polyhedron pipeline type (separate, append, bake, tensor)

	/vis/vtk/set/shadows

	Enable/disable shadows

	/vis/vtk/set/warnings

	Enable/disable VTK warnings

	/vis/vtk/export

	Export scene as VTP/VTU/VRML/GLTF/OBJ

	/vis/vtk/exportCutter

	Export cutters VTP/VTU

	/vis/vtk/printDebug

	Print information on pipelines

	/vis/vtk/startInteraction

	Start VtkNative window interaction

A pipeline is a sequence of steps which converts a data structure into a set of graphics operations. The current driver
implements a handful of pipelines to create a visualisation similar to that produced by OpenGL. Simple pipelines can be added to the VTK driver without understanding
the entire visualisation system, for example a G4Polyhedron to vtkActor is:

polydataPoints = vtkSmartPointer<vtkPoints>::New();
polydataCells = vtkSmartPointer<vtkCellArray>::New();
polydata = vtkSmartPointer<vtkPolyData>::New();

polydata->SetPoints(polydataPoints);
polydata->SetPolys(polydataCells);

// clean input polydata
auto filterClean = vtkSmartPointer<vtkCleanPolyData>::New();
filterClean->PointMergingOn();
filterClean->AddInputData(polydata);
AddFilter(filterClean);

// ensure triangular mesh
auto filterTriangle = vtkSmartPointer<vtkTriangleFilter>::New();
filterTriangle->SetInputConnection(filterClean->GetOutputPort());
AddFilter(filterTriangle);

// calculate normals with a feature angle of 45 degrees
auto filterNormals = vtkSmartPointer<vtkPolyDataNormals>::New();
filterNormals->SetFeatureAngle(45);
filterNormals->SetInputConnection(filterTriangle->GetOutputPort());
AddFilter(filterNormals);

// mapper
mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(GetFinalFilter()->GetOutputPort());
mapper->SetColorModeToDirectScalars();

// add to actor
actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
actor->SetVisibility(1);

Very complex algorithms can be added into a pipeline without a user being an expert in 3D graphics programming. G4VVtkPipeline the base class for a
pipeline can be chained together so once a visualisation pipeline is written it can be reused quickly. Pipelines can be added and removed on the fly
without changing other pipelines so the graphics scene does not need to be rebuilt. The current core pipelines are

	Pipeline

	Description

	Geant4 primitive

	G4VVtkPipeline

	Base class for pipelines

	

	G4VtkPolydataPipeline

	Class for 3D mesh data

	

	G4VtkPolydataPolylinePipeline

	Class for 3D polyline

	G4Polyline and G4Square

	G4VtkPolydataSpherePipeline

	Class for 3D sphere

	G4Circle

	G4VtkPolydataPolyline2DPipeline

	Class for 2D polyline

	G4Polyline

	G4VtkPolydataInstancePipeline

	Class for 3D mesh data with instances

	G4Polyhedron

	G4VtkPolydataInstanceAppendPipeline

	Class for 3D mesh data with instances

	G4Polyhedron

	G4VtkPolydataInstanceBakePipeline

	Class for 3D mesh data with instances

	G4Polyhedron

	G4VtkPolydataInstanceTensorPipeline

	Class for 3D mesh data with instances

	G4Polyhedron

	G4VtkText2DPipeline

	Class for 2D text

	G4Text

	G4VtkTextPipeline

	Class for 3D text

	G4Text

Pipelines which can be chained onto a G4VVtkPipeline.

	Pipeline

	Description

	G4VtkCutterPipeline

	Cut geometry through plane

	G4VtkClipOpenPipeline

	Clip (remove) geometry through plane

	G4VtkClipClosedSurfacePipeline

	Clip (remove) geometry through plane

These pipelines are constructed in such a way that any pipeline can be cut or clipped.

VTK window interaction

These are specific to the VTK window and do not change the Geant4 viewing system

	Key

	Action

	s

	Surface

	w

	Wireframe

	3

	Toggle red/blue stereo

	q

	Exit interaction (VtkNative only)

Note

To interact with the VtkNative viewer with shell UI the command
/vis/vtk/startInteraction needs to be issued. This will block mouse and
keyboard interaction with the G4 UI and input will be passed to Vtk.
Once interaction is no longer required hit q.

Note

There are compatibility issues with graphics drivers that use different versions
of OpenGL, so for the time being (Geant4 11.2), selecting Vtk suppresses the
OpenGL drivers and ToolsSG drivers that use GLES.

VTK Advanced features

VTK allows many possibilities beyond those already implemented in Geant4.

	XR (VR/AR) integration

	Shadows

	Physically based rendering

	Camera motion blur

HepRepFile

The HepRepFile driver creates a HepRep XML file in the HepRep1 format
suitable for viewing with the
HepRApp#5 HepRep
Browser.

The HepRep graphics format is further described at
http://www.slac.stanford.edu/~perl/heprep .

To write just the detector geometry to this file, use the command:

/vis/viewer/flush

Or, to also include trajectories and hits (after the appropriate
/vis/viewer/add/trajectories or /vis/viewer/add/hits commands), just
issue:

/run/beamOn 1

HepRepFile will write a file called G4Data0.heprep to the current
directory. Each subsequent file will have a file name like
G4Data1.heprep, G4Data2.heprep, etc.

View the file using the HepRApp HepRep Browser, available from:

http://www.slac.stanford.edu/~perl/HepRApp/ .

HepRApp allows you to pick on volumes, trajectories and hits to find out
their associated HepRep Attributes, such as volume name, particle ID,
momentum, etc. These same attributes can be displayed as labels on the
relevant objects, and you can make visibility cuts based on these
attributes ("show me only the photons", or "omit any volumes made of
iron").

HepRApp can read heprep files in zipped format as well as unzipped, so
you can save space by applying gzip to the heprep file. This will reduce
the file to about five percent of its original size.

Several commands are available to override some of HepRepFile's defaults

	You can specify a different directory for the heprep output files by
using the setFileDir command, as in:

/vis/heprep/setFileDir <someOtherDir/someOtherSubDir>

	You can specify a different file name (the part before the number) by
using the setFileName command, as in:

/vis/heprep/setFileName <my_file_name>

which will produce files named <my_file_name>0.heprep,
<my_file_name>1.heprep, etc.

	You can specify that each file should overwrite the previous file
(always rewriting to the same file name) by using the setOverwrite
command, as in:

/vis/heprep/setOverwrite true

This may be useful in some automated applications where you always
want to see the latest output file in the same location.

	Geant4 visualization supports a concept called "culling", by which
certain parts of the detector can be made invisible. Since you may
want to control visibility from the HepRep browser, turning on
visibility of detector parts that had defaulted to be invisible, the
HepRepFile driver does not omit these invisible detector parts from
the HepRep file. But for very large files, if you know that you will
never want to make these parts visible, you can choose to have them
left entirely out of the file. Use the /vis/heprep/setCullInvisibles
command, as in:

/vis/heprep/setCullInvisibles true

Further information:

	HepRApp Users Home Page:
http://www.slac.stanford.edu/~perl/HepRApp/

	HepRep graphics format:
http://www.slac.stanford.edu/~perl/heprep

DAWN

The DAWN drivers are interfaces to Fukui Renderer
DAWN, which
has been developed by Satoshi Tanaka, Minato Kawaguti et al (Fukui
University). It is a vectorized 3D PostScript processor, and so well
suited to prepare technical high quality outputs for presentation and/or
documentation. It is also useful for precise debugging of detector
geometry. Remote visualization, off-line re-visualization, cut view, and
many other useful functions of detector simulation are supported. A DAWN
process is automatically invoked as a co-process of Geant4 when
visualization is performed, and 3D data are passed with inter-process
communication, via a file.

When Geant4 Visualization is performed with the DAWN driver, the
visualized view is automatically saved to a file named g4.eps in the
current directory, which describes a vectorized (Encapsulated)
PostScript data of the view.

There are two kinds of DAWN drivers, the DAWNFILE driver and the
DAWN-Network driver. The DAWNFILE driver is usually recommended, since
it is faster and safer in the sense that it is not affected by network
conditions.

The DAWNFILE driver sends 3D data to DAWN via an intermediate file,
named g4.prim in the current directory. The file g4.prim can be
re-visualized later without the help of Geant4. This is done by invoking
DAWN by hand:

% dawn g4.prim

DAWN files can also serve as input to two additional programs:

	A standalone program, DAWNCUT, can perform a planar cut on a DAWN
image. DAWNCUT takes as input a .prim file and some cut parameters.
Its output is a new .prim file to which the cut has been applied.

	Another standalone program, DAVID, can show you any volume overlap
errors in your geometry. DAVID takes as input a .prim file and
outputs a new .prim file in which overlapping volumes have been
highlighted. The use of DAVID is described in section
Detecting Overlapping Volumes of this manual.

VRML

These drivers were developed by Satoshi Tanaka and Yasuhide Sawada
(Fukui University). They generate VRML files, which describe 3D scenes
to be visualized with a proper VRML viewer, at either a local or a
remote host. It realizes virtual-reality visualization with your WWW
browser. There are many excellent VRML viewers, which enable one to
perform interactive spinning of detectors, walking and/or flying inside
detectors or particle showers, interactive investigation of detailed
detector geometry etc.

The VRML2FILE driver sends 3D data to your VRML viewer, which is running
on the same host machine as Geant4, via an intermediate file named
g4.wrl created in the current directory. This file can be
re-visualization afterwards. In visualization, the name of the VRML
viewer should be specified by setting the environment variable
G4VRML_VIEWER beforehand. For example,

% setenv G4VRML_VIEWER "netscape"

Its default value is NONE, which means that no viewer is invoked and
only the file g4.wrl is generated.

RayTracer

This driver was developed by Makoto Asai and Minamimoto (Hirosihma
Instutute of Technology). It performs ray-tracing visualization using
the tracking routines of Geant4. It is, therefore, available for every
kinds of shapes/solids which Geant4 can handle. It is also utilized for
debugging the user's geometry for the tracking routines of Geant4. It is
well suited for photo-realistic high quality output for presentation,
and for intuitive debugging of detector geometry. It produces a JPEG
file. This driver is by default listed in the available visualization
drivers of user's application.

Some pieces of geometries may fail to show up in other visualization
drivers (due to algorithms those drivers use to compute visualizable
shapes and polygons), but RayTracer can handle any geometry that the
Geant4 navigator can handle.

Because RayTracer in essence takes over Geant4's tracking routines for
its own use, RayTracer cannot be used to visualize Trajectories or hits.

An X-Window version, called RayTracerX, can be selected by setting
GEANT4_USE_RAYTRACER_X11 (for CMake) at Geant4 library build time
and application (user code) build time (assuming you use the standard
visualization manager, G4VisExecutive, or an equally smart vis
manager). RayTracerX builds the same jpeg file as RayTracer, but
simultaneously renders to screen so you can watch as rendering grows
progressively smoother.

RayTracer has its own built-in commands - /vis/rayTracer/....
Alternatively, you can treat it as a normal vis system and use
/vis/viewer/... commands, e.g:

/vis/open RayTracerX
/vis/drawVolume
/vis/viewer/set/viewpointThetaPhi 30 30
/vis/viewer/refresh

The view parameters are translated into the necessary RayTracer
parameters.

RayTracer is compute intensive. If you are unsure of a good viewing
angle or zoom factor, you might be advised to choose them with a faster
renderer, such as OpenGL. Then, on opening the RayTracer, it will pick
up the current view parameters.:

/vis/open OGL
/vis/drawVolume
/vis/viewer/zoom # plus any /vis/viewer/commands that get you the view you want.
/vis/open RayTracerX # or RayTracer
/vis/viewer/refresh

gMocren

The gMocrenFile driver creates a gdd file suitable for viewing with the
gMocren volume visualizer. gMocren, a sophisticated tool for rendering
volume data, can show volume data such as Geant4 dose distributions
overlaid with scoring grids, trajectories and detector geometry. gMocren
provides additional advanced functionality such as transfer functions,
colormap editing, image rotation, image scaling, and image clipping.

gMocren is further described at http://geant4.kek.jp/gMocren/. At this
link you will find the gMocren download, the user manual, a tutorial and
some example gdd data files.

Please note that the gMocren file driver is currently considered a Beta
release. Users are encouraged to try this driver, and feedback is
welcome, but users should be aware that features of this driver may
change in upcoming releases.

To send volume data from Geant4 scoring to a gMocren file, the user
needs to tell the gMocren driver the name of the specific scoring volume
that is to be displayed. For scoring done in C++, this is the name of
the sensitive volume. For command-based scoring, this is the name of the
scoring mesh.

/vis/gMocren/setVolumeName <volume_name>

The following is an example of the minimum command sequence to send
command-based scoring data to the a gMocren file:

an example of a command-based scoring definition
/score/create/boxMesh scoringMesh # name of the scoring mesh
/score/mesh/boxSize 10. 10. 10. cm # dimension of the scoring mesh
/score/mesh/nBin 10 10 10 # number of divisions of the scoring mesh
/score/quantity/energyDeposit eDep # quantity to be scored
/score/close
configuration of the gMocren-file driver
/vis/scene/create
/vis/open gMocrenFile
/vis/gMocren/setVolumeName scoringMesh

To add detector geometry to this file:

/vis/viewer/flush

To add trajectories and primitive scorer hits to this file:

/vis/scene/add/trajectories
/vis/scene/add/pshits
/run/beamOn 1

gMocrenFile will write a file named G4_00.gd to the current directory.
Subsequent draws will create files named g4_01.gdd, g4_02.gdd, etc. An
alternate output directory can be specified with an environment
variable:

export G4GMocrenFile_DEST_DIR=<someOtherDir/someOtherSubDir/>

View the resulting gMocren files with the gMocren viewer, available from:
http://geant4.kek.jp/gMocren/.

Visualization of detector geometry tree

ASCIITREE is a visualization driver that is not actually graphical but
that dumps the volume hierarchy as a simple text tree using /vis/drawTree.

ASCIITree has command to control its verbosity,
/vis/ASCIITree/verbose. The verbosity value controls the amount of
information available, e.g., physical volume name alone, or also logical
volume and solid names. If the volume is "sensitive" and/or has a
"readout geometry", this may also be indicated. Also, the mass of the
physical volume tree(s) can be printed (but beware - higher verbosity
levels can be computationally intensive).

At verbosity level 4, ASCIITree calculates the mass of the complete
geometry tree taking into account daughters up to the depth specified
for each physical volume. The calculation involves subtracting the mass
of that part of the mother that is occupied by each daughter and then
adding the mass of the daughter, and so on down the hierarchy.

/vis/ASCIITree/Verbose 4
/vis/viewer/flush
"HadCalorimeterPhysical":0 / "HadCalorimeterLogical" / "HadCalorimeterBox"(G4Box),
 1.8 m3 , 11.35 g/cm3
"HadCalColumnPhysical":-1 (10 replicas) / "HadCalColumnLogical" / "HadCalColumnBox"(G4Box),
 180000 cm3, 11.35 g/cm3
"HadCalCellPhysical":-1 (2 replicas) / "HadCalCellLogical" / "HadCalCellBox"(G4Box),
 90000 cm3, 11.35 g/cm3
"HadCalLayerPhysical":-1 (20 replicas) / "HadCalLayerLogical" / "HadCalLayerBox"(G4Box),
 4500 cm3, 11.35 g/cm3
"HadCalScintiPhysical":0 / "HadCalScintiLogical" / "HadCalScintiBox"(G4Box),
 900 cm3, 1.032 g/cm3

Calculating mass(es)...
Overall volume of "worldPhysical":0, is 2400 m3
Mass of tree to unlimited depth is 22260.5 kg

Some more examples of ASCIITree in action:

Idle> /vis/ASCIITree/verbose 1
Idle> /vis/drawTree
Set verbosity with "/vis/ASCIITree/verbose "
< 10: - does not print daughters of repeated placements, does not repeat replicas.
>= 10: prints all physical volumes.
The level of detail is given by verbosity%10:
for each volume:
>= 0: physical volume name.
>= 1: logical volume name (and names of sensitive detector and readout geometry, if any).
>= 2: solid name and type.
>= 3: volume and density.
>= 5: daughter-subtracted volume and mass.
and in the summary at the end of printing:
>= 4: daughter-included mass of top physical volume(s) in scene to depth specified.
.....
"Calorimeter", copy no. 0, belongs to logical volume "Calorimeter"
 "Layer", copy no. -1, belongs to logical volume "Layer" (10 replicas)
 "Absorber", copy no. 0, belongs to logical volume "Absorber"
 "Gap", copy no. 0, belongs to logical volume "Gap"
.....
Idle> /vis/ASCIITree/verbose 15
Idle> /vis/drawTree
....
 "tube_phys":0 / "tube_L" / "tube"(G4Tubs), 395841 cm3, 1.782 mg/cm3,
 9.6539e-08 mm3, 1.72032e-10 mg
 "divided_tube_phys":0 / "divided_tube_L" / "divided_tube"(G4Tubs), 65973.4 cm3,
 1.782 mg/cm3, 7587.54 cm3, 13.521 g
 "divided_tube_inset_phys":0 / "divided_tube_inset_L" / "divided_tube_inset"(G4Tubs),
 58385.9 cm3, 1.782 mg/cm3, 6.03369e-09 mm3, 1.0752e-11 mg
 "sub_divided_tube_phys":0 / "sub_divided_tube_L" / "sub_divided_tube"(G4Tubs),
 14596.5 cm3, 1.782 mg/cm3, 12196.5 cm3, 21.7341 g
.....
Calculating mass(es)...
Overall volume of "expHall_P":0, is 8000 m3 and the daughter-included mass to unlimited depth
 is 78414 kg
.....

For the complete list of commands and options, see the
Control...UICommands
section of this user guide.

Footnotes

	#1

	http://trolltech.com/

	#2

	http://geant4.in2p3.fr/styled-4/styled-9/

	#3

	https://openscientist.lal.in2p3.fr/v15r0/html/osc_g4_vis_ui.html

	#4

	https://openscientist.lal.in2p3.fr/v15r0/html/osc_g4_vis_ui.html

	#5

	http://www.slac.stanford.edu/~perl/HepRApp/

Controlling Visualization from Commands

This section describes just a few of the more commonly used
visualization commands. For the complete list of commands and options,
see the
Control...UICommands
section of this user guide.

These commands can by typed on the session command line when in Idle state:

Idle> /vis/drawVolume

or specified in a macro file that is executed from the command line:

Idle> /control/execute vis.mac

or from your application, e.g.:

UImanager->ApplyCommand("/control/execute vis.mac");

Most examples have a vis.mac file, where you may look for inspiration.

Warning

This section is not a complete description of all visualisation
commands; they are too numerous and continually evolving. Please
refer to the command guidance,
Control...UICommands
or simply type "ls vis" or "help". Some viewers, notably Qt, offer
interactivie guidance under the "Help" menu.

Scene, scene handler, and viewer

In using the visualization commands, it is useful to know the concept of
"scene", "scene handler", and "viewer". A "scene" is a set of
visualizable raw 3D data. A "scene handler" is a graphics-data modeler,
which processes raw data in a scene for later visualization. And a
"viewer" generates images based on data processed by a scene handler.
Roughly speaking, a set of a scene handler and a viewer corresponds to a
visualization driver.

The steps of performing Geant4 visualization are explained below, though
some of these steps may be done for you so that in practice you may use
as few as just two commands (such as /vis/open plus
/vis/drawVolume). The seven steps of visualization are:

Table 16 Seven steps of visualization.

	Step

	
	Command

	Alternative command

	1

	Create a scene handler and a viewer

	/vis/sceneHandler/create
/vis/viewer/create

	/vis/open

	2

	Create an empty scene

	/vis/scene/create

	/vis/drawVolume

	3

	Add raw 3D data to the created scene

	/vis/scene/add/volume

	

	4

	Attach the current scene to the current scene handler

	/vis/sceneHandler/attach

	

	5

	Set camera parameters, drawing style (wireframe/surface), etc

	E.g., /vis/viewer/set/viewpoint

	

	6

	Make the viewer execute visualization

	/vis/viewer/refresh

	

	7

	Declare the end of visualization for flushing

	/vis/viewer/flush

	

For details about the commands, see below.

These seven steps can be controlled explicitly to create multiple scenes
and multiple viewers, each with its own set of parameters, with easy
switching from one scene to another. But for the most common case of
just having one scene and one viewer, many steps are handled implicitly
for you.

Choosing a graphics viewer: /vis/open command

Command "/vis/open" creates a scene handler and a viewer, which
corresponds to Step 1.

Command: /vis/open [<driver_tag_name>]

	Optional argument ``<driver_tag_name>``

We recommend you omit this and choose your driver
at run time. In that case a driver may be chosen:

	by argument in G4VisExecutive construction.

	by environment variable, G4VIS_DEFAULT_DRIVER.

	by information in ~/.g4session.

	If you do not use any of the above, a driver will be chosen by mode (batch/interactive)
and by your build flags.

When using environment variable G4VIS_DEFAULT_DRIVER, the format is
<graphics-system> [<window-size-hint>], e.g:

export G4VIS_DEFAULT_DRIVER=OGL
setenv G4VIS_DEFAULT_DRIVER OI
export G4VIS_DEFAULT_DRIVER="TSG_OFFSCREEN 1200x1200"

then simply execute your application:

./<your-application>

or, to set the environment temporarily and exclusively for your application:

G4VIS_DEFAULT_DRIVER=Vtk ./<your-application>

Using ~/.g4session (a file .g4session in your home directory), the first line
is the default UI session. Subsequent lines have the format:

<your-app-name> <ui-session> [<vis-driver>] [<window-size-hint]

For example:

Qt # Default session
#exampleB1 tcsh
exampleB1 Qt TSG 1000x1000+0-0

For a list of possible drivers see list of registered
graphics systems printed at the start of execution

	Action

Create a visualization driver, i.e. a scene handler and a viewer.

To see a list of driver_tag_names:

/vis/list

(produces a lot of information) or:

/vis/open xx

which produces:

parameter value (xx) is not listed in the candidate List.
Candidates are: ATree DAWNFILE HepRepFile HepRepXML OGL OGLI OGLIQt OGLS OGLSQt RayTracer VRML1FILE VRML2FILE gMocrenFile

For additional options, see the
Control...UICommands
section of this user guide.

Create an empty scene: /vis/scene/create command

Command "/vis/scene/create" creates an empty scene, which
corresponds to Step 2.

Command: /vis/scene/create [scene_name]

	Argument

A name for this scene. Created for you if you don't specify one.

Visualization of a physical volume: /vis/drawVolume command

/vis/drawVolume is a "compound" command that creates a new scene (/vis/scene/create), adds a volume (/vis/scene/add/volume) and attaches it (/vis/sceneHandler/attach) to the current viewer (/control/verbose 2 to see all the invoked commands). It takes care of steps 2, 3, 4 and 6. Command /vis/viewer/flush may be required in order to do the final Step 7.

Commands:

/vis/drawVolume [physical-volume-name]

	Argument

If physical-volume-name is "world" (the default), the top of the
main geometry tree (material world) is added. If "worlds", the
tops of all worlds - material world and parallel worlds, if any - are
added. Otherwise a search of all worlds is made.

In the last case the names of all volumes in all worlds are matched
against physical-volume-name. If this is of the form "/regexp/",
where regexp is a regular expression (see C++ regex), the match uses
the usual rules of regular expression matching. Otherwise an exact
match is required.

For example, "/Shap/" matches "Shape1" and "Shape2".

	Action

Creates a scene consisting of the given physical volume(s) and asks the
current viewer to draw it. The scene becomes current. Command
"/vis/viewer/flush" should follow this command in order to
declare end of visualization.

	Example: Visualization of the whole world with coordinate axes

/vis/drawVolume
/vis/scene/add/axes 0 0 0 500 mm
/vis/viewer/flush

Visualization of a parameterised volume

The above command /vis/drawVolume works fine, but with parameterisation
(see Advanced parameterisations for 'nested' parameterised volumes)
you can get a very large number of volumes that can overwhelm a graphics
system. The commands:

/vis/viewer/set/specialMeshRendering

and, optionally, the following:

/vis/viewer/set/specialMeshRenderingOption
/vis/viewer/set/specialMeshVolumes

can greatly improve performance and visual clarity.

Visualization of a logical volume: /vis/drawLogicalVolume command

/vis/drawLogicalVolume is a "compound" command that creates a new scene (/vis/scene/create), adds a logical volume (/vis/scene/add/logicalVolume) and attaches it (/vis/sceneHandler/attach) to the current viewer (/control/verbose 2 to see all the invoked commands). It shows all that can be visualised about a logical volume---Booleans, voxels, readout geometries and overlaps---and adds axes in the local coordinate system. All options are on by default.

This command is synonymous with /vis/specify.

Command: vis/drawLogicalVolume <logical-volume-name> [<depth-of-descent>] [<booleans-flag>] [<voxels-flag>] [<readout-flag>] [<axes-flag>] [<check-overlap-flag>]

	Argument

A logical-volume name.

	Action

Creates a scene consisting of the given logical volume and asks the
current viewer to draw it. The scene becomes current.

	Example (visualization of a selected logical volume with coordinate
axes)

/vis/drawLogicalVolume Absorber
/vis/scene/add/text 0 0 0 mm 40 -100 -200 LogVol:Absorber
/vis/viewer/flush

For more information, use the help facility or refer to
Control...UICommands.

Visualization of trajectories: /vis/scene/add/trajectories command

Command "/vis/scene/add/trajectories [smooth] [rich]" adds
trajectories to the current scene. The optional parameters "smooth"
and/or "rich" (you may specify either, neither or both) invoke, if
"smooth" is specified, the storing and displaying of extra points on
curved trajectories and, if "rich" is specified, the storing, for
possible subsequent selection and display, of additional information,
such as volume names, creator process, energy deposited, global time. Be
aware, of course, that this imposes computational and memory overheads.
Note that this automatically issues the appropriate
"/tracking/storeTrajectory" command so that trajectories are stored
(by default they are not). The visualization is performed with the
command "/run/beamOn" unless you have non-default values for
/vis/scene/endOfEventAction or /vis/scene/endOfRunAction (described
below).

Command: /vis/scene/add/trajectories [smooth] [rich]

	Action

The command adds trajectories to the current scene. Trajectories are
drawn at end of event when the scene in which they are added is
current.

	Example: Visualization of trajectories

/vis/scene/add/trajectories
/run/beamOn 10

	Additional note 1

See the section Controlling from Commands for details on how
trajectories are color-coded.

	Additional note 2

Events may be kept and reviewed at end of run with:

/vis/reviewKeptEvents

Keep all events with:

/vis/scene/endOfEventAction accumulate [maxNumber]

(see End of Event Action and End of Run Action: /vis/scene/endOfEventAction and /vis/scene/endOfRunAction commands)

or keep some chosen subset by some selection in your user code, for example
your user event action:

if (some criterion) {
 G4EventManager::GetEventManager()->KeepTheCurrentEvent();
}

or:

if (some criterion) {
 UImanager->ApplyCommand("/event/keepCurrentEvent");
}

as described in Listing 87.

To draw only those events kept as above:

/vis/drawOnlyToBeKeptEvents

To suppress drawing during a run:

/vis/disable
/run/beamOn 10000

then at end of run:

/vis/enable
/vis/reviewKeptEvents

	Additional note 3

Visualising events as they are being generated inevitably slows the
simulation. Visualisation can be suspended with /vis/disable as
suggested above. You may also switch off trajectory production with
/tracking/storeTrajectory 0. When using OpenGL, the following can
help:

/vis/ogl/flushAt
<[endOfEvent|endOfRun|eachPrimitive|NthPrimitive|NthEvent|never]> <N>

By default, this value is set to /vis/ogl/flushAt NthEvent 100

For more options, see the
Control...UICommands
section of this user guide.

Visualization of hits: /vis/scene/add/hits command

Command "/vis/scene/add/hits" adds hits to the current scene,
assuming that you have a hit class and that the hits have visualization
information. The visualization is performed with the command
"/run/beamOn" unless you have non-default values for
/vis/scene/endOfEventAction or /vis/scene/endOfRunAction (described
above).

Visualization of fields: /vis/scene/add/magneticField command

/vis/scene/add/magneticField and /vis/scene/add/electricField will
draw any fields defined in the scene as an array of arrows whose direction, length and colour are related to the field strength and direction.

Sometimes this can result in a overwhelming number of arrows. To limit the extent of the arrows preface one or more of the above commands with:

/vis/set/extentForField

or:

/vis/set/volumeForField

or equivalent commands in /vis/touchable/.

This can be repeated to get the desired effect, e.g.:

/vis/set/extentForField -20 20 -55 0 0 50 cm
/vis/scene/add/magneticField
/vis/set/volumeForField detector1
/vis/scene/add/magneticField
/vis/set/volumeForField detector2 5
/vis/scene/add/electricField

To remove fields from the scene:

/vis/scene/activateModel Field false

Consult the guidance for the /vis/scene/add/...Field commands for further
hints and suggestions.

Visualization of Scored Data

Scored data can be visualized using the commands
"/score/drawProjection" and "/score/drawColumn". For details,
see examples/extended/runAndEvent/RE03.

Additional attributes for Hits

The HepRep file formats, HepRepFile and HepRepXML, understand various
additional attributes such that you can view these attributes, label
trajectories by these attributes or make visibility cuts based on these
attributes. Examples of adding HepRep attributes to hit classes can be
found in examples /extended/analysis/A01 and /extended/runAndEvent/RE01.

For example, in example RE01's class RE01CalorimeterHit.cc, available
attributes will be:

	Hit Type

	Track ID

	Z Cell ID

	Phi Cell ID

	Energy Deposited

	Energy Deposited by Track

	Position

	Logical Volume

You can add additional attributes of your choosing by modifying the
relevant part of the hit class (look for the methods GetAttDefs and
CreateAttValues).

Visualization of histograms (plotting)

The G4/vis system is equipped to be able to do
plotting, then
to have a representation (a plot) of 1D or 2D histograms within a
G4/vis viewer.
The G4 vis primitive G4Plotter has been introduced to capture which
histograms
to plot, specify a grid of plots (2x2, 2x3, etc...), along some style
options to customize
the representations (for example to change bins color, title or axis
label fonts,
etc...). Specifying a grid of plots (or "regions") is a common
practice in plotting
and is a similar concept as the "zones" found in the good old CERN/PAW.

The known histograms are the ones managed in G4/analysis and are
known in G4Plotter by using
their integer id.

This said, each specific vis driver is charged with implementing the
representation of a
G4Plotter. Today only the ToolsSG drivers come with such
representation, but we
hope that more vis drivers will come with an implementation in the future.

From the user point of view, commands has been introduced to be able
to specify
a plot from pure .mac scripting. To start with, the best is to jump in
examples/basic/B5
that comes with a commented plotter.mac example. In it you will see
how to activate
the vis driver (create a "scene handler"), create a viewer, create a
scene
containing a plotter model object (then a G4Plotter), create a grid of
plotting "regions"
(here 2x2 regions) and attach the histograms to each region. When
done, each
"run beamOn" should display at end the content of the histograms.

The skeleton of a plotting script then looks like:

viewer:
/vis/sceneHandler/create TSG scene-handler-plotter
/vis/viewer/create scene-handler-plotter viewer-plotter 600x600-0+0
/vis/viewer/set/background 1 1 1
/vis/viewer/zoomTo 1
/vis/viewer/set/viewpointVector 0 0 1
scene:
/vis/plotter/create plotter-0
/vis/scene/create scene-plotter
/vis/scene/add/plotter plotter-0
/vis/sceneHandler/attach scene-plotter
create a 2x2 plotter regions:
/vis/plotter/setLayout plotter-0 2 2
attach histograms to regions (examples/basic/B5 specific):
/vis/plotter/add/h1 0 plotter-0 0
/vis/plotter/add/h1 1 plotter-0 1
/vis/plotter/add/h2 0 plotter-0 2
/vis/plotter/add/h2 1 plotter-0 3
let's go:
/run/beamOn 100
the upper will update the plotters at end of run.

Plotting style:

Being able to customize the representations is an important part of
plotting.
The concept of named style had been introduced in G4/vis to
handle this.
A named style is nothing more than a named list of pairs (key,value)
which is managed in the G4/vis system.

You can create a named style and set it as "current style" with:

/vis/plotting/style/select <name>

You can deposit pairs of key/value in the current style with:

/vis/plotter/style/add <key> <value>
/vis/plotter/style/add <key> <value>
...

A named style can be used on a specific region with:

/vis/plotter/addRegionStyle <plotter> <region> <style>

For example, in B5/plotter.mac:

/vis/plotter/addRegionStyle plotter-0 0 style-0

or on a whole grid of plots with:

/vis/plotter/addStyle <plotter> <style>

Note that someone can add multiple named styles on a plotter or on a
region. If so the styles are applied
in order with global ones first and then per region ones after.

IMPORTANT: the key/value pairs are specific of a G4Plotter
representation implementation. If using the ToolsSG plotting
you may have:

/vis/plotter/style/add bins_style.0.color blue
/vis/plotter/style/add bins_style.0.line_width 3
/vis/plotter/style/add infos_width 0.2
/vis/plotter/style/add infos_style.visible true
/vis/plotter/style/add infos_style.font roboto_bold.ttf
/vis/plotter/style/add infos_style.front_face cw

but, a priori, the upper key/value pairs are not expected to be known
by another plotter implementation.
(But it would be great to be so!).

Other usefull style commands are:

to list known named styles.
/vis/plotter/style/list
to print the list of key/value pairs of a named style:
/vis/plotter/style/print <style>
to remove a name style from G4/vis:
/vis/plotter/style/remove <style>

Note that without passing by a style, a plotting region can be
customised directly by using the command:

/vis/plotter/addRegionParameter <plotter> <region> <key> <value>

for example with ToolsSG plotting in B5/plotter.mac:

/vis/plotter/addRegionParameter plotter-0 0 bins_style.0.color blue
/vis/plotter/addRegionParameter plotter-0 0 bins_style.0.line_width 3

As for styles, the key/value pairs are specific of a vis driver
plotting implementation.
Note that the pairs given with the addRegionParameter on a region are
applied after all styles on this region.

ToolsSG plotting:

The ToolsSG/G4Plotter representation is done by using the high level
tools::sg::plots
and tools::sg::plotter nodes (found in
externals/g4tools/include/tools/sg).
The tools::sg::plotter node uses a lot of nodes as tools::sg::axis,
tools::sg::vertices, etc.. to build representations. (tools::sg::plots
permits to
implement a grid of plots). A tools::sg::node manages "smart fields",
for
example the tools::sg::sf<float> (simple float smart field) "width" in
tools::sg::plotter. (Smart field is
a similar concept as the SoField in OpenInventor). It is these fields
that are customizable
as key/value pairs from styles or region parameters. (A smart field is
smart in the sense that if "touched",
for example by setting a new value, it may induce an automatic update
of the node at next rendering
traversal of a scene graph).

The list of what is customizable on a tools::sg::plotter, is given
with the ToolsSG specific command:

/vis/tsg/plotter/printParameters

For styles, specific to ToolsSG plotting, are the named styles
"default", "ROOT_default", "hippodraw"
that are "embedded" styles (defined as C++ functions in:
tools/sg/plotter_some_styles). (These styles are the same than in
G4/analysis
for batch plotting).
In particular the ROOT_default styles permits to mimic the default
style plotting found in CERN/ROOT.
Then someone can do:

/vis/plotter/addStyle <plotter> ROOT_default

to have the ROOT style for all regions. (Note that ROOT_default needs freetype).

In the second part of B5 plotter.mac, is shown various ways to
customize the
regions, for example changing the bins color, the axis labels fonts,
etc...
This could be done by using default embedded styles, defining styles
with commands,
or setting up directly parameters of the various parts of a plot by
using the
dedicated addRegionParameter command.

For texts (title, tick labels, etc...), the fonts used by default are
the Hershey vectorial ones
(the ones of the good old CERN/PAW) that do not need an extra package,
but you can use some freetype
fonts if building with the cmake flag -DGEANT4_USE_FREETYPE=ON. For
example the ROOT_default embedded style
uses freetype fonts. Two embedded ttf fonts come with the
ToolsSG plotting: roboto_bold (some open source kind of the Microsoft
arialbd)
and lato_regular (close to an helvetica). You can use also your own
.ttf files by
using the TOOLS_FONT_PATH environment variable to specify the
directory where they could be found.

ToolsSG plotting keys:

A style or parameter key has the form:

<direct field> of sg::plotter, as width, height, left_margin, right_margin, etc...

or is a field of a sub node representing a component of the scene of
the plot, such as [x,y,z] axis, infos box,
title box, grid, bins, errors, etc... The key may refer a direct field
of the component such as x_axis.title, or
the style of a component handled by a tools::sg::style or
sg::text_style node. A component key may contain
two or three words separated by a dot.

Two words keys are for:

[x_axis,y_axis,z_axis].<field>

For example:

x_axis.modeling (string field with value hplot, hippodraw).
x_axis.divisions (in case of hplot modeling, an int specifiying primary/secondary ticks encoded as in hplot (for exa 510)).

or for the style components:

background_style, title_style, infos_style, title_box_style,
inner_frame_style, grid_style, wall_style

For example:

infos_style.visible
infos_style.font
infos_style.front_face

Three words keys are also for the style of the components of the
tools::sg::axis as:

line_style, ticks_style, labels_style, mag_style, title_style

for example:

x_axis.labels_style.color

Three words keys are used also to specified style fields of the bins,
errors, function, points, legend data representations components. For
example, in one sg::plotter, you can specify to plot
multiple histograms, ie multiple "bins". In this case, you can
customize the style of the i-th "bins"
(i-th histogram) with a key of the form:

bins_style.<i-th>.<field>

for example to change color of the "front" histogram:

bins_style.0.color

For the moment, the G4/vis plotting knows only histograms, but the
tools::sg::plotter can handle
cloud of points, errors, functions, legends, and in some future, a G4
user may have to use
the errors_style, func_style, points_style, legend_style in the same
way to customize a "i-th"
cloud of points, a i-th function, a i-th legend, etc...

We do not give here the full list of available parameters since it may
evolve in time. The
best is to use the command:

/vis/tsg/plotter/printParameters

that dumps, by querying directly the nodes, the available styles and
smart fields for the sg::plotter itself
or for one of its component. Moreover it dumps also the type of a
field (float, integer, boolean, string, etc...).

Put all together, the combinatory of available keys is rather rich and
permits a strong customization of
good parts of a sg::plotter.

Basic camera workings: /vis/viewer/ commands

Commands in the command directory "/vis/viewer/" set camera
parameters and drawing style of the current viewer, which corresponds to
Step 5. Note that the camera parameters and the drawing style should be
set separately for each viewer. They can be initialized to the default
values with command "/vis/viewer/reset". Some visualization systems,
such as the VRML and HepRep browsers also allow camera control from the
standalone graphics application.

Just a few of the camera commands are described here. For more commands,
see the
Control...UICommands
section of this user guide.

The view is defined by a target point (initially at the centre of the
extent of all objects in the scene), an up-vector and a viewpoint
direction - see Fig. 23. By default, the
up-Vector is parallel to the y-axis and the viewpoint direction is
parallel to the z-axis, so the the view shows the x-axis to the right
and the y-axis upwards - a projection on to the canonical x-y plane -
see Fig. 24 figure.

The target point can be changed with a /vis/viewer/set command or
with the /vis/viewer/pan commands. The up-vector and the viewpoint
direction can also be changed with /vis/viewer/set commands. Care
must be taken to avoid having the two vectors parallel, for in that case
the view is undefined.

The commands:

/vis/viewer/centreOn <volume-name> [<copy-number>]
/vis/viewer/centreAndZoomInOn <volume-name> [<copy-number>]

also change the target point.

[image: Up-vector and viewpoint direction]

Fig. 23 Up-vector and viewpoint direction

[image: The default view]

Fig. 24 The default view

Command: /vis/viewer/set/viewpointThetaPhi [theta] [phi] [deg|rad]

	Arguments

Arguments "theta" and "phi" are polar and azimuthal camera angles,
respectively. The default unit is "degree".

	Action

Set a view point in direction of (theta, phi).

	Example: Set the viewpoint in direction of (70 deg, 20 deg) /

/vis/viewer/set/viewpointThetaPhi 70 20

	Additional notes

Camera parameters should be set for each viewer. They are initialized
with command "/vis/viewer/reset". Alternatively, they can be
copied from another viewer with the command
"/vis/viewer/copyViewFrom viewer-0", for example.

Command: /vis/viewer/zoom [scale_factor]

	Argument

The scale factor. The command multiplies magnification of the view by
this factor.

	Action

Zoom up/down of view.

	Example: Zoom up by factor 1.5

/vis/viewer/zoom 1.5

	Additional notes

A similar pair of commands, scale and scaleTo allow non-uniform
scaling (i.e., zoom differently along different axes). For details of
this and lots of other commands, see the
Control...UICommands
section of this user guide.

Some viewers have limits to how large the zoom factor can be. This
problem can be circumnavigated to some degree by using zoom and
scale together. If

/vis/viewer/zoomTo 1e10

does not work, please try

/vis/viewer/scaleTo 1e5 1e5 1e5
/vis/viewer/zoomTo 1e5

Of course, with such high zoom factors, you might want to know
whither you are zooming. Use /vis/viewer/set/targetPoint or
/vis/viewer/centreOn or /vis/viewer/centreAndZoomInOn.

Camera parameters should be set for each viewer. They are initialized
with command "/vis/viewer/reset". Alternatively, they can be
copied from another viewer with the command
"/vis/viewer/copyViewFrom viewer-0", for example.

Command: /vis/viewer/set/style [style_name]

	Arguments

Candidate values of the argument are "wireframe" and "surface". ("w"
and "s" also work.)

	Action

Set a drawing style to wireframe or surface.

	Example: Set the drawing style to "surface"

/vis/viewer/set/style surface

	Additional notes

The style of some geometry components may have been forced one way or
the other through calls in compiled code. The set/style command will
NOT override such force styles.

Drawing style should be set for each viewer. The drawing style is
initialized with command "/vis/viewer/reset". Alternatively, it
can be copied from another viewer with the command
"/vis/viewer/set/all viewer-0", for example.

Declare the end of visualization for flushing: /vis/viewer/flush command

Command: /vis/viewer/flush

	Action

Declare the end of visualization for flushing.

	Additional notes

Command "/vis/viewer/flush" should follow "/vis/drawVolume",
"/vis/specify", etc in order to complete visualization. It
corresponds to Step 7.

The flush is done automatically after every /run/beamOn command
unless you have non-default values for /vis/scene/endOfEventAction or
/vis/scene/endOfRunAction (described above).

End of Event Action and End of Run Action: /vis/scene/endOfEventAction and /vis/scene/endOfRunAction commands

By default, a separate picture is created for each event. You can change
this behaviour to accumulate multiple events, or even multiple runs, in a
single picture.

Command: /vis/scene/endOfEventAction [refresh|accumulate]

	Action

Control how often the picture should be cleared. refresh means
each event will be written to a new picture. accumulate means
events will be accumulated into a single picture. Picture will be
flushed at end of run, unless you have also set
/vis/scene/endOfRunAction accumulate

	Additional note

You may instead choose to use update commands from your
BeginOfRunAction or EndOfEventAction, as in early examples, but now
the vis manager is able to do most of what most users require through
the above commands.

Command: /vis/scene/endOfRunAction [refresh|accumulate]

	Action

Control how often the picture should be cleared. refresh means
each run will be written to a new picture. accumulate means runs
will be accumulated into a single picture. To start a new picture,
you must explicitly issue /vis/viewer/refresh,
/vis/viewer/update or /vis/viewer/flush

HepRep Attributes for Trajectories

The HepRep file formats, HepRepFile and HepRepXML, attach various
attributes to trajectories such that you can view these attributes,
label trajectories by these attributes or make visibility cuts based on
these attributes. If you use the default Geant4 trajectory class from
/tracking/src/G4Trajectory.cc (this is what you get with the plain
/vis/scene/add/trajectories command), available attributes will be:

	Track ID

	Parent ID

	Particle Name

	Charge

	PDG Encoding

	Momentum 3-Vector

	Momentum magnitude

	Number of points

Using /vis/scene/add/trajectories rich will get you additional
attributes. You may also add additional attributes of your choosing by
modifying the relevant part of G4Trajectory (look for the methods
GetAttDefs and CreateAttValues). If you are using your own trajectory
class, you may want to consider copying these methods from G4Trajectory.

How to save a view.

/vis/viewer/save

This will save to a file that can be read in again with

/control/execute

If you save several views you may "fly through" them with

/vis/viewer/interpolate

See Making a Movie.

(Use the Geant4 "help" command to see details.)

How to save a view to an image file

Most of the visualization drivers offer ways to save visualized views to
PostScript (PS) or Encapsulated PostScript (EPS). Some, in addition,
offer Portable Document Format (PDF). OpenGL offers a big range of
formats - see below.

	DAWNFILE

The DAWNFILE driver, which co-works with Fukui Renderer DAWN,
generates "vectorized" PostScript data with "analytical
hidden-line/surface removal", and so it is well suited for technical
high-quality outputs for presentation, documentation, and debugging
geometry. In the default setting of the DAWNFILE drivers, EPS files
named "g4_00.eps, g4_01.eps, g4_02.eps,..." are automatically
generated in the current directory each time when visualization is
performed, and then a PostScript viewer "gv"is automatically
invoked to visualize the generated EPS files.

For large data sets, it may take time to generate the vectorized
PostScript data. In such a case, visualize the 3D scene with a faster
visualization driver beforehand for previewing, and then use the
DAWNFILE drivers. For example, the following visualizes the whole
detector with the OpenGL-Xlib driver (immediate mode) first, and then
with the DAWNFILE driver to generate an EPS file g4_XX.eps to
save the visualized view:

Invoke the OpenGL visualization driver in its immediate mode
/vis/open OGLIX

Camera setting
/vis/viewer/set/viewpointThetaPhi 20 20

Camera setting
/vis/drawVolume
/vis/viewer/flush

Invoke the DAWNFILE visualization driver
/vis/open DAWNFILE

Camera setting
/vis/viewer/set/viewpointThetaPhi 20 20

Camera setting
/vis/drawVolume
/vis/viewer/flush

This is a good example to show that the visualization drivers are
complementary to each other.

	OpenInventor

In the OpenInventor drivers, you can simply click the "Print" button
on their GUI to generate a PostScript file as a hard copy of a
visualized view.

	OpenGL

The OpenGL drivers can also generate image files, either from a
pull-down menu (Motif and Qt drivers) or with /vis/ogl/export.
Available formats are: eps ps pdf svg bmp cur dds icns ico jp2 jpeg
jpg pbm pgm png ppm tif tiff wbmp webp xbm xpm. The default is pdf.
It can generate either vector or bitmap PostScript data with
/vis/ogl/set/printMode ("vectored" or "pixmap"). You can change
the filename by /vis/ogl/set/printFilename And the print size by
/vis/ogl/set/printSize In generating vectorized PostScript data,
hidden-surface removal is performed based on the painter's algorithm
after dividing facets of shapes into small sub-triangles.

The /vis/ogl/set/printSize command can be used to print EPS files
even larger than the current screen resolution. This can allow
creation of very large images, suitable for creation of posters, etc.
The only size limitation is the graphics card's viewport dimension:
GL_MAX_VIEWPORT_DIMS

Invoke the OpenGL visualization driver in its stored mode
/vis/open OGLSX

Camera setting
/vis/viewer/set/viewpointThetaPhi 20 20

Camera setting
/vis/drawVolume
/vis/viewer/flush

set print mode to vectored
#/vis/ogl/set/printMode vectored

set print size larger than screen
/vis/ogl/set/printSize 2000 2000

print
/vis/ogl/export

	HepRep

The HepRApp HepRep Browser such as FRED can generate a wide
variety of bitmap and vector output formats including PostScript and
PDF.

Culling

"Culling" means to skip visualizing parts of a 3D scene. Culling is
useful for avoiding complexity of visualized views, keeping transparent
features of the 3D scene, and for quick visualization.

Geant4 Visualization supports the following 3 kinds of culling:

	Culling of invisible physical volumes

	Culling of low density physical volumes.

	Culling of covered physical volumes by others

In order that one or all types of the above culling are on, i.e.,
activated, the global culling flag should also be on.

Table 17 summarizes the default culling
policies.

Table 17 The default culling policies.

	Culling Type

	Default Value

	global

	ON

	invisible

	ON

	low density

	OFF

	covered daughter

	OFF

The default threshold density of the low-density culling is 0.01
g/cm3.

The default culling policies can be modified with the following
visualization commands. (Below the argument flag takes a value of
true or false.)

global
/vis/viewer/set/culling global flag

invisible
/vis/viewer/set/culling invisible flag

low density
"value" is a proper value of a threshold density
"unit" is either g/cm3, mg/cm3 or kg/m3
/vis/viewer/set/culling density flag value unit

covered daughter
/vis/viewer/set/culling coveredDaughters flag density

The HepRepFile graphic system will, by default, include culled objects
in the file so that they can still be made visible later from controls
in the HepRep browser. If this behavior would cause files to be too
large, you can instead choose to have culled objects be omitted from the
HepRep file. See details in the HepRepFile Driver section of this user
guide.

Cut view

Sectioning

"Sectioning" means to make a thin slice of a 3D scene around a given
plane. At present, this function is supported by the OpenGL drivers. The
sectioning is realized by setting a sectioning plane before performing
visualization. The sectioning plane can be set by the command,

/vis/viewer/set/sectionPlane on x y z units nx ny nz

where the vector (x,y,z) defines a point on the sectioning plane, and
the vector (nx,ny,nz) defines the normal vector of the sectioning plane.
For example, the following sets a sectioning plane to a yz plane at x =
2 cm:

/vis/viewer/set/sectionPlane on 2.0 0.0 0.0 cm 1.0 0.0 0.0

Cutting away

"Cutting away" means to removing a half space from
a 3D scene. It is available for all drivers. (The OpenGL driver has its own implementation that uses OpenGL cut planes. DAWNFILE has a special way - see
below. Other drivers use a "generic" algorithm based on Boolean subtractions
and/or intersections.)

	Add up to three cutaway planes:

/vis/viewer/addCutawayPlane 0 0 0 m 1 0 0
/vis/viewer/addCutawayPlane 0 0 0 m 0 1 0
...

and, for more that one plane, you can change the mode to

	"add" or, equivalently, "union" (default) or

	"multiply" or, equivalently, "intersection":

/vis/viewer/set/cutawayMode multiply

To de-activate:

/vis/viewer/clearCutawayPlanes

	Cutting is supported by the DAWNFILE driver "off-line". Do the
following:

	Perform visualization with the DAWNFILE driver to generate a file
g4.prim, describing the whole 3D scene.

	Make the application "DAWNCUT" read the generated file to make a
view of cutting away.

Multithreading commands

Visualising events inevitably slows things down. With multithreading
this effect is all the greater. See
Visualization of trajectories: /vis/scene/add/trajectories command, Additional Note 3,
for some advice.
If you wish to continue visualising, multithreading mode offers the
following fine tuning.

Since Geant4 version 10.2, in multithreading mode, events generated by
worker threads are put in a queue and extracted by a special
visualisation thread. If the queue gets full, workers are suspended
until the visualisation thread catches up. To mitigate or avoid this try
using

/vis/multithreading/maxEventQueueSize <N>
/vis/multithreading/actionOnEventQueueFull <wait|discard>

(See command guidance for details.)

Footnotes

Controlling Visualization from Compiled Code

While a Geant4 simulation is running, visualization can be performed
without user intervention. This is accomplished by calling methods of
the Visualization Manager from methods of the user action classes
(G4UserRunAction and G4UserEventAction, for example). In this
section methods of the class G4VVisManager, which is part of the
graphics_reps category, are described and examples of their use are
given.

G4VVisManager

The Visualization Manager is implemented by classes G4VisManager and
G4VisExecutive. See Adding Visualization to Your Executable. In order that your Geant4 be compilable
either with or without the visualization category, you should not use
these classes directly in your C++ source code, other than in the
main() function. Instead, you should use their abstract base class
G4VVisManager, defined in the intercoms category.

The pointer to the concrete instance of the real Visualization Manager
can be obtained as follows:

//----- Getting a pointer to the concrete Visualization Manager instance
G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();

The method G4VVisManager::GetConcreteInstance() returns NULL if
Geant4 is not ready for visualization. Thus your C++ source code should
be protected as follows:

//----- How to protect your C++ source codes in visualization
if (pVVisManager) {

 pVVisManager ->Draw (...);

}

Note: It pays to encapsulate your Draw messages in Visualization User Actions.
The vis manager then has control over the drawing
and may call your action as required, for example, to refresh the screen or
write to file.

Visualization of detector components

If you have already constructed detector components with logical volumes
to which visualization attributes are properly assigned, you are almost
ready for visualizing detector components. The usual and recommended
way is to use UI commands - see Controlling Visualization from Commands.

Most examples have a file vis.mac that is executed by default in
interactive mode.

However, if you really wish to program visualisation we recommended
simply using the ApplyCommand() method as below:

//----- C++ source code: How to visualize detector components (2)
// ... using visualization commands in source codes

G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance() ;

if(pVVisManager)
{
 ... (camera setting etc) ...
 G4UImanager::GetUIpointer()->ApplyCommand("/vis/drawVolume");
 G4UImanager::GetUIpointer()->ApplyCommand("/vis/viewer/flush");
}

//----- end of C++ source code

For the adventurous user, the vis manager offers methods such as:

virtual void Draw (const G4VPhysicalVolume&, const G4VisAttributes&,
 const G4Transform3D& objectTransformation = G4Transform3D()) = 0;

virtual void DrawGeometry
(G4VPhysicalVolume*, const G4Transform3D& t = G4Transform3D());
// Draws a geometry tree starting at the specified physical volume.

Visualization of trajectories

Again, we recommend using commands - see /vis/modeling and
vis/filtering.

But you may specialise by writing C++ code, for example in
void G4Trajectory::DrawTrajectory() defined in the tracking category.
The vis manager offers a good collection of Draw methods.
For example:

//----- A drawing method of G4Polyline
virtual void G4VVisManager::Draw (const G4Polyline&, ...) ;

Your DrawTrajectory will then be used by the vis manager when you
add trajectories to the scene - see Visualization of trajectories: /vis/scene/add/trajectories command.

Alternatively, you may pick up trajectories from a G4TrajectoryContainer
at end of event and invoke your DrawTrajectory:

void ExN03EventAction::EndOfEventAction(const G4Event* evt)
{

 // extract the trajectories and draw them
 if (G4VVisManager::GetConcreteInstance())
 {
 G4TrajectoryContainer* trajectoryContainer = evt->GetTrajectoryContainer();
 G4int n_trajectories = 0;
 if (trajectoryContainer) n_trajectories = trajectoryContainer->entries();

 for (G4int i=0; i < n_trajectories; i++)
 { G4Trajectory* trj=(G4Trajectory*)((*(evt->GetTrajectoryContainer()))[i]);
 if (drawFlag == "all") trj->DrawTrajectory(50);
 else if ((drawFlag == "charged")&&(trj->GetCharge() != 0.))
 trj->DrawTrajectory(50);
 else if ((drawFlag == "neutral")&&(trj->GetCharge() == 0.))
 trj->DrawTrajectory(50);
 }
 }
}

Enhanced trajectory drawing

It is possible to use the enhanced trajectory drawing functionality in
compiled code as well as from commands. Multiple trajectory models can
be instantiated, configured and registered with G4VisManager. For
details, see the section on Controlling from Compiled Code.

HepRep Attributes for Trajectories

The HepRep file format, HepRepFile, attaches various
attributes to trajectories such that you can view these attributes,
label trajectories by these attributes or make visibility cuts based on
these attributes. If you use the default Geant4 trajectory class, from
/tracking/src/G4Trajectory.cc (which is what you get with
/vis/scene/add/trajectories) the available attributes will be:

	Track ID

	Parent ID

	Particle Name

	Charge

	PDG Encoding

	Momentum 3-Vector

	Momentum magnitude

	Number of points

A more extensive list of attributes is available with G4RichTrajectory
(/vis/scene/add/trajectories rich).

You can add additional attributes of your choosing by modifying the
relevant part of G4[Rich]Trajectory (look for the methods GetAttDefs and
CreateAttValues). If you are using your own trajectory class, you may
want to consider copying these methods from G4Trajectory.

Visualization of hits

There is no default code for drawing hits. You have to write a Draw()
method in your hit class. Similarly DrawAllHits() in your hits collection
class. You can use drawing methods of class G4VVisManager:

virtual void G4VVisManager::Draw (const G4Circle&, ...);
virtual void G4VVisManager::Draw (const G4Square&, ...);
virtual void G4VVisManager::Draw (const G4VPhysicalVolume&, ...);
...

For example, class MyTrackerHits inheriting G4VHit:

//----- An example of giving concrete implementation of
// G4VHit::Draw(), using class MyTrackerHit : public G4VHit {...}
//
void MyTrackerHit::Draw()
{
 G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();
 if(pVVisManager)
 {
 // define a circle in a 3D space
 G4Circle circle(pos);
 circle.SetScreenSize(0.3);
 circle.SetFillStyle(G4Circle::filled);

 // make the circle red
 G4Colour colour(1.,0.,0.);
 G4VisAttributes attribs(colour);
 circle.SetVisAttributes(attribs);

 // make a 3D data for visualization
 pVVisManager->Draw(circle);
 }
 }

Your DrawAllHits() method could be:

//----- An example of giving concrete implementation of
// G4VHitsCollection::Draw(),
// using class MyTrackerHit : public G4VHitsCollection{...}
//
void MyTrackerHitsCollection::DrawAllHits()
{
 G4int n_hit = theCollection.entries();
 for(G4int i=0;i < n_hit;i++)
 {
 theCollection[i].Draw();
 }
}

The recommended way to invoke these functions is to add hits to the scene:

/vis/scene/add/hits

In this case the vis manager will invoke them as required.

Alternatively, as with trajectories, you may, if you wish, draw from your EndOfEventAction:

void MyEventAction::EndOfEventAction()
{
 const G4Event* evt = fpEventManager->GetConstCurrentEvent();

 G4SDManager * SDman = G4SDManager::GetSDMpointer();
 G4String colNam;
 G4int trackerCollID = SDman->GetCollectionID(colNam="TrackerCollection");
 G4int calorimeterCollID = SDman->GetCollectionID(colNam="CalCollection");

 G4TrajectoryContainer * trajectoryContainer = evt->GetTrajectoryContainer();
 G4int n_trajectories = 0;
 if(trajectoryContainer)
 { n_trajectories = trajectoryContainer->entries(); }

 G4HCofThisEvent * HCE = evt->GetHCofThisEvent();
 G4int n_hitCollection = 0;
 if(HCE)
 { n_hitCollection = HCE->GetCapacity(); }

 G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();

 if(pVVisManager) {

 // Declare begininng of visualization
 G4UImanager::GetUIpointer()->ApplyCommand("/vis/scene/notifyHandlers");

 // Draw trajectories
 for(G4int i=0; i < n_trajectories; i++) {
 (*(evt->GetTrajectoryContainer()))[i]->DrawTrajectory();
 }

 // Construct 3D data for hits
 MyTrackerHitsCollection* THC
 = (MyTrackerHitsCollection*)(HCE->GetHC(trackerCollID));
 if(THC) THC->DrawAllHits();
 MyCalorimeterHitsCollection* CHC
 = (MyCalorimeterHitsCollection*)(HCE->GetHC(calorimeterCollID));
 if(CHC) CHC->DrawAllHits();

 // Declare end of visualization
 G4UImanager::GetUIpointer()->ApplyCommand("/vis/viewer/update");
 }
}

You can re-visualize a physical volume, where a hit is detected, with a
highlight color, in addition to the whole set of detector components. It
is done by calling G4VVisManager::Draw(const G4VPhysicalVolume&, ...):

//----- An example of visualizing hits with a physical volume
void MyCalorimeterHit::Draw()
{
 G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();
 if(pVVisManager)
 {
 G4Transform3D trans(rot,pos);
 G4VisAttributes attribs;
 G4LogicalVolume* logVol = pPhys->GetLogicalVolume();
 const G4VisAttributes* pVA = logVol->GetVisAttributes();
 if(pVA) attribs = *pVA;
 G4Colour colour(1.,0.,0.);
 attribs.SetColour(colour);
 attribs.SetForceSolid(true);

 //----- Re-visualization of a selected physical volume with red color
 pVVisManager->Draw(*pPhys,attribs,trans);
 }
}

HepRep Attributes for Hits

The HepRep file format, HepRepFile, attaches various
attributes to hits such that you can view these attributes, label
trajectories by these attributes or make visibility cuts based on these
attributes. Examples of adding HepRep attributes to hit classes can be
found in examples /extended/analysis/A01 and /extended/runAndEvent/RE01.

For example, in example RE01's class RE01CalorimeterHit.cc, available
attributes will be:

	Hit Type

	Track ID

	Z Cell ID

	Phi Cell ID

	Energy Deposited

	Energy Deposited by Track

	Position

	Logical Volume

You can add additional attributes of your choosing by modifying the
relevant part of the hit class (look for the methods GetAttDefs and
CreateAttValues).

Visualization of text

In Geant4 Visualization, a text, i.e., a character string, is described
by class G4Text inheriting G4VMarker as well as G4Square and
G4Circle. Therefore, the way to visualize text is the same as for
hits. The corresponding drawing method of G4VVisManager is:

//----- Drawing methods of G4Text
virtual void G4VVisManager::Draw (const G4Text&, ...);

The real implementation of this method is described in class
G4VisManager.

Visualization of polylines and tracking steps

We remind the reader that the vis manager provides a generous selection
of UI commands to draw and filter trajectories and thus to see the
tracking steps - see Visualization of trajectories: /vis/scene/add/trajectories command.

Alternatively, if you wish, you may code your own functions.
Polylines, i.e., sets of successive line segments, are described by
class G4Polyline. For G4Polyline, the following drawing method
of class G4VVisManager is prepared:

//----- A drawing method of G4Polyline
 virtual void G4VVisManager::Draw (const G4Polyline&, ...) ;

The real implementation of this method is described in class
G4VisManager.

Using this method, C++ source codes to visualize G4Polyline are
described as follows:

//----- How to visualize a polyline
 G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();

 if (pVVisManager) {
 G4Polyline polyline ;

 (C++ source codes to set vertex positions, color, etc)

 pVVisManager -> Draw(polyline);
 }

Tracking steps are able to be visualized based on the above
visualization of G4Polyline. You can visualize tracking steps at
each step automatically by writing a proper implementation of class
MySteppingAction inheriting G4UserSteppingAction, and also with
the help of the Run Manager.

First, you must implement a method,
MySteppingAction::UserSteppingAction(). A typical implementation of
this method is as follows:

//----- An example of visualizing tracking steps
void MySteppingAction::UserSteppingAction()
{
 G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();

 if (pVVisManager) {
 //----- Get the Stepping Manager
 const G4SteppingManager* pSM = GetSteppingManager();

 //----- Define a line segment
 G4Polyline polyline;
 G4double charge = pSM->GetTrack()->GetDefinition()->GetPDGCharge();
 G4Colour colour;
 if (charge < 0.) colour = G4Colour(1., 0., 0.);
 else if (charge < 0.) colour = G4Colour(0., 0., 1.);
 else colour = G4Colour(0., 1., 0.);
 G4VisAttributes attribs(colour);
 polyline.SetVisAttributes(attribs);
 polyline.push_back(pSM->GetStep()->GetPreStepPoint()->GetPosition());
 polyline.push_back(pSM->GetStep()->GetPostStepPoint()->GetPosition());

 //----- Call a drawing method for G4Polyline
 pVVisManager -> Draw(polyline);
 }
}

As well as tracking steps, you can visualize any kind 3D object made of
line segments, using class G4Polyline and its drawing method,
defined in class G4VVisManager. See, for example, the implementation
of the /vis/scene/add/axes command.

Visualization User Actions

You can implement the Draw method of G4VUserVisAction, e.g., the
class definition could be:

class MyVisAction: public G4VUserVisAction {
 void Draw();
};

and the implementation:

void MyVisAction::Draw() {
 G4VVisManager* pVisManager = G4VVisManager::GetConcreteInstance();
 if (pVisManager) {

 // Simple box...
 pVisManager->Draw(G4Box("box",2*m,2*m,2*m),
 G4VisAttributes(G4Colour(1,1,0)));

 // Etc...
 }
}

If efficiency is an issue, create the objects in the constructor, delete
them in the destructor and draw them in your Draw method.

Anyway, an instance of your class needs to be registered with the vis manager,
e.g.:

 ...
G4VisManager* visManager = new G4VisExecutive;
visManager->RegisterRunDurationUserVisAction
 ("My drawings",
 new MyVisAction,
 G4VisExtent(-10*m,10*m,-10*m,10*m,-10*m,10*m)); // This 3rd argument is optional.
visManager->Initialize ();
 ...

Any number of actions may be registered either as "run duration" (i.e., permanent, or at least as permanent as detector geometry) or "end of event" or "end of run" through the methods RegisterRunDurationUserVisAction, RegisterEndOfEventUserVisAction or RegisterEndOfRunUserVisAction. The vis manager will invoke your Draw method as appropriate to give your drawing a sort of permanence, for example, that can be drawn from several different angles.

Vis action drawing must be activated by adding to a scene, e.g:

/control/verbose 2
/vis/verbose parameters
/vis/open OGL
/vis/scene/create
/vis/scene/add/userAction
/vis/scene/add/axes
/vis/scene/add/scale
/vis/sceneHandler/attach
/vis/viewer/flush

The "extent" can be added on registration or on the command line or
neither (if the extent of the scene is set by other components). Your
Draw method will be called whenever needed to refresh the screen or
rebuild a graphics database, for any chosen viewer. The scene can be
attached to any scene handler and your drawing will be shown.

Standalone Visualization

The above raises the possibility of using Geant4 as a "standalone"
graphics package without invoking the run manager. The following main
program (from examples/extended/visualization/standalone), together
with a user vis action and a macro file--see above--will
allow you to view your drawing interactively on any of the
supported graphics systems:

#include "globals.hh"
#include "G4VisExecutive.hh"
#include "G4VisExtent.hh"
#include "G4UImanager.hh"
#include "G4UIExecutive.hh"
#include "G4SystemOfUnits.hh"

#include "StandaloneVisAction.hh"

int main(int argc,char** argv) {

 G4UIExecutive* ui = new G4UIExecutive(argc, argv);

 G4VisManager* visManager = new G4VisExecutive;
 visManager->RegisterRunDurationUserVisAction
 ("A standalone example - 3 boxes, 2 with boolean subtracted cutout",
 new StandaloneVisAction,
 G4VisExtent(-10*m,10*m,-10*m,10*m,-10*m,10*m));
 visManager->Initialize ();

 G4UImanager::GetUIpointer()->ApplyCommand ("/control/execute standalone.mac");
 ui->SessionStart();

 delete ui;
 delete visManager;
}

Drawing a solid as a cloud of points

SolidCloudVisAction.hh:

#ifndef SOLIDCLOUDVISACTION_HH
#define SOLIDCLOUDVISACTION_HH
#include "G4VUserVisAction.hh"
#include "G4Polymarker.hh"
class G4VSolid;
class SolidCloudVisAction: public G4VUserVisAction {
public:
 SolidCloudVisAction(G4VSolid*,G4int nPoints);
 virtual void Draw();
private:
 G4Polymarker fPolymarker;
};
#endif

SolidCloudVisAction.cc:

#include "SolidCloudVisAction.hh"
#include "G4VVisManager.hh"
#include "G4VSolid.hh"
SolidCloudVisAction::SolidCloudVisAction(G4VSolid* solid, G4int nPoints).
{
 fPolymarker.SetMarkerType(G4Polymarker::dots);
 fPolymarker.SetSize(G4VMarker::screen,1.);
 for (G4int i = 0; i < nPoints; ++i) {
 G4ThreeVector p = solid->GetPointOnSurface();
 G4cout << solid->GetName() << " " << p << G4endl;
 fPolymarker.push_back(p);
 }
}
void SolidCloudVisAction::Draw() {
 G4VVisManager* pVisManager = G4VVisManager::GetConcreteInstance();
 if (pVisManager) pVisManager->Draw(fPolymarker);
}

Then just after you instantiate the vis manager:

G4VSolid* torus = new G4Torus("Torus",2.*cm,5.*cm,6.*cm,0.,CLHEP::twopi);
visManager->RegisterRunDurationUserVisAction
("Torus",
 new SolidCloudVisAction(torus,100000),
 torus->GetExtent());

Then on the command line:

/vis/scene/create
/vis/scene/add/userAction Torus
/vis/sceneHandler/attach

[image: A torus represented by a cloud of points on its surface.]

Fig. 25 A torus represented by a cloud of points on its surface.

Footnotes

Visualization Attributes

Visualization attributes are extra pieces of information associated with
the visualizable objects. This information is necessary only for
visualization, and is not included in geometrical information such as
shapes, position, and orientation. Typical examples of visualization
attributes are Color, Visible/Invisible, Wireframe/Solid. For example,
in visualizing a box, the Visualization Manager must know its colour. If
an object to be visualized has not been assigned a set of visualization
attributes, then an appropriate default set is used automatically.

A set of visualization attributes is held by an instance of class
G4VisAttributes defined in the graphics_reps category. In the
following, we explain the main fields of the G4VisAttributes one by
one.

Visibility

Visibility is a Boolean flag to control the visibility of objects that
are passed to the Visualization Manager for visualization. Visibility is
set with the following access function:

void G4VisAttributes::SetVisibility (G4bool visibility);

If you give false to the argument, and if culling is activated (see
below), visualization is skipped for objects for which this set of
visualization attributes is assigned. The default value of visibility is
true.

Note that whether an object is visible or not is also affected by the
current culling policy, which can be tuned with visualization commands.

By default the following public static function is defined:

static const G4VisAttributes& GetInvisible();

which returns a reference to a const object in which visibility is set
to false. It can be used as follows:

experimentalHall_logical -> SetVisAttributes (G4VisAttributes::GetInvisible());

Direct access to the public static const data member
G4VisAttributes::Invisible is also possible but deprecated on
account of initialisation issues with dynamic libraries.

Colour

Construction

Class G4Colour (an equivalent class name, G4Color, is also
available) has 4 fields, which represent the RGBA (red, green, blue, and
alpha) components of colour. Each component takes a value between 0 and
1. If an irrelevant value, i.e., a value less than 0 or greater than 1,
is given as an argument of the constructor, such a value is
automatically clipped to 0 or 1. Alpha is opacity. Its default value
1 means "opaque".

A G4Colour object is instantiated by giving red, green, and blue
components to its constructor, i.e.,

G4Colour::G4Colour (G4double r = 1.0,
 G4double g = 1.0,
 G4double b = 1.0,
 G4double a = 1.0);
 // 0<=red, green, blue <= 1.0

The default value of each component is 1.0. That is to say, the default
colour is "white" (opaque).

For example, colours which are often used can be instantiated as
follows:

G4Colour white () ; // white
G4Colour white (1.0, 1.0, 1.0) ; // white
G4Colour gray (0.5, 0.5, 0.5) ; // gray
G4Colour black (0.0, 0.0, 0.0) ; // black
G4Colour red (1.0, 0.0, 0.0) ; // red
G4Colour green (0.0, 1.0, 0.0) ; // green
G4Colour blue (0.0, 0.0, 1.0) ; // blue
G4Colour cyan (0.0, 1.0, 1.0) ; // cyan
G4Colour magenta (1.0, 0.0, 1.0) ; // magenta
G4Colour yellow (1.0, 1.0, 0.0) ; // yellow

It is also possible to instantiate common colours through static public
data member functions:

static const G4Colour& White ();
static const G4Colour& Gray ();
static const G4Colour& Grey ();
static const G4Colour& Black ();
static const G4Colour& Red ();
static const G4Colour& Green ();
static const G4Colour& Blue ();
static const G4Colour& Cyan ();
static const G4Colour& Magenta ();
static const G4Colour& Yellow ();

For example, a local G4Colour could be constructed as:

G4Colour myRed(G4Colour::Red());

After instantiation of a G4Colour object, you can access to its
components with the following access functions:

G4double G4Colour::GetRed () const ; // Get the red component.
G4double G4Colour::GetGreen () const ; // Get the green component.
G4double G4Colour::GetBlue () const ; // Get the blue component.

Colour Map

G4Colour also provides a static colour map, giving access to
predefined G4Colour's through a G4String key. The default
mapping is:

G4String G4Colour

white G4Colour::White ()
gray G4Colour::Gray ()
grey G4Colour::Grey ()
black G4Colour::Black ()
red G4Colour::Red ()
green G4Colour::Green ()
blue G4Colour::Blue ()
cyan G4Colour::Cyan ()
magenta G4Colour::Magenta ()
yellow G4Colour::Yellow ()

Colours can be retrieved through the GetColour method:

bool G4Colour::GetColour(const G4String& key, G4Colour& result)

For example:

G4Colour myColour(G4Colour::Black());
if (G4Colour::GetColour("red", myColour)) {
 // Successfully retrieved colour "red". myColour is now red
}
else {
 // Colour did not exist in map. myColour is still black
}

To see a list of available named colours, /vis/list.
These names may also be used to specify colours in many /vis
commands.

If the key is not registered in the colour map, a warning message is
printed and the input colour is not changed. The colour map is case
insensitive.

It is also possible to load user defined G4Colour's into the map
through the public AddToMap method. For example:

G4Colour myColour(0.2, 0.2, 0.2, 1);
G4Colour::AddToMap("custom", myColour);

This loads a user defined G4Colour with key "custom" into the colour
map.

It is also possible to use the colours in g4tools:

#include "tools/colors"
...
G4Colour niceColour = tools::get_color_aquamarine<G4Colour>();

Colour and G4VisAttributes

Class G4VisAttributes holds its colour entry as an object of class
G4Colour. A G4Colour object is passed to a G4VisAttributes
object with the following access functions:

//----- Set functions of G4VisAttributes.
void G4VisAttributes::SetColour (const G4Colour& colour);
void G4VisAttributes::SetColor (const G4Color& color);

We can also set RGBA components directly:

//----- Set functions of G4VisAttributes
void G4VisAttributes::SetColour (G4double red ,
 G4double green ,
 G4double blue ,
 G4double alpha = 1.0);

void G4VisAttributes::SetColor (G4double red ,
 G4double green ,
 G4double blue ,
 G4double alpha = 1.);

The following constructor with G4Colour as its argument is also
supported:

//----- Constructor of G4VisAttributes
G4VisAttributes::G4VisAttributes (const G4Colour& colour);

Note that colour assigned to a G4VisAttributes object is not always
the colour that ultimately appears in the visualization. The ultimate
appearance may be affected by shading and lighting models applied in the
selected visualization driver or stand-alone graphics system.

Forcing attributes

As you will see later, you can select a "drawing style" from various
options. For example, you can select your detector components to be
visualized in "wireframe" or with "surfaces". In the former, only the
edges of your detector are drawn and so the detector looks transparent.
In the latter, your detector looks opaque with shading effects.

The forced wireframe and forced solid styles make it possible to mix the
wireframe and surface visualization (if your selected graphics system
supports such visualization). For example, you can make only the outer
wall of your detector "wired" (transparent) and can see inside in
detail.

Forced wireframe style is set with the following access function:

void G4VisAttributes::SetForceWireframe (G4bool force);

If you give true as the argument, objects for which this set of
visualization attributes is assigned are always visualized in wireframe
even if in general, the surface drawing style has been requested. The
default value of the forced wireframe style is false.

Similarly, forced solid style, i.e., to force that objects are always
visualized with surfaces, is set with:

void G4VisAttributes::SetForceSolid (G4bool force);

The default value of the forced solid style is false, too.

You can also force auxiliary edges to be visible. Normally they are not
visible unless you set the appropriate view parameter. Forcing the
auxiliary edges to be visible means that auxiliary edges will be seen
whatever the view parameters.

Auxiliary edges are not genuine edges of the volume. They may be in a
curved surface made out of polygons, for example, or in plane surface of
complicated shape that has to be broken down into simpler polygons.
HepPolyhedron breaks all surfaces into triangles or quadrilaterals.
There will be auxiliary edges for any volumes with a curved surface,
such as a tube or a sphere, or a volume resulting from a Boolean
operation. Normally, they are not shown, but sometimes it is useful to
see them. In particular, a sphere, because it has no edges, will not be
seen in wireframe mode in some graphics systems unless requested by the
view parameters or forced, as described here.

To force auxiliary edges to be visible, use:

void G4VisAttributes::SetForceAuxEdgeVisible (G4bool force);

The default value of the force auxiliary edges visible flag is
false.

For volumes with edges that are parts of a circle, such as a tube
(G4Tubs), etc., it is possible to force the precision of polyhedral
representation for visualisation. This is recommended for volumes
containing only a small angle of circle, for example, a thin tube
segment.

For visualisation, a circle is represented by an N-sided polygon. The
default is 24 sides or segments. The user may change this for all
volumes in a particular viewer at run time with
/vis/viewer/set/lineSegmentsPerCircle; alternatively it can be forced
for a particular volume with:

void G4VisAttributes::SetForceLineSegmentsPerCircle (G4int nSegments);

Other attributes

Here is a list of Set methods for class G4VisAttributes:

void SetVisibility (G4bool);
void SetDaughtersInvisible (G4bool);
void SetColour (const G4Colour&);
void SetColor (const G4Color&);
void SetColour (G4double red, G4double green, G4double blue,
 G4double alpha = 1.);
void SetColor (G4double red, G4double green, G4double blue,
 G4double alpha = 1.);
void SetLineStyle (LineStyle);
void SetLineWidth (G4double);
void SetForceWireframe (G4bool);
void SetForceSolid (G4bool);
void SetForceAuxEdgeVisible (G4bool);
void SetForceLineSegmentsPerCircle (G4int nSegments);
// Allows choice of circle approximation. A circle of 360 degrees
// will be composed of nSegments line segments. If your solid has
// curves of D degrees that you need to divide into N segments,
// specify nSegments = N * 360 / D.
void SetStartTime (G4double);
void SetEndTime (G4double);
void SetAttValues (const std::vector<G4AttValue>*);
void SetAttDefs (const std::map<G4String,G4AttDef>*);

Constructors of G4VisAttributes

The following constructors are supported for class G4VisAttributes:

//----- Constructors of class G4VisAttributes
G4VisAttributes (void);
G4VisAttributes (G4bool visibility);
G4VisAttributes (const G4Colour& colour);
G4VisAttributes (G4bool visibility, const G4Colour& colour);

How to assign G4VisAttributes to a logical volume

In constructing your detector components, you may assign a set of
visualization attributes to each "logical volume" in order to visualize
them later (if you do not do this, the graphics system will use a
default set). You cannot make a solid such as G4Box hold a set of
visualization attributes; this is because a solid should hold only
geometrical information. At present, you cannot make a physical volume
hold one, but there are plans to design a memory-efficient way to do it;
however, you can visualize a transient piece of solid or physical volume
with a temporary assigned set of visualization attributes.

Class G4LogicalVolume holds a pointer of G4VisAttributes. This
field is set and referenced with the following access functions:

//----- Set functions of G4VisAttributes
void G4VisAttributes::SetVisAttributes (const G4VisAttributes* pVA);
void G4VisAttributes::SetVisAttributes (const G4VisAttributes& VA);

//----- Get functions of G4VisAttributes
const G4VisAttributes* G4VisAttributes::GetVisAttributes () const;

The following is sample C++ source codes for assigning a set of
visualization attributes with cyan colour and forced wireframe style to
a logical volume:

//----- C++ source codes: Assigning G4VisAttributes to a logical volume
...
 // Instantiation of a logical volume
myTargetLog = new G4LogicalVolume(myTargetTube,BGO, "TLog", 0, 0, 0);
...
 // Instantiation of a set of visualization attributes with cyan colour
G4VisAttributes * calTubeVisAtt = new G4VisAttributes(G4Colour(0.,1.,1.));
 // Set the forced wireframe style
calTubeVisAtt->SetForceWireframe(true);
 // Assignment of the visualization attributes to the logical volume
myTargetLog->SetVisAttributes(calTubeVisAtt);

Note that the life of the visualization attributes must be at least as
long as the objects to which they are assigned; it is the users'
responsibility to ensure this, and to delete the visualization
attributes when they are no longer needed (or just leave them to die at
the end of the job).

Additional User-Defined Attributes

Geant4 Trajectories and Hits can be assigned additional arbitrary
attributes:

	they can be displayed when you click on the relevant object
in the FRED or HepRApp browsers. For example, HepRApp then lets you
pick objects and see their attributes or select visibility based on these
attributes.

	they can be used for filtering of trajectories, hits and digis
(see Trajectory Filtering).

Define the attributes with lines such as:

std::map<G4String,G4AttDef>* store = G4AttDefStore::GetInstance("G4Trajectory",isNew);
G4String PN("PN");
(*store)[PN] = G4AttDef(PN,"Particle Name","Physics","","G4String");
G4String IMom("IMom");
(*store)[IMom] = G4AttDef(IMom, "Momentum of track at start of trajectory", "Physics", "",
 "G4ThreeVector");

Then fill the attributes with lines such as:

std::vector<G4AttValue>* values = new std::vector<G4AttValue>;
values->push_back(G4AttValue("PN",ParticleName,""));
s.seekp(std::ios::beg);
s << G4BestUnit(initialMomentum,"Energy") << std::ends;
values->push_back(G4AttValue("IMom",c,""));

See geant4/source/tracking/src/G4Trajectory.cc for a good example.

G4AttValue objects are light, containing just the value; for the
long description and other sharable information the G4AttValue
object refers to a G4AttDef object. They are based on the HepRep
standard described at http://www.slac.stanford.edu/~perl/heprep/. Geant4
also provides a way of checking the results; at the point where all the data members have been set (perhaps in your sensitive detector), for example for hit:

G4cout << G4AttCheck(hit->CreateAttValues(),hit->GetAttDefs()) << G4endl;

Geant4 provides some default examples of the use of this facility in the
trajectory classes in /source/tracking such as G4Trajectory,
G4SmoothTrajectory. G4Trajectory::CreateAttValues shows how
G4AttValue objects can be made and G4Trajectory::GetAttDefs
shows how to make the corresponding G4AttDef objects and use the
G4AttDefStore. Note that the "user" of CreateAttValues guarantees to
destroy them; this is a way of allowing creation on demand and leaving
the G4Trajectory object, for example, free of such objects in
memory. The comments in G4VTrajectory.hh explain further and
additional insights might be obtained by looking at two methods which
use them, namely G4VTrajectory::DrawTrajectory and
G4VTrajectory::ShowTrajectory.

Hits classes in examples /extended/analysis/A01 and
/extended/runAndEvent/RE01 show how to do the same for your hits. The
base class no-action methods CreateAttValues and GetAttDefs should be
overridden in your concrete class. The comments in G4VHit.hh explain
further.

In addition, the user is free to add a G4std::vector<G4AttValue>*
and a G4std::vector<G4AttDef>* to a G4VisAttributes object as
could, for example, be used by a G4LogicalVolume object.

At the time of writing, only the HepRep graphics systems are capable of
displaying the G4AttValue information, but this information will become
useful for all Geant4 visualization systems through improvements in
release 8.1 or later.

Footnotes

Enhanced Trajectory Drawing

Default Configuration

Trajectory drawing styles are specified through trajectory drawing
models. Each drawing model has a default configuration provided through
a G4VisTrajContext object. The default context settings are shown below.

Table 18 Default context settings for trajectory drawing models.

	Property

	Default Setting

	Line colour

	grey

	Line visibility

	true

	Draw line

	true

	Draw auxiliary points

	false

	Auxiliary point type

	squares

	Auxiliary point size

	2 pixels or mm*

	Auxiliary point size type

	screen

	Auxiliary point fill style

	filled

	Auxiliary point colour

	magenta

	Auxiliary point visibility

	true

	Draw step point

	false

	Step point type

	circles

	Step point size

	2 pixels or mm*

	Step point size type

	screen

	Step point fill style

	filled

	Step point colour

	yellow

	Step point visibility

	true

	Time slice interval

	0

* Depending on size type. If size type == screen, pixels are assumed and
no unit need be supplied. If size type == world, a unit must be supplied,
e.g., 10 cm.

Note

Different visualisation drivers handle trajectory configuration in
different ways, so trajectories may not necessarily get displayed as
you have configured them.

Trajectory Drawing Models

A trajectory drawing model can override the default context according to
the properties of a given trajectory. The following models are supplied
with the Geant4 distribution:

	G4TrajectoryGenericDrawer (generic)

	G4TrajectoryDrawByCharge (drawByCharge)

	G4TrajectoryDrawByParticleID (drawByParticleID)

	G4TrajectoryDrawByOriginVolume (drawByOriginVolume)

	G4TrajectoryDrawByTouchedVolume (drawByTouchedVolume)

	G4TrajectoryDrawByAttribute (drawByAttribute)

Both the context and model properties can be configured by the user. The
models are described briefly below, followed by some example
configuration commands.

G4TrajectoryGenericDrawer

This model simply draws all trajectories in the same style, with the
properties provided by the context.

G4TrajectoryDrawByCharge

This is the default model - if no model is specified by the user, this
model will be constructed automatically. The trajectory lines are
coloured according to charge, with all other configuration parameters
provided by the default context. The default colouring scheme is shown
below.

	Charge

	Colour

	1

	blue

	-1

	red

	0

	green

G4TrajectoryDrawByParticleID

This model colours trajectory lines according to particle type. All
other configuration parameters are provided by the default context.
Chosen particle types can be highlighted with specified colours. By
default, trajectories are coloured according to the scheme below and any
other particle in the default colour (grey). (All may be overridden by
the set command.)

	Particle

	Colour

	gamma

	green

	e-

	red

	e+

	blue

	pi+

	magenta

	pi-

	magenta

	proton

	cyan

	neutron

	yellow

G4TrajectoryDrawByOriginVolume

This model colours trajectory lines according to the trajectory's
originating volume name. The volume can be either a logical or physical
volume. Physical volume takes precedence over logical volume. All
trajectories are coloured grey by default.

G4TrajectoryDrawByTouchedVolume

This model colours trajectory lines if it touches one or more volumes
according to the physical volume name(s). It requires rich trajectories,
G4RichTrajectory (/vis/scene/add/trajectories rich). All
trajectories are coloured grey by default.

G4TrajectoryDrawByAttribute

This model draws trajectories based on the HepRep style attributes
associated with trajectories. Each attribute drawer can be configured
with interval and/or single value data. A new context object is created
for each interval/single value. This makes it possible to have different
step point markers etc, as well as line colour for trajectory attributes
falling into different intervals, or matching single values. The single
value data should override the interval data, allowing specific values
to be highlighted. Units should be specified on the command line if the
attribute unit is specified either as a G4BestUnit or if the unit is
part of the value string.

Controlling from Commands

Multiple trajectory models can be created and configured using commands
in the "/vis/modeling/trajectories/" directory. It is then possible
to list available models and select one to be current.

Model configuration commands are generated dynamically when a model is
instantiated. These commands apply directly to that instance. This makes
it possible to have multiple instances of the drawByCharge model for
example, each independently configurable through it's own set of
commands.

See the interactive help for more information on the available commands.

Example commands

	Create a generic model named generic-0 by default

/vis/modeling/trajectories/create/generic

	Configure context to colour all trajectories red

/vis/modeling/trajectories/generic-0/default/setLineColour red

	Create a drawByCharge model named drawCharge-0 by default (Subsequent
models will be named drawByCharge-1, drawByCharge-2, etc.)

/vis/modeling/trajectories/create/drawByCharge

	Create a drawByCharge model named testChargeModel

/vis/modeling/trajectories/create/drawByCharge testChargeModel

	Configure drawByCharge-0 model

/vis/modeling/trajectories/drawByCharge-0/set 1 red
/vis/modeling/trajectories/drawByCharge-0/set -1 red
/vis/modeling/trajectories/drawByCharge-0/set 0 white

	Configure testCharge model through G4Colour components

/vis/modeling/trajectories/testChargeModel/setRGBA 1 0 1 1 1
/vis/modeling/trajectories/testChargeModel/setRGBA -1 0.5 0.5 0.5 1
/vis/modeling/trajectories/testChargeModel/setRGBA 0 1 1 0 1

	Create a drawByParticleID model named drawByParticleID-0

/vis/modeling/trajectories/create/drawByParticleID

	Configure drawByParticleID-0 model

/vis/modeling/trajectories/drawByParticleID-0/set gamma red
/vis/modeling/trajectories/drawByParticleID-0/setRGBA e+ 1 0 1 1

	List available models

/vis/modeling/trajectories/list

	select drawByParticleID-0 to be current

/vis/modeling/trajectories/select drawByParticleID-0

	Create a drawByAttribute model named drawByAttribute-0

/vis/modeling/trajectories/create/drawByAttribute

	Configure drawByAttribute-0 model

/vis/modeling/trajectories/drawByAttribute-0/verbose true

	Select attribute "CPN"

/vis/modeling/trajectories/drawByAttribute-0/setAttribute CPN

	Configure single value data

/vis/modeling/trajectories/drawByAttribute-0/addValue brem_key eBrem
/vis/modeling/trajectories/drawByAttribute-0/addValue annihil_key annihil
/vis/modeling/trajectories/drawByAttribute-0/addValue decay_key Decay
/vis/modeling/trajectories/drawByAttribute-0/addValue muIon_key muIoni
/vis/modeling/trajectories/drawByAttribute-0/addValue eIon_key eIoni

/vis/modeling/trajectories/drawByAttribute-0/brem_key/setLineColour red
/vis/modeling/trajectories/drawByAttribute-0/annihil_key/setLineColour green
/vis/modeling/trajectories/drawByAttribute-0/decay_key/setLineColour cyan
/vis/modeling/trajectories/drawByAttribute-0/eIon_key/setLineColour yellow
/vis/modeling/trajectories/drawByAttribute-0/muIon_key/setLineColour magenta

	Create a drawByAttribute model named drawByAttribute-1

/vis/modeling/trajectories/create/drawByAttribute

	Select "IMag" attribute

/vis/modeling/trajectories/drawByAttribute-1/setAttribute IMag

	Configure interval data

/vis/modeling/trajectories/drawByAttribute-1/addInterval interval1 0.0 keV 2.5MeV
/vis/modeling/trajectories/drawByAttribute-1/addInterval interval2 2.5 MeV 5 MeV
/vis/modeling/trajectories/drawByAttribute-1/addInterval interval3 5 MeV 7.5 MeV
/vis/modeling/trajectories/drawByAttribute-1/addInterval interval4 7.5 MeV 10 MeV
/vis/modeling/trajectories/drawByAttribute-1/addInterval interval5 10 MeV 12.5 MeV
/vis/modeling/trajectories/drawByAttribute-1/addInterval interval6 12.5 MeV 10000 MeV

/vis/modeling/trajectories/drawByAttribute-1/interval1/setLineColourRGBA 0.8 0 0.8 1
/vis/modeling/trajectories/drawByAttribute-1/interval2/setLineColourRGBA 0.23 0.41 1 1
/vis/modeling/trajectories/drawByAttribute-1/interval3/setLineColourRGBA 0 1 0 1
/vis/modeling/trajectories/drawByAttribute-1/interval4/setLineColourRGBA 1 1 0 1
/vis/modeling/trajectories/drawByAttribute-1/interval5/setLineColourRGBA 1 0.3 0 1
/vis/modeling/trajectories/drawByAttribute-1/interval6/setLineColourRGBA 1 0 0 1

	Create a drawByEncounteredVolume model named drawByEncounteredVolume-0

/vis/modeling/trajectories/create/drawByEncounteredVolume

	Change the color for a specific encountered shape

/vis/modeling/trajectories/drawByEncounteredVolume-0/set Shape1 cyan

Controlling from Compiled Code

It is possible to use the enhanced trajectory drawing functionality in
compiled code as well as from commands. Multiple trajectory models can
be instantiated, configured and registered with G4VisManager. Once
registered, the models are owned by G4VisManager, and must not be
deleted by the user.

Only one model may be current. For example:

G4VisManager* visManager = new G4VisExecutive;
visManager->Initialize();

G4TrajectoryDrawByParticleID* model = new G4TrajectoryDrawByParticleID;
G4TrajectoryDrawByParticleID* model2 = new G4TrajectoryDrawByParticleID("test");

model->SetDefault("cyan");
model->Set("gamma", "green");
model->Set("e+", "magenta");
model->Set("e-", G4Colour(0.3, 0.3, 0.3));

visManager->RegisterModel(model);
visManager->RegisterModel(model2);

visManager->SelectTrajectoryModel(model->Name());

Drawing by time

To draw by time, you need to use G4RichTrajectory, for example:

/vis/scene/add/trajectories rich

or

/vis/scene/add/trajectories rich smooth

When you run, you need to create a trajectory model and set the time
slice interval (remembering that particles are often relativistic and
travel 30 cm/ns):

/vis/modeling/trajectories/create/drawByCharge
/vis/modeling/trajectories/drawByCharge-0/default/setDrawStepPts true
/vis/modeling/trajectories/drawByCharge-0/default/setStepPtsSize 5
/vis/modeling/trajectories/drawByCharge-0/default/setDrawAuxPts true
/vis/modeling/trajectories/drawByCharge-0/default/setAuxPtsSize 5
/vis/modeling/trajectories/drawByCharge-0/default/setTimeSliceInterval 0.1 ns
/vis/modeling/trajectories/list

and use a graphics driver that can display by time:

/vis/open OGL
/vis/drawVolume
/vis/scene/add/trajectories rich
/vis/viewer/set/timeWindow/startTime 0.5 ns
/vis/viewer/set/timeWindow/endTime 0.8 ns
/run/beamOn
/vis/viewer/refresh

For tips on how to see particles "moving through time" see Making a Movie.

Footnotes

Trajectory Filtering

Trajectory filtering allows you to visualise a subset of available
trajectories. This can be useful if you only want to view interesting
trajectories and discard uninteresting ones. Trajectory filtering can be
run in two modes:

	Soft filtering: In this mode, uninteresting trajectories are
marked invisible. Hence, they are still written, but (depending on
the driver) will not be displayed. Some drivers, for example the
HepRepFile driver, which writes an XML file for the HepRApp browser,
will allow you to selectively view these soft filtered trajectories.

	Hard filtering (default): In this mode, uninteresting
trajectories are not
drawn at all. This mode is especially useful if the job produces huge
graphics files, dominated by data from uninteresting trajectories. It is
essential to use this mode for most drivers, including those using OpenGL,
because they are not adapted for soft filtering.

Change mode with /vis/filtering/trajectories/mode.

Trajectory filter models are used to apply filtering according to
specific criteria. The following models are currently supplied with the
Geant4 distribution:

	G4TrajectoryChargeFilter (chargeFilter)

	G4TrajectoryParticleFilter (particleFilter)

	G4TrajectoryOriginVolumeFilter (originVolumeFilter)

	G4TrajectoryTouchedVolumeFilter (touchedVolumeFilter)

	G4TrajectoryAttributeFilter (attributeFilter)

Multiple filters are automatically chained together, and can configured
either interactively or in commands or in compiled code. The filters can
be inverted, set to be inactive or set in a verbose mode. The above
models are described briefly below, followed by some example
configuration commands.

G4TrajectoryChargeFilter

This model filters trajectories according to charge. In standard running
mode, only trajectories with charges matching those registered with the
model will pass the filter.

G4TrajectoryParticleFilter

This model filters trajectories according to particle type. In standard
running mode, only trajectories with particle types matching those
registered with the model will pass the filter.

G4TrajectoryOriginVolumeFilter

This model filters trajectories according to originating volume name. In
standard running mode, only trajectories with originating volumes
matching those registered with the model will pass the filter.

G4TrajectoryTouchedVolumeFilter

This model filters trajectories that touch one or more volumes according
to the physical volume name(s). It requires rich trajectories,
G4RichTrajectory (/vis/scene/add/trajectories rich). In standard
running mode, only trajectories that touch volumes matching those
registered with the model will pass the filter.

G4TrajectoryAttributeFilter

This model filters trajectories based on the HepRep style attributes
(see Additional User-Defined Attributes)
associated with trajectories. Each attribute drawer can be configured
with interval and/or single value data. Single value data should
override the interval data. Units should be specified on the command
line if the attribute unit is specified either as a G4BestUnit or if the
unit is part of the value string. Available attributes can be shown
with /vis/list.

Controlling from Commands

Multiple trajectory filter models can be created and configured using
commands in the "/vis/filtering/trajectories/" directory. All
generated filter models are chained together automatically.

Model configuration commands are generated dynamically when a filter
model is instantiated. These commands apply directly to that instance.

See the interactive help for more information on the available commands.

Example commands

Create a particle filter. Configure to pass only gammas. Then
invert to pass anything other than gammas. Set verbose printout,
and then deactivate filter

/vis/filtering/trajectories/create/particleFilter
/vis/filtering/trajectories/particleFilter-0/add gamma
/vis/filtering/trajectories/particleFilter-0/invert true
/vis/filtering/trajectories/particleFilter-0/verbose true
/vis/filtering/trajectories/particleFilter-0/active false

Create a charge filter. Configure to pass only neutral trajectories.
Set verbose printout. Reset filter and reconfigure to pass only
negatively charged trajectories.

/vis/filtering/trajectories/create/chargeFilter
/vis/filtering/trajectories/chargeFilter-0/add 0
/vis/filtering/trajectories/chargeFilter-0/verbose true
/vis/filtering/trajectories/chargeFilter-0/reset true
/vis/filtering/trajectories/chargeFilter-0/add -1

Create an attribute filter named attributeFilter-0
/vis/filtering/trajectories/create/attributeFilter

Select attribute "IMag"
/vis/filtering/trajectories/attributeFilter-0/setAttribute IMag

Select trajectories with 2.5 MeV <= IMag< 1000 MeV
/vis/filtering/trajectories/attributeFilter-0/addInterval 2.5 MeV 1000 MeV

List available attributes
/vis/list

List filters
/vis/filtering/trajectories/list

Note that although particleFilter-0 and chargeFilter-0 are
automatically chained, particleFilter-0 will not have any effect
since it is has been deactivated.

Hit and Digi Filtering

The attribute based filtering can be used on hits and digitisations as
well as trajectories. To active the interactive attribute based hit
filtering, a filter call should be added to the "Draw" method of the hit
(or digi) class:

void MyHit::Draw()
{
 ...
 if (! pVVisManager->FilterHit(*this)) return;
 ...
}

Interactive filtering can then be done through the commands in
/vis/filtering/hits or digi.

Footnotes

Polylines, Markers and Text

Polylines, markers and text are defined in the graphics_reps
category, and are used only for visualization
(Controlling Visualization from Compiled Code). Users may create any of these objects with
local scope; once drawn, they may safely be deleted or allowed to go out
of scope.

Polylines

A polyline is a set of successive line segments. It is defined with a
class G4Polyline defined in the graphics_reps category. A
polyline is used to visualize tracking steps, particle trajectories,
coordinate axes, and any other user-defined objects made of line
segments.

G4Polyline is defined as a list of G4Point3D objects, i.e.,
vertex positions. The vertex positions are set to a G4Polyline
object with the push_back() method.

For example, an x-axis with length 5 cm and with red color is defined in
shown in the Listing 100.

Listing 100 Defining an x-axis with length 5 cm and with colour red.

//----- An example of defining a line segment
// Instantiate an empty polyline object
G4Polyline x_axis;

// Set red line colour
G4Colour red(1.0, 0.0, 0.0);
G4VisAttributes att(red);
x_axis.SetVisAttributes(&att);

// Set vertex positions
x_axis.push_back(G4Point3D(0., 0., 0.));
x_axis.push_back(G4Point3D(5.*cm, 0., 0.));

Markers

Here we explain how to use 3D markers in Geant4 Visualization.

What are Markers?

Markers set marks at arbitrary positions in the 3D space. They are often
used to visualize hits of particles at detector components. A marker is
a 2-dimensional primitive with shape (square, circle, etc), color, and
special properties (a) of always facing the camera and (b) of having the
possibility of a size defined in screen units (pixels). Here "size"
means "overall size", e.g., diameter of circle and side of square (but
diameter and radius access functions are defined to avoid ambiguity).

So the user who constructs a marker should decide whether or not it
should be visualized to a given size in world coordinates by setting the
world size. Alternatively, the user can set the screen size and the
marker is visualized to its screen size. Finally, the user may decide
not to set any size; in that case, it is drawn according to the sizes
specified in the default marker specified in the class
G4ViewParameters.

By default, "square" and "circle" are supported in Geant4 Visualization.
The former is described with class G4Square, and the latter with
class G4Circle:

	Marker Type

	Class Name

	circle

	G4Circle

	right square

	G4Square

These classes are inherited from class G4VMarker. They have
constructors as follows:

//----- Constructors of G4Circle and G4Square
G4Circle::G4Circle (const G4Point3D& pos);
G4Square::G4Square (const G4Point3D& pos);

Access functions of class G4VMarker are summarized below.

Access functions of markers

Listing 101 shows the access
functions inherited from the base class G4VMarker.

Listing 101 The access functions inherited from the base class G4VMarker.

//----- Set functions of G4VMarker
void G4VMarker::SetPosition(const G4Point3D&);
void G4VMarker::SetWorldSize(G4double);
void G4VMarker::SetWorldDiameter(G4double);
void G4VMarker::SetWorldRadius(G4double);
void G4VMarker::SetScreenSize(G4double);
void G4VMarker::SetScreenDiameter(G4double);
void G4VMarker::SetScreenRadius(G4double);
void G4VMarker::SetFillStyle(FillStyle);
// Note: enum G4VMarker::FillStyle {noFill, hashed, filled};

//----- Get functions of G4VMarker
G4Point3D G4VMarker::GetPosition () const;
G4double G4VMarker::GetWorldSize () const;
G4double G4VMarker::GetWorldDiameter () const;
G4double G4VMarker::GetWorldRadius () const;
G4double G4VMarker::GetScreenSize () const;
G4double G4VMarker::GetScreenDiameter () const;
G4double G4VMarker::GetScreenRadius () const;
FillStyle G4VMarker::GetFillStyle () const;
// Note: enum G4VMarker::FillStyle {noFill, hashed, filled};

Listing 102 shows sample C++
source code to define a very small red circle, i.e., a dot with diameter
1.0 pixel. Such a dot is often used to visualize a hit.

Listing 102 Sample C++ source code to define a very small red circle.

//----- An example of defining a red small maker
G4Circle circle(position); // Instantiate a circle with its 3D
 // position. The argument "position"
 // is defined as G4Point3D instance
circle.SetScreenDiameter (1.0); // Should be circle.SetScreenDiameter
 // (1.0 * pixels) - to be implemented
circle.SetFillStyle (G4Circle::filled); // Make it a filled circle
G4Colour colour(1.,0.,0.); // Define red color
G4VisAttributes attribs(colour); // Define a red visualization attribute
circle.SetVisAttributes(attribs); // Assign the red attribute to the circle

Text

Text, i.e., a character string, is used to visualize various kinds of
description, particle name, energy, coordinate names etc. Text is
described by the class G4Text . The following constructors are
supported:

//----- Constructors of G4Text
G4Text (const G4String& text);
G4Text (const G4String& text, const G4Point3D& pos);

where the argument text is the text (string) to be visualized, and
pos is the 3D position at which the text is visualized.

Text is currently drawn only by the OpenGL drivers, such as OGLIX,
OGLIXm and OpenInventor. It is not yet supported on other drivers,
including the Windows OpenGL drivers, HepRep, etc.

Note that class G4Text also inherits G4VMarker. Size of text is
recognized as "font size", i.e., height of the text. All the access
functions defined for class G4VMarker mentioned above are available.
In addition, the following access functions are available, too:

//----- Set functions of G4Text
void G4Text::SetText (const G4String& text) ;
void G4Text::SetOffset (double dx, double dy) ;

//----- Get functions of G4Text
G4String G4Text::GetText () const;
G4double G4Text::GetXOffset () const;
G4double G4Text::GetYOffset () const;

Method SetText() defines text to be visualized, and GetText()
returns the defined text. Method SetOffset() defines x (horizontal)
and y (vertical) offsets in the screen coordinates. By default, both
offsets are zero, and the text starts from the 3D position given to the
constructor or to the method G4VMarker:SetPosition(). Offsets should
be given with the same units as the one adopted for the size, i.e.,
world-size or screen-size units.

Listing 103 shows sample C++
source code to define text with the following properties:

	Text: "Welcome to Geant4 Visualization"

	Position: (0.,0.,0.) in the world coordinates

	Horizontal offset: 10 pixels

	Vertical offset: -20 pixels

	Colour: blue (default)

Listing 103 An example of defining text.

//----- An example of defining a visualizable text

//----- Instantiation
G4Text text ;
text.SetText ("Welcome to Geant4 Visualization");
text.SetPosition (G4Point3D(0.,0.,0.));
// These three lines are equivalent to:
// G4Text text ("Welcome to Geant4 Visualization",
// G4Point3D(0.,0.,0.));

//----- Size (font size in units of pixels)
G4double fontsize = 24.; // Should be 24. * pixels - to be implemented.
text.SetScreenSize (fontsize);

//----- Offsets
G4double x_offset = 10.; // Should be 10. * pixels - to be implemented.
G4double y_offset = -20.; // Should be -20. * pixels - to be implemented.
text.SetOffset(x_offset, y_offset);

//----- Color (Blue is the default setting, and so the codes below are omittable)
G4Colour blue(0., 0., 1.);
G4VisAttributes att (blue);
text.SetVisAttributes (att);

Footnotes

Making a Movie

These ideas are illustrated in examples/extended/visualization/movies.

These instructions are suggestive only. The following procedures have
not been tested on all platforms. There are clearly some instructions
that apply only to Unix-like systems with an X-Windows based windowing
system. However, it should not be difficult to take the ideas presented
here and extend them to other platforms and systems.

The procedures described here need graphics drivers that can produce
picture files that can be converted to a form suitable for an MPEG
encoder. There may be other ways of capturing the screen images and we
would be happy to hear about them. Graphics drivers currently capable of
producing picture files are:

	Driver

	File type

	DAWNFILE

	prim then eps using dawn

	HepRepFile

	HepRep1

	OGLX

	jpeg, eps, pdf, ppm, ...

	Qt

	jpeg, eps, pdf, ppm, ...

	RayTracer

	jpeg

	VRML2FILE

	vrml

So far, only DAWNFILE, OGLX, OGLQt and RayTracer have been "road
tested".

Once you have a set of files in a standard format, such as pdf or eps,
they can be made into a movie.

	iMovie (Apple Mac only):

	Import the created files (PDF recommended).

	Reduce the cliplength to 0.1 s (that seems to be the minimum).

	Export to file.

	Play at x2.

	Convert the files to ppm with convert from
ImageMagick#1, then use ppmtompeg
from SourceForge#2.

	Use mpeg2encode - see Processing picture files with mpeg2encode.

Using /vis/viewer/interpolate

	Save a sequence of views with /vis/viewer/save
(see How to save a view.).

	"Fly through" them with /vis/viewer/interpolate
(OpenGL and Qt only).

	When you are happy, add the export parameter
/vis/viewer/interpolate ! ! ! ! export.

The procedure is: choose a view, save, choose another view, save,
and so on until you have, say, 10 saved views. Then
/vis/viewer/interpolate ! ! ! ! export will produce hundreds
of picture files.

From Geant4 10.5, you can interpolate time windows, and make particles appear to move:

See guidance on /vis/viewer/set/timeWindow/ commands.
/vis/scene/add/trajectories rich
/vis/modeling/trajectories/drawByCharge-0/default/setTimeSliceInterval 0.01 ns
/run/beamOn # or several until you get a good event or events
Then typically
/vis/viewer/set/timeWindow/displayLightFront true 0 0 -50 cm -0.5 ns
/vis/viewer/set/timeWindow/displayHeadTime true
/vis/viewer/set/timeWindow/fadeFactor 1
/vis/viewer/set/timeWindow/startTime 0 ns 1 ns
/vis/viewer/save
/vis/viewer/set/timeWindow/startTime 1 ns 1 ns
Then zoom, pan etc to a view of interest and
/vis/viewer/save
Then repeat with next start time, another view and a save, then try
/vis/viewer/interpolate
Finally
/vis/viewer/interpolate ! ! ! ! export

See examples/extended/visualization/movies.

With a macro loop

Make a macro movie.mac with something like this:

/control/verbose 2
#/run/initialize
/vis/open OGL 600x600-0+0
/vis/drawVolume
/vis/viewer/set/style surface
/vis/viewer/set/projection perspective 50 deg
/control/alias phi 30
/control/loop movie.loop theta 0 360 1

which invokes movie.loop, which is something like:

/vis/viewer/set/viewpointThetaPhi {theta} {phi}
/vis/ogl/export

Then on the command line:

/control/execute movie.mac

It may work better in "batch mode". Assuming your main program is similar to that in example B1, from your terminal:

./your-app-name movie.mac

Processing picture files with mpeg2encode

Say you have produced lots of eps files. Then...

make_mpeg2encode_parfile.sh G4OpenGL_*eps

Then edit mpeg2encode.par to specify file type and size, etc.:

$ diff mpeg2encode.par~ mpeg2encode.par
7c7
< 1 /* input picture file format: 0=*.Y,*.U,*.V, 1=*.yuv, 2=*.ppm */

> 2 /* input picture file format: 0=*.Y,*.U,*.V, 1=*.yuv, 2=*.ppm */
15,17c15,17
< /* horizontal_size */
< /* vertical_size */
< 8 /* aspect_ratio_information 1=square pel, 2=4:3, 3=16:9, 4=2.11:1 */

> 600 /* horizontal_size */
> 600 /* vertical_size */
> 1 /* aspect_ratio_information 1=square pel, 2=4:3, 3=16:9, 4=2.11:1 */

Then convert to ppm:

for i in G4OpenGL*eps;
 do j=`basename $i .eps`; command="convert $i $j.ppm"; echo $command; $command; done

Then

mpeg2encode mpeg2encode.par G4OpenGL.mpg

Then, on Mac, for example:

open G4OpenGL.mpg

opens a movie player.

Qt

The Qt driver provides one of the easiest ways to make a movie. Of
course, you first need to add the Qt libraries and link with Qt, but
once you have that, Qt provides a ready-made function to store all
updates of the OpenGL frame into the movie format. You then use loops
(as defined in OGLX section above) or even move/rotate/zoom you scene by
mouse actions to form your movie.

The Qt driver automatically handles all of the movie-making steps
described in the OGLX section of this document - storing the files,
converting them and assembling the finished movie. You just have to take
care of installing an mpeg_encoder.

To make a movie :

	Right click to display a context menu, "Action"-<"Movie parameters".

	Select MPEG encoder path if it was not found.

	Select the name of the output movie.

	Let go! Hit SPACE to Start/Pause recording, RETURN to STOP

Then, open your movie (on Mac, for example):

open G4OpenGL.mpg

opens a QuickTime player.

DAWNFILE

You need to invoke dawn in "direct" mode, which picks up parameters
from .DAWN_1.history, and suppress the GUI:

alias dawn='dawn -d'
export DAWN_BATCH=1

Change OGL to DAWNFILE in the above set of Geant4 commands and run. Then
convert to ppm files as above:

for i in g4_*.eps;
 do j=`basename $i .eps`; command="convert $i $j.ppm"; echo $command; $command; done

Then make a .par file:

make_mpeg2encode_parfile.sh g4_*ppm

and edit mpeg2encode.par:

$ diff mpeg2encode.par~ mpeg2encode.par
7c7
< 1 /* input picture file format: 0=*.Y,*.U,*.V, 1=*.yuv, 2=*.ppm */

> 2 /* input picture file format: 0=*.Y,*.U,*.V, 1=*.yuv, 2=*.ppm */
9c9
< 1 /* number of first frame */

> 0 /* number of first frame */
15,16c15,16
< /* horizontal_size */
< /* vertical_size */

> 482 /* horizontal_size */
> 730 /* vertical_size */

Then encode and play:

mpeg2encode mpeg2encode.par DAWN.mpg
open DAWN.mpg

RayTracerX

/control/verbose 2
/vis/open RayTracerX 600x600-0+0
(Raytracer doesn't need a scene; smoother not to /vis/drawVolume.)
/vis/viewer/reset
/vis/viewer/set/style surface
/vis/viewer/set/projection perspective 50 deg
/control/alias phi 30
/control/loop movie.loop theta 0 360 1

where movie.loop is as above. This produces lots of jpeg files (but
takes 3 days!!!). Then...

make_mpeg2encode_parfile.sh g4RayTracer*jpeg

Then edit mpeg2encode.par to specify file type and size, etc.:

$ diff mpeg2encode.par.orig mpeg2encode.par
7c7
< 1 /* input picture file format: 0=*.Y,*.U,*.V, 1=*.yuv, 2=*.ppm */

> 2 /* input picture file format: 0=*.Y,*.U,*.V, 1=*.yuv, 2=*.ppm */
15,17c15,17
< /* horizontal_size */
< /* vertical_size */
< 8 /* aspect_ratio_information 1=square pel, 2=4:3, 3=16:9, 4=2.11:1 */

> 600 /* horizontal_size */
> 600 /* vertical_size */
> 1 /* aspect_ratio_information 1=square pel, 2=4:3, 3=16:9, 4=2.11:1 */

Then convert to ppm, encode and play:

for i in g4*jpeg;
 do j=`basename $i .jpeg`; command="convert $i $j.ppm"; echo $command; $command; done
mpeg2encode mpeg2encode.par g4RayTracer.mpg
open g4RayTracer.mpg

Footnotes

	#1

	http://www.imagemagick.org

	#2

	http://netpbm.sourceforge.net/

Debugging geometry with vis

One command in particular - /vis/drawLogicalVolume (see below) - is
designed to highlight geometry overlaps. But you can explore and check your
geometry with simple vis commands. Most examples have a vis.mac file that contains these and several other useful commands — examples/basic/B1/vis.mac is a good place to look.

/vis/drawVolume

will draw the whole detector and your can rotate and zoom. If you want to see just part of the detector:

/vis/drawVolume <sub-detector-physical-volume-name> [<copy-number>]

draws all volumes with matching name. You may use a regular expression of the form /regexp/, e.g.:

/vis/drawVolume /Shape/

draws Shape1 and Shape2 (in example B1).

You can accumulate volumes:

/vis/drawVolume <physical-volume-name1>
/vis/scene/add/volume <physical-volume-name2>

You can also limit the depth of descent of the geometry hierarchy:

/vis/drawVolume ! ! 2

draws the world to depth 2.

/vis/scene/list # to see what’s in the scene.

If you are using Qt, what you might find helpful is a little pick icon, 5th from the left on the top menu bar of the Qt GUI. It opens a little window and if you click on a shape its properties are displayed in the window.

With a plain OpenGL window, try /vis/viewer/set/picking.

If you know the place of the volume in the geometry hierarchy (we call it a “touchable”), you can /vis/set/touchable and /vis/touchable/dump. Look at the guidance to see how to use the commands. You might find /vis/drawTree useful.

All vis commands have extensive guidance. Use help or ls on the command line or the Help tab in Qt, or see "Built-in Commands" in the Application Developers Guide.

Using advanced vis tools

/vis/drawLogicalVolume can highlight overlaps. But first you may need to
identify the offending volumes. Detecting Overlapping Volumes describes how to do this.

/geometry/test/run

gives output such as:

Checking overlaps for volume Shape1 ...
-------- WWWW ------- G4Exception-START -------- WWWW -------
*** G4Exception : GeomVol1002
 issued by : G4PVPlacement::CheckOverlaps()
Overlap with volume already placed !
 Overlap is detected for volume Shape1:0
 with Shape2:0 volume's
 local point (0,30,-29.1037), overlapping by at least: 896.261 um
NOTE: Reached maximum fixed number -1- of overlaps reports for this volume !
*** This is just a warning message. ***
-------- WWWW -------- G4Exception-END --------- WWWW -------

[image: ../_images/Shape1overlap.png]

Fig. 26 Example B1 with overlapping volumes. (To generate the above one placement in B1::DetectorConstruction::Construct() was moved in order to make an overlap.)

Pick the offending volume name from the error message above:

/vis/touchable/findPath Shape1

This gives something like the following output:

World 0 Envelope 0 Shape1 0 (mother logical volume: Envelope)
Use this to set a particular touchable with "/vis/set/touchable <path>"
or to see overlaps: "/vis/drawLogicalVolume <mother-logical-volume-name>"

Then take the mother logical volume name from the above message:

/vis/drawLogicalVolume Envelope
/vis/viewer/set/style wireframe

Now we see the offending volumes highlighted in pink, and the sampling points in pale blue.

[image: ../_images/Shape1overlapsdrawn.png]

Fig. 27 Overlaps highlighted.

It may help to see all the points with:

/vis/viewer/set/hiddenMarker false

If by chance the offending volumes are “invisible”, make them visible with:

/vis/viewer/set/culling global false
/vis/viewer/rebuild

Footnotes

External Boolean processing

Footnotes

Analysis

	Introduction

	Analysis Manager Classes
	Analysis Manager

	Files handling

	Histograms

	Profiles

	Ntuples

	Analysis objects handling

	Plotting

	Parallel Processing

	Supported Features and Limitations

	Analysis Reader Classes
	Analysis Reader

	File handling

	Histograms and Profiles

	Ntuples

	Accumulables
	G4Accumulable<T>

	User defined accumulables

	g4tools
	g4tools package

	User API

Footnotes

Introduction

The analysis category based on g4tools was added in the Geant4 9.5
release with the aim to provide the users a “light” analysis tool
available directly with Geant4 installation without a need to link their
Geant4 application with an external analysis package. It consists of the
analysis manager classes and it includes also the g4tools package.

g4tools provides code to write and read histograms and ntuples in
several formats: ROOT, HDF5, XML AIDA format and CSV (comma-separated values
format). It is a part of inlib and exlib libraries, that include also
other facilities like fitting and plotting.

The output in HDF5 format (since Geant4 10.4) requires the HDF5 libraries installation
as well as Geant4 libraries built with the -DGEANT4_USE_HDF5=ON CMake option.

The analysis classes provide a uniform, user-friendly interface to
g4tools and hide the differences according to a selected output
technology from the user. They take care of a higher-level management of
the g4tools objects (files, histograms and ntuples), handle allocation
and removal of the objects in memory and provide the access methods to
them via indexes. They are fully integrated in the Geant4 framework:
they follow Geant4 coding style and also implement the built-in Geant4
user interface commands that can be used by users to define or configure
their analysis objects.

An example of use of analysis manager classes is provided in basic
examples B4 and B5, in their RunAction and EventAction classes.

Footnotes

Analysis Manager Classes

The analysis manager classes provide uniform interfaces to the g4tools
package and hide the differences between use of g4tools classes for the
supported output formats (ROOT, HDF5, AIDA XML and CSV).

Since Geant4 10.7, there is a new analysis manager class capable to mix
output file formats:

	G4GenericAnalysisManager

Mixing of different output types is supported for histogram and profiles objects,
only one output type is supported for ntuples.

An analysis manager class is available also for each supported output format:

	G4CsvAnalysisManager

	G4Hdf5AnalysisManager

	G4RootAnalysisManager

	G4XmlAnalysisManager

For a simplicity of use, each analysis manager provides the complete
access to all interfaced functions though it is implemented via a more
complex design. This design allows the user to use all output technologies
in an identical way via a generic G4AnalysisManager type defined as:

using G4AnalysisManager = G4XyzAnalysisManager;
 // where Xyz = Generic, Csv, Hdf5, Root, Xml

The managers are implemented as Geant4 singletons. User code will access a
pointer to a single instance of the desired manager. The manager is created
with the first call to the Instance() function and it is deleted
by Geant4 kernel at the end of a user application. All objects created via
analysis manager are deleted automatically with the manager.
In addition to the G4AnalysisManager functions, a set of Geant4 UI
commands for creating histograms and setting their properties is
implemented in associated messenger classes.

Analysis Manager

To use Geant4 analysis, an instance of the analysis manager must be
created. The analysis manager object is created with the first call to
G4AnalysisManager::Instance(), the next calls to this function will
just provide the pointer to this analysis manager object.

The example of the code for creating the analysis manager extracted from
the basic B4 example is given below:

#include "G4AnalysisManager.hh"

namespace B4
{

RunAction::RunAction()
{
 // Create analysis manager
 auto analysisManager = G4AnalysisManager::Instance();
 analysisManager->SetVerboseLevel(1);
}

}

It is recommended, but not necessary, to create the analysis manager in
the user run action constructor. This guarantees correct behavior in
multi-threading mode.

The G4AnalysisManager.hh header (new since Geant4 11) defines the
G4GenericAnalysisManager as G4AnalysisManager type:

#ifndef G4AnalysisManager_h
#define G4AnalysisManager_h

#include "G4GenericAnalysisManager.hh"

using G4AnalysisManager = G4GenericAnalysisManager;

#endif

The level of informative printings can be set by
SetVerboseLevel(G4int). Currently the levels from 0 (default) up to
4 are supported.

The verbose level can be also set via the UI command:

/analysis/verbose level

Since Gean4 version 11 the analysis manager is defined as a Geant4
thread-local singleton and users need not and should not delete its
instance. Public functions Clear() and Reset() are provided to allow
resetting and deleting all allocated analysis objects and clearing their collections:

G4bool Reset();
void Clear();

The Clear() function can be used as a replacement for deleting the analysis manager
in the applications that allocate the analysis data in the begin of run and deleted
the analysis manager in the end of run.

Data ressetting can be also performed with a UI command (Since Geant4 11.1):

/analysis/reset

The list of all analysis objects can be obtained by the List() function with
an optional boolean argument to choose to display only active objects:

G4bool List(G4bool onlyIfActive = true) const;

or a UI command:

/analysis/list [onlyIfActive]

Files handling

Below we give an example of opening and closing a file extracted from the basic example B4:

#include "G4AnalysisManager.hh"

void RunAction::BeginOfRunAction(const G4Run* run)
{
 // Get analysis manager
 auto analysisManager = G4AnalysisManager::Instance();

 // Open an output file
 G4String fileName = "B4.root";
 analysisManager->OpenFile(fileName);
}

void RunAction::EndOfRunAction(const G4Run* aRun)
{
 // Save histograms
 auto analysisManager = G4AnalysisManager::Instance();
 analysisManager->Write();
 analysisManager->CloseFile();
}

The following G4AnalysisManager functions are defined for handling files:

G4bool OpenFile(const G4String& fileName = "");
G4bool Write();
G4bool CloseFile(G4bool reset = true);

The file name can be defined either directly with
OpenFile(const G4String&) call or separately via
SetFileName(const G4String&) function before calling OpenFile().
It is not possible to change the file name when a file is open and not
yet closed. Since Geant4 version 11 multiple files can be hadled at a time,
the functions remain valid and define the name of the default file.

The call to Write() triggers writing remaining data to all open files
and the call to CloseFile() closing all files and automatic resetting histograms and
ntuples data. Since Geant4 10.5, it is possible to close a file without
resetting the histogram data. This feature is newly used in example B5
to keep the histograms available for visualization plotting (resetting of histograms
is then performed by a call to Reset() in the begin of the next run).
Another use case is in MPI extended examples to write the histograms collected on the master
rank before they are merged and written in another file.

Since Geant4 11.1, it is possible to call Write() multiple times before closing
a file. The written objects will then be written with a new name composed of the original name
appended with a suffix containing the object cycle number, for example:

myHisto myHisto;1 myHisto;2 etc. in case of the Root output
myHisto myHisto_v1 myHisto_v2 etc. in case of the other output types

The fuctions for file handling can be also performed with UI commands (new since Geant4 11.1):

/analysis/openFile [fileName]
/analysis/write
/analysis/closeFile [isReset]

A new extended analysis example, AnaEx03, has been added to demonstrate usage
of the new analysis commands for file management and in particular writing histograms
and ntuples in a file multiple times.

As G4GenericAnalysisManager can handle all supported file formats, the file names
should be provided with an extension (.csv, .hdf5, .root or .xml).
To continue using file names without extensions, users can set the default
file type using the G4AnalysisManager function
(new in Geant4 version 11):

void SetDefaultFileType(const G4String& value);

or a UI command:

/analysis/setDefaultFileType fileType
 ... where fileType = csv, hdf5, root, xml

Multiple files handling

Users can choose to write selected objects in a different file than the default one using the
G4AnalysisManager functions

void SetH1FileName(G4int objectId, const G4String& name);
 //... etc. for H2, H3, P1, P2
void SetNtupleFileName(G4int objectId, const G4String& name);

The setting can be also performed with UI commands:

/analysis/h1/setFileName id name
/analysis/h1/setFileNameToAll name
 ... etc. for h2, h3, p1, p2
/analysis/ntuple/setFileName id fileName
/analysis/ntuple/setFileNameToAll fileName

While it is possible to mix output types for histogram and profiles objects,
only one output type is supported for ntuples.
Saving of histograms and ntuple in two output files in a Root file format
is demonstrated in the basic B5 example.

The output specific analysis managers (the analysis manager defined via the
G4XxxAnalysisManager.hh, Xxx = Csv, Hdf5, Root, Xml include) can also handle multiple
files, but all files must be of the same (manager specific) output type.

Depending on the selected output format more files can be generated even
when only one file name is set. This is the case of XML, which does not allow
writing more than one ntuple in a file, and CSV, which is writing each object
(histograms, profile or ntuple) in a separate file. The ntuple (or histogram) file
name is then generated automatically from the base file name and the ntuple
(or histogram) name.

File Directories

The file can be optionally structured in sub-directories. Currently only
one directory for histograms and/or one directory for ntuples are
supported. The directories are created automatically if their names are
set to non-empty string values via G4AnalysisManager functions:

SetHistoDirectoryName(const G4String&)
SetNtupleDirectoryName(const G4String&)

The following commands for handling files and directories are available

/analysis/setFileName name # Set name for the output file
/analysis/setHistoDirName name # Set name for the histograms directory
/analysis/setNtupleDirName name # Set name for the histograms directory

Since Geant4 version 11, in case of the Csv output type, which does not support
a directory structure within a file, directories are interpreted as file system directories.
The histogram and ntuple files are saved in directories, if their names are set and
if the directories exist in the file system. If a directory does not exists
(the existence is checked at SetHisto/NtupleDirectoryName() call),
the histograms/ntuples are written in the current directory and a warning is issued.

Histograms

The code for handling histograms given in the following example is
extracted the B4 example classes. In this example, the histograms are
created in the run action constructor and they are filled in the end of
event.

#include "G4AnalysisManager.hh"

RunAction::RunAction()
{
 // Create analysis manager
 // ...

 // Creating histograms
 analysisManager->CreateH1("Eabs","Edep in absorber", 100, 0., 800*MeV);
 analysisManager->CreateH1("Egap","Edep in gap", 100, 0., 100*MeV);
}

void EventAction::EndOfEventAction(const G4Run* aRun)
{
 // Fill histograms
 auto analysisManager = G4AnalysisManager::Instance();
 analysisManager->FillH1(0, fEnergyAbs);
 analysisManager->FillH1(1, fEnergyGap);
}

Creating Histograms

A one-dimensional (1D) histogram can be created with one of these two
G4AnalysisManager functions:

G4int CreateH1(const G4String& name, const G4String& title,
 G4int nbins, G4double xmin, G4double xmax,
 const G4String& unitName = "none",
 const G4String& fcnName = "none",
 const G4String& binSchemeName = "linear");

G4int CreateH1(const G4String& name, const G4String& title,
 const std::vector<G4double>& edges,
 const G4String& unitName = "none",
 const G4String& fcnName = "none");

where name and title parameters are self-descriptive. The
histogram edges can be defined either via the nbins, xmin and
xmax parameters (first function) representing the number of bins,
the minimum and maximum histogram values, or via the
const std::vector<G4double>& edges parameter (second function)
representing the edges defined explicitly. The other parameters in both
functions are optional and their meaning is explained in
Histograms Properties.

Two-dimensional (2D) and three-dimensional (3D) histograms can be
created with one of these two functions analogous to those for 1D
histograms:

G4int CreateH2(const G4String& name, const G4String& title,
 G4int nxbins, G4double xmin, G4double xmax,
 G4int nybins, G4double ymin, G4double ymax,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none",
 const G4String& xbinScheme = "linear",
 const G4String& ybinScheme = "linear");

G4int CreateH2(const G4String& name, const G4String& title,
 const std::vector<G4double>& xedges,
 const std::vector<G4double>& yedges,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none");

G4int CreateH3(const G4String& name, const G4String& title,
 G4int nxbins, G4double xmin, G4double xmax,
 G4int nybins, G4double ymin, G4double ymax,
 G4int nzbins, G4double zmin, G4double zmax,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& zunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none",
 const G4String& zfcnName = "none",
 const G4String& xbinSchemeName = "linear",
 const G4String& ybinSchemeName = "linear",
 const G4String& zbinSchemeName = "linear");

G4int CreateH3(const G4String& name, const G4String& title,
 const std::vector<G4double>& xedges,
 const std::vector<G4double>& yedges,
 const std::vector<G4double>& zedges,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& zunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none",
 const G4String& zfcnName = "none");

The meaning of parameters is the same as in the functions for 1D
histograms, they are just applied in x, y and z dimensions.

The histograms created with G4AnalysisManager get automatically
attributed an integer identifier which value is returned from the
"Create" function. The default start value is 0 and it is incremented by
1 for each next created histogram. The numbering of 2D and 3D histograms
is independent from 1D histograms and so the first created 2D (or 3D)
histogram identifier is equal to the start value even when several 1D
histograms have been already created.

The start histogram identifier value can be changed either with the
SetFirstHistoId(G4int) method, which applies the new value to all
histogram types, or with the SetFirstHNId(G4int), where
N = 1, 2, 3 methods, which apply the new value only to the relevant
histogram type.

All histograms created by G4AnalysisManager are automatically
deleted with deleting the G4AnalysisManager object in the end
of the application or by the call to G4AnalysisManager::Clear().

Histograms can be also created via UI commands. The commands to create
1D histogram:

/analysis/h1/create # Create 1D histogram
 name title [nbin min max] [unit] [fcn] [binScheme]

The commands to create 2D histogram:

/analysis/h2/create # Create 2D histogram
 name title [nxbin xmin xmax xunit xfcn xbinScheme nybin ymin ymax yunit yfcn yBinScheme]

The commands to create 3D histogram:

/analysis/h3/create # Create 3D histogram
 name title [nxbin xmin xmax xunit xfcn xbinScheme nybin ymin ymax
 yunit yfcn yBinScheme nzbin zmin zmax zunit zfcn zBinScheme]

Configuring Histograms

The properties of already created histograms can be changed with use of
one of these two functions sets. For 1D histograms:

G4bool SetH1(G4int id,
 G4int nbins, G4double xmin, G4double xmax,
 const G4String& unitName = "none",
 const G4String& fcnName = "none",
 const G4String& binSchemeName = "linear");

G4bool SetH1(G4int id,
 const std::vector<G4double>& edges,
 const G4String& unitName = "none",
 const G4String& fcnName = "none");

for 2D histograms:

G4bool SetH2(G4int id,
 G4int nxbins, G4double xmin, G4double xmax,
 G4int nybins, G4double ymin, G4double ymax,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none",
 const G4String& xbinSchemeName = "linear",
 const G4String& ybinSchemeName = "linear");

G4bool SetH2(G4int id,
 const std::vector<G4double>& xedges,
 const std::vector<G4double>& yedges,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none");

and for 3D histograms:

G4bool SetH3(G4int id,
 G4int nxbins, G4double xmin, G4double xmax,
 G4int nzbins, G4double zmin, G4double zmax,
 G4int nybins, G4double ymin, G4double ymax,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& zunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none",
 const G4String& zfcnName = "none",
 const G4String& xbinSchemeName = "linear",
 const G4String& ybinSchemeName = "linear",
 const G4String& zbinSchemeName = "linear");

G4bool SetH3(G4int id,
 const std::vector<G4double>& xedges,
 const std::vector<G4double>& yedges,
 const std::vector<G4double>& zedges,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& zunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none",
 const G4String& zfcnName = "none");

The histogram is accessed via its integer identifier. The meaning of the
other parameters is the same as in "Create" functions.

Histogram properties can be also defined via UI commands. The commands
to define 1D histogram

/analysis/h1/set id nbin min max [unit] [fcn] [binScheme] # Set parameters

The commands to define 2D histogram:

Set parameters for the 2D histogram of #id
/analysis/h2/set
 id nxbin xmin xmax xunit xfcn xbinScheme nybin ymin ymax yunit yfcn yBinScheme

Set parameters per dimension
/analysis/h2/setX id nbin min max [unit] [fcn] [binScheme] # Set x-parameters
/analysis/h2/setY id nbin min max [unit] [fcn] [binScheme] # Set y-parameters

The commands to define 3D histogram:

Set parameters for the 3D histogram of #id
/analysis/h3/set =
 id nxbin xmin xmax xunit xfcn xbinScheme nybin ymin ymax yunit yfcn yBinScheme nzbin zmin zmax zunit zfcn zBinScheme

Set parameters per dimension
/analysis/h3/setX id nbin min max [unit] [fcn] [binScheme] # Set x-parameters
/analysis/h3/setY id nbin min max [unit] [fcn] [binScheme] # Set y-parameters
/analysis/h3/setY id nbin min max [unit] [fcn] [binScheme] # Set z-parameters

A limited set of parameters for histograms plotting, the histogram and
the histogram axis titles, can be also defined via functions

G4bool SetH1Title(G4int id, const G4String& title);
G4bool SetH1XAxisTitle(G4int id, const G4String& title);
G4bool SetH1YAxisTitle(G4int id, const G4String& title);
//
G4bool SetH2Title(G4int id, const G4String& title);
G4bool SetH2XAxisTitle(G4int id, const G4String& title);
G4bool SetH2YAxisTitle(G4int id, const G4String& title);
G4bool SetH2ZAxisTitle(G4int id, const G4String& title);
//
G4bool SetH3Title(G4int id, const G4String& title);
G4bool SetH3XAxisTitle(G4int id, const G4String& title);
G4bool SetH3YAxisTitle(G4int id, const G4String& title);
G4bool SetH3ZAxisTitle(G4int id, const G4String& title);

The corresponding UI commands

/analysis/h1/setTitle id title # Set title for the 1D histogram of #id
/analysis/h1/setXaxis id title # Set x-axis title for the 1D histogram
/analysis/h1/setYaxis id title # Set y-axis title for the 1D histogram

The same set of commands is available for the other histogram types and
profiles, under the appropriate directory.

Filling Histograms

The histogram values can be filled using the functions:

G4bool FillH1(G4int id, G4double value,
 G4double weight = 1.0);
G4bool FillH2(G4int id, G4double xvalue, G4double yvalue,
 G4double weight = 1.0);
G4bool FillH3(G4int id,
 G4double xvalue, G4double yvalue, G4double zvalue,
 G4double weight = 1.0);

where the weight can be given optionally.

The histograms can be also scaled with a given factor using the
functions:

G4bool ScaleH1(G4int id, G4double factor);
G4bool ScaleH2(G4int id, G4double factor);
G4bool ScaleH3(G4int id, G4double factor);

Histograms Properties

The following properties, additional to those defined in g4tools, can be
added to histograms via G4AnalysisManager:

	Unit:
if a histogram is defined with a unit, all filled values are
automatically converted to this defined unit and the unit is added to
the histogram axis title.

	Function:
if a histogram is defined with a function, the function is
automatically executed on the filled values and its name is added to
the histogram axis title. When a histogram is defined with both unit
and function the unit is applied first. The available functions:
log, log10, exp.

	Binning scheme:
user can select logarithmic binning scheme besides the linear one
(default). The available binning schemes: linear, log.

	Activation:
see the Activation of Analysis Objects section.

	ASCII option:
if activated the histogram is also printed in an ASCII file when
Write() function is called.

	Plotting option:
if activated the histogram is plotted in a file of Postscript format
when Write() function is called. See more details in the Plotting
section.

	File name:
if defined, the histogram is written in a new file with the histogram
file name which is open at the Write() call and then closed with
all files open at CloseFile() call.

Profiles

Profile histograms (profiles) are used to display the mean value of Y
and its error for each bin in X. The displayed error is by default the
standard error on the mean (i.e. the standard deviation divided by the
sqrt(n).) An example of use of 1D profiles can be found in
extended/electromagnetic/TestEm2. Though the functions for creating
and manipulating profiles are very similar to those for histograms, they
are described in this section.

Creating Profiles

A one-dimensional (1D) profile can be created with one of these two
G4AnalysisManager functions

G4int CreateP1(const G4String& name, const G4String& title,
 G4int nbins, G4double xmin, G4double xmax,
 G4double ymin = 0, G4double ymax = 0,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none",
 const G4String& xbinSchemeName = "linear");

G4int CreateP1(const G4String& name, const G4String& title,
 const std::vector<G4double>& edges,
 G4double ymin = 0, G4double ymax = 0,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none");

where name and title parameters are self-descriptive. The
profile edges can be defined either via the nbins, xmin and
xmax parameters (first function) representing the number of bins,
the minimum and maximum profile values, or via the
const std::vector<G4double>& edges parameter (second function)
representing the edges defined explicitly. If ymin and ymax
parameters are provides, only values between these limits will be
considered at filling time. The other parameters in both functions are
optional and their meaning is explained in Profiles Properties.

A two-dimensional (2D) profile can be created with one of these two
functions analogous to those for 1D profiles:

G4int CreateP2(const G4String& name, const G4String& title,
 G4int nxbins, G4double xmin, G4double xmax,
 G4int nybins, G4double ymin, G4double ymax,
 G4double zmin = 0, G4double zmax = 0,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& zunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none",
 const G4String& zfcnName = "none",
 const G4String& xbinSchemeName = "linear",
 const G4String& ybinSchemeName = "linear");

G4int CreateP2(const G4String& name, const G4String& title,
 const std::vector<G4double>& xedges,
 const std::vector<G4double>& yedges,
 G4double zmin = 0, G4double zmax = 0,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& zunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none",
 const G4String& zfcnName = "none");

The meaning of parameters is the same as in the functions for 1D
profiles, they are just applied in x, y and z dimensions.

The profiles created with G4AnalysisManager get automatically
attributed an integer identifier which value is returned from the
"Create" function. The default start value is 0 and it is incremented by
1 for each next created profile. The numbering of 2D profiles is
independent from 1D profiles and so the first created 2D profile
identifier is equal to the start value even when several 1D profiles
have been already created.

The start profile identifier value can be changed either with the
SetFirstProfileId(G4int) method, which applies the new value to both
1D and 2D profile types, or with the SetFirstPNId(G4int), where
N = 1, 2 methods, which apply the new value only to the relevant
profile type.

All profiles created by G4AnalysisManager are automatically deleted
with deleting the G4AnalysisManager object in the end
of the application or by the call to G4AnalysisManager::Clear().

Profiles can be also created via UI commands. The commands to create 1D
profile

/analysis/p1/create # Create 1D profile
 name title [nxbin xmin xmax xunit xfcn xbinScheme ymin ymax yunit yfcn]

The commands to create 2D profile:

/analysis/p2/create # Create 2D profile
 name title [nxbin xmin xmax xunit xfcn xbinScheme nybin ymin ymax yunit yfcn yBinScheme zmin zmax zunit zfcn]

Configuring Profiles

The properties of already created profiles can be changed with use of
one of these two functions sets. For 1D profiles

G4bool SetP1(G4int id,
 G4int nbins, G4double xmin, G4double xmax,
 G4double ymin = 0, G4double ymax = 0,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none",
 const G4String& xbinSchemeName = "linear");

G4bool SetP1(G4int id,
 const std::vector<G4double>& edges,
 G4double ymin = 0, G4double ymax = 0,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none");

and for 2D profiles:

G4bool SetP2(G4int id,
 G4int nxbins, G4double xmin, G4double xmax,
 G4int nybins, G4double ymin, G4double ymax,
 G4double zmin = 0, G4double zmax = 0,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& zunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none",
 const G4String& zfcnName = "none",
 const G4String& xbinSchemeName = "linear",
 const G4String& ybinSchemeName = "linear");

G4bool SetP2(G4int id,
 const std::vector<G4double>& xedges,
 const std::vector<G4double>& yedges,
 G4double zmin = 0, G4double zmax = 0,
 const G4String& xunitName = "none",
 const G4String& yunitName = "none",
 const G4String& zunitName = "none",
 const G4String& xfcnName = "none",
 const G4String& yfcnName = "none",
 const G4String& zfcnName = "none");

The profile is accessed via its integer identifier. The meaning of the
other parameters is the same as in "Create" functions.

Profiles properties can be also defined via UI commands. The commands to
define 1D profile

/analysis/p1/set # Set parameters for the 1D histogram of #id
 id nxbin xmin xmax xunit xfcn xbinScheme ymin ymax yunit yfcn

The commands to create or define 2D profile:

/analysis/p2/set # Set parameters for the 2D profile of #id
 id nxbin xmin xmax xunit xfcn xbinScheme nybin ymin ymax yunit yfcn yBinScheme zmin zmax zunit zfcn

A limited set of parameters for profiles plotting, the profile and the
profile axis titles, can be also defined via functions

G4bool SetP1Title(G4int id, const G4String& title);
G4bool SetP1XAxisTitle(G4int id, const G4String& title);
G4bool SetP1YAxisTitle(G4int id, const G4String& title);
//
G4bool SetP2Title(G4int id, const G4String& title);
G4bool SetP2XAxisTitle(G4int id, const G4String& title);
G4bool SetP2YAxisTitle(G4int id, const G4String& title);
G4bool SetP2ZAxisTitle(G4int id, const G4String& title);

The parameters can be also set via the same set of UI commands as the
histogram parameters available under the appropriate directory.

Filling Profiles

The profile values can be filled using the functions:

G4bool FillP1(G4int id,
 G4double xvalue, G4double yvalue,
 G4double weight = 1.0);
G4bool FillP2(G4int id,
 G4double xvalue, G4double yvalue, G4double zvalue,
 G4double weight = 1.0);

where the weight can be given optionally.

The profiles can be also scaled with a given factor using the functions:

G4bool ScaleP1(G4int id, G4double factor);
G4bool ScaleP2(G4int id, G4double factor);

Profiles Properties

All histogram features described in the Histograms Properties section
are also available for profiles.

Ntuples

In the following example the code for handling ntuples extracted from
basic example B4, from the B4::RunAction and B4a::EventAction
classes, is presented.

#include "G4AnalysisManager.hh"

RunAction::RunAction()
 : G4UserRunAction()
{
 // Create analysis manager
 // ...

 // Create ntuple
 man->CreateNtuple("B4", "Edep and TrackL");
 man->CreateNtupleDColumn("Eabs");
 man->CreateNtupleDColumn("Egap");
 man->FinishNtuple();
}

void EventAction::EndOfEventAction(const G4Run* aRun)
{
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->FillNtupleDColumn(0, fEnergyAbs);
 man->FillNtupleDColumn(1, fEnergyGap);
 man->AddNtupleRow();
}

Since 10.0 release, there is no limitation for the number of ntuples
that can be handled by G4AnalysisManager. Handling of two ntuples is
demonstrated in extended analysis/AnaEx01 example.

Creating Ntuples

An ntuple can be created using the following set of functions:

G4int CreateNtuple(const G4String& name, const G4String& title);

// Create columns in the last created ntuple
G4int CreateNtupleXColumn(const G4String& name);
void FinishNtuple();

// Create columns in the ntuple with given id
G4int CreateNtupleXColumn(G4int ntupleId, const G4String& name);
void FinishNtuple(G4int ntupleId);

The first set is demonstrated in the example. The columns can take the
values of G4int, G4float, G4double or G4String type
which is also reflected in the CreateNtupleXColumn() function names.
where X can be I, F, D or S.

It is also possible to define ntuple columns of std::vector of
G4int, G4float or G4double values using the functions:

// Create columns of vector in the last created ntuple
G4int CreateNtupleXColumn(
 const G4String& name, std::vector<Xtype>& vector);

// Create columns of vector in the ntuple with given id
G4int CreateNtupleXColumn(G4int ntupleId,
 const G4String& name, std::vector<Xtype>& vector);

where [X, Xtype] can be
[I, G4int], [F, G4float] or [D, G4double].

When all ntuple columns are created, the ntuple has to be closed using
FinishNtuple() function.

The ntuples created with G4AnalysisManager get automatically
attributed an integer identifier which value is returned from the
"Create" function. The default start value is 0 and it is incremented by
1 for each next created ntuple. The start ntuple identifier value can be
changed with the SetFirstNtupleId(G4int) function.

The integer identifiers are also attributed to the ntuple columns. The
numbering of ntuple columns is independent for each ntuple, the
identifier default start value is 0 and it is incremented by 1 for each
next created column regardless its type (I, F, D or S). (If the
third ntuple column of a different type than double (int or
float) is created in the demonstrated example, its identifier will
have the value equal 2.) The start ntuple column identifier value can be
changed with the SetFirstNtupleColumnId(G4int) function.

When calls to CreateNtuple-Column() and FinishNtuple() succeed
the call to CreateNtuple(), the ntupleId argument need not to be
specified even when creating several ntuples. However this order is not
enforced and the second set of functions with ntupleId argument is
provided to allow the user to create the ntuples and their columns in
whatever order.

All ntuples and ntuple columns created by G4AnalysisManager are
automatically deleted with deleting the G4AnalysisManager object
in the end of the application or by the call to G4AnalysisManager::Clear().

Since Geant4 11.2 ntuple can be also created via UI commands:

/analysis/ntuple/create name title
/analysis/ntuple/create[I|F|D|S]Column name
/analysis/ntuple/finish

Filling Ntuples

The ntuple values of fundamental and string types can be filled using the functions:

// Methods for ntuple with id = FirstNtupleId
G4bool FillNtupleIColumn(G4int id, G4int value);
G4bool FillNtupleFColumn(G4int id, G4float value);
G4bool FillNtupleDColumn(G4int id, G4double value);
G4bool FillNtupleSColumn(G4int id, const G4String& value);

// Methods for ntuple with id > FirstNtupleId (when more ntuples exist)
G4bool FillNtupleIColumn(G4int ntupleId, G4int columnId, G4int value);
G4bool FillNtupleFColumn(G4int ntupleId, G4int columnId, G4float value);
G4bool FillNtupleDColumn(G4int ntupleId, G4int columnId, G4double value);
G4bool FillNtupleSColumn(G4int ntupleId, G4int id, const G4String& value);

If only one ntuple is defined in the user application, the ntuple
identifier, ntupleId, need not to be specified and the first set can
be used. The second set of functions has to be used otherwise.

The FillNtupleXColumn() functions should not be called for the columns of
vector type, as these are directly associated with the vector reference and so don't
need to be filled.

When all ntuple columns are filled, the ntuple fill has to be closed by calling
AddNtupleRow():

// Methods for ntuple with id = FirstNtupleId
G4bool AddNtupleRow();

// Methods for ntuple with id > FirstNtupleId (when more ntuples exist)
G4bool AddNtupleRow(G4int ntupleId);

Analysis objects handling

While the functions for creating and filling analysis objects (histograms, profiles and ntuples) are specific to the object type, the functions for objects access, activation
and newly added objects deleting have the same signature for all objects and can be
described in a common section.

Accessing Analysis Objects

G4AnalysisManager provides the direct access to the g4tools
histogram, profiles and ntuple objects via their integer identifiers:

tools::histo::h1d* GetH1(G4int id, G4bool warn = true, G4bool onlyIfActive = true) const;
tools::histo::h2d* GetH2(G4int id, G4bool warn = true, G4bool onlyIfActive = true) const;
tools::histo::h3d* GetH3(G4int id, G4bool warn = true, G4bool onlyIfActive = true) const;
tools::histo::p1d* GetP1(G4int id, G4bool warn = true, G4bool onlyIfActive = true) const;
tools::histo::p2d* GetP2(G4int id, G4bool warn = true, G4bool onlyIfActive = true) const;

ntuple_type GetNtuple(G4bool warn = true, G4bool onlyIfActive = true) const;
ntuple_type GetNtuple(G4int id, G4bool warn = true, G4bool onlyIfActive = true) const;

If an object with a given id is not found, a warning is issued
unless it is explicitly disabled by the user. The id parameter can be ommitted in GetNtuple, the analysis manager then returns the first ntuple created. The last optional boolean argument
can be used to choose to get only an active object.

The GetNtuple return type depends on the choice of the analysis manager type. G4GenericAnalysisManager (default) returns tools::ntuple_booking*, that is used to construct ntuples and is common to all managers. The output specific managers return their specific ntuple type.

With using auto, users need not to declare the g4tools object type explicitly.
In example B4, the g4tools histogram functions mean() and rms() are called:

auto analysisManager = G4AnalysisManager::Instance();
if (analysisManager->GetH1(1)) {
 G4cout << "\n ----> print histograms statistic \n" << G4endl;
 G4cout << " EAbs : mean = " << analysisManager->GetH1(1)->mean()
 << " rms = " << analysisManager->GetH1(1)->rms(),
 << G4endl;
 // ...
}

Besides the fast access to analysis objects via their integer identifiers, histograms
and profiles can be also accessed by their names using the
G4AnalysisManager function providing the conversion from a name in a
histogram identifier:

G4int GetH1Id(const G4String& name, G4bool warn = true) const;
 // etc for H2, H3, P1, P2

This way is however less efficient and it is not recommended for frequently called
functions as e.g. Fill().

The list of defined analysis objects can be obtained by the List*() function
with an optional boolean argument to choose to display only active objects:

G4bool ListH1(G4bool onlyIfActive = true) const;
 // etc for H2, H3, P1, P2, Ntuple

or by corresponding UI commands:

/analysis/h1/list [onlyIfActive]
 // etc for h2, h3, p1, p2, ntuple

Activation of Analysis Objects

The activation option allows the user to activate only selected
histograms, profiles or ntuples. When this option is activated, only the analysis
objects marked as activated are returned, filled or saved in a file. This feature is
intensively used in extended/electromagnetic examples where all
histograms are first created inactivated:

auto analysisManager = G4AnalysisManager::Instance();
analysisManager->SetActivation(true);
// define histogram parameters name, title, nbins, vmin, vmax
G4int id = analysisManager->CreateH1(name, title, nbins, vmin, vmax);
analysisManager->SetH1Activation(id, false);

and then selected histograms are activated in macros, using the analysis
"set" command

/analysis/h1/set 1 100 0 50 cm #track length of primary
/analysis/h1/set 2 100 0 300 none #nb steps of primary

The activation option is not switched on by default. It has to be
activated either via analysisManager SetActivation(true) call as
above or via the UI command:

/analysis/setActivation true|false # Set activation option

When no parameters need to be changed a histogram can be activated using
"setActivation" command:

/analysis/h1/setActivation id true|false # Set activation to histogram #id
/analysis/h1/setActivationToAll true|false # Set activation to all 1D histograms.
 // etc for h2, h3, p1, p2, ntuple

Deleting Selected Analysis Objects

Though there is no need for users to take care of memory management of the analysis
objects (histograms, profiles and ntuples) as this is completely handled by the analysis
manager, since Geant4 11.2, users have a possibility to delete selected objects
using the following analysis manager functions:

G4bool DeleteH1(G4int id, G4bool keepSetting = false);
 // etc for H2, H3, P1, P2, Ntuple

and corresponding UI commands:

/analysis/h1/delete id [keepSetting]
 // etc for h2, h3, p1, p2, ntuple

The integer identifiers of already created objects do not change with deleting selected objects. GetHn|Pn|Ntuple(idx) function will return nullptr if the object at the idx position was deleted. It is under user responsibility to test the returned value before its use. When an analysis manager function is called with idx of an object that was deleted, a warning is issued, but no segmentation violation error happens.

When a new object is created after some objects were deleted, it gets attributed the first available identifier. If, for example, we create five h1 histograms before Run 0 and
then delete the h1 histograms with id = 2 and id = 4 before Run 1, and create again two new h1 histograms before Run 2 these new histograms get id = 2 and id = 4.

If keepSetting was set to true, the additional information (object activation, object file name etc.) is kept after object deleting and it is automatically set to the new object created at this id.

Deleting and re-creating of selected histograms is demonstrated in extended analysis example, AnaEx03.

Plotting

For the interactive histograms and profiles plotting available with the Geant4 visualization system see Visualization of histograms (plotting).

In this section we describe how a graphics output file in the Postscript format containing selected histograms and
profiles can be produced with analysis tools (since Geant4 10.2).
The batch plotting can be activated using G4AnalysisManager functions:

auto analysisManager = G4AnalysisManager::Instance();
analysisManager->SetH1Plotting(id, true);
 // etc for H2, H3, P1, P2

or using the UI commands

/analysis/h1/setPlotting id true|false # (In)Activate plottig for 1D histogram #id
/analysis/h1/setPlottingToAll true|false # (In)Activate plotting for all 1D histograms.
 # etc. for h2, h3, p1, p2

If Geant4 libraries are built with support for Freetype font rendering,
user can choose from three plotting styles:

	ROOT_default: ROOT style with high resolution fonts (default)

	hippodraw: hippodraw style with high resolution fonts

	inlib_default: PAW style with low resolution fonts")

otherwise only the inlib_default style with low resolution fonts is
available.

The page size of the graphics output is fixed to A4 format. Users can
choose the page layout which is defined by the number columns and the
number of rows in a page. Depending on the selected plotting style, the
maximum number of plots is limited to 3 columns x 5 rows for the styles
with high resolution fonts and to 2 columns x 3 rows for the
inlib_default style.

Finally, users can also customize the plot dimensions, which represent
the plotter window size (width and height) in pixels.

The customization of the plotting can be done via the UI commands in
/analysis/plot directory:

/analysis/plot/setStyle styleName
/analysis/plot/setLayout columns rows
/analysis/plot/setDimensions width height

Opening more configuration parameters for users customisation can be
considered in future according to the users feedback.

Parallel Processing

As well as all other Geant4 categories, the analysis code has been
adapted for multi-threading. In multi-threading mode, the analysis
manager instances are internally created on the master and thread
workers and data accounting is processed in parallel on workers threads.

Histograms produced on thread workers are automatically merged on
Write() call and the result is written in a master file. Merging is
protected by a mutex locking, using G4AutoLock utility.

Ntuples produced on thread workers are, by default, written on separate
files, which names are generated automatically from a base file name, a
thread identifier and eventually also an ntuple name. Since Geant4
version 10.3 it is possible to activate merging of ntuples with the ROOT
output type:

auto analysisManager = G4AnalysisManager::Instance();
analysisManager->SetNtupleMerging(true);

The ntuples produced on workers will be then progressively being merged
to the main ntuples on the master.

By default, the ntuples are written at the same file as the final histograms.
Users can also select merging in a given number of files via the optional
parameter of the SetNtupleMerging() function:

void SetNtupleMerging(G4bool mergeNtuples, G4int nofReducedNtupleFiles = 0);

No merging of ntuples is provided with HDF5, CSV and AIDA XML formats.

Users can override the defaults and change the ntuple merging mode with
a new function (since 10.5, with the added second argument in 10.6):

void SetNtupleRowWise(G4bool rowWise, G4bool rowMode = true);

The available merging modes:

	column-wise not preserving rows (rowWise = false, rowMode=false)

The fastest option, but without preserving the ntuple rows after merging.

	row-wise (rowWise = true, rowMode value is not used)

In order to preserve an “event point of view” (the ntuple rows) after merging,
a row-wise merging mode was introduced in 10.4 and became a default in 10.5.
In this mode, columns are defined as leaves of a single TBranch attached to each ntuple per worker.

This approach has an inconvenience that as column-wise is used in sequential mode and row-wise
is used in parallel, the user will have different data schema (different organizations of TBranches and TLeaves) in files, which may complicate his life when reading back his data.
While this does not affect a simple analysis using TTree::Draw("branchName"),
different methods need to be used to access the data per branch. The example macros
with a simple analysis are provided in basic examples (for example B4/macros/plotNtuple.C)
and a complete access to data is demonstrated in several extended examples
(for example medical/dna/dnaphysics/plot.C).

	column-wise with preserving rows (rowWise = false, rowMode=true)

The column-wise mode enhanced with preserving the ntuple rows, it became a default in 10.6.
It requires larger memory size than the other two modes depending on the users applications.

Users can also change the default values of basket size (32000) and basket entries (4000)
using new functions (since 10.6).

void SetBasketSize(unsigned int basketSize);
void SetBasketEntries(unsigned int basketEntries);

In previous Geant4 versions the basket size could be set as an optional argument of the SetNtupleMerging function.

To simplify the scaling of a Geant4 application across nodes on a
cluster Geant4 provides the support of MPI. In particular it is possible
to run a hybrid MPI/MT application that uses MPI to scale across nodes
and MT to scale across cores. This is demonstrated in the extended
example parallel/MPI/exMPI03 which includes usage of Geant4
analysis for histograms.

A new example parallel/MPI/exMPI04, the same as exMPI03 with added ntuple,
shows how to merge, using g4tools, ntuples via MPI in sequential mode,
so that the entire statistics is accumulated in a single output file.
If MT is enabled, the ntuples are merged from threads to files per ranks.
Combined MT + MPI merging is not yet supported.

Supported Features and Limitations

The analysis category based on g4tools is provided with certain
limitations that can be reduced according to the feedback from Geant4
users and developers.

Below is a summary of currently supported features in Root, Hdf5, Csv and Xml
manager classes:

	Histogram types: 1D, 2D, 3D of double

	Profile types: 1D, 2D of double

	Ntuple column types: int, float, double, G4String,
std::vector<int>, std::vector<float>, std::vector<double>,
std::vector<std::string>

	Optional directory structure limited to one directory for histograms
and/or one for ntuples

Footnotes

Analysis Reader Classes

The analysis reader classes allow to read in g4analysis objects from the
files generated by the analysis manager(s) during processing Geant4
application.

An analysis reader class is available for each supported output format:

	G4CsvAnalysisReader

	G4Hdf5AnalysisReader

	G4RootAnalysisReader

	G4XmlAnalysisReader

For a simplicity of use, each analysis reader provides the complete
access to all interfaced functions though it is implemented via a more
complex design. This design allows the user to use all output technologies
in an identical way via a generic G4AnalysisReder type defined as:

	
	using G4AnalysisReder = G4XyzAnalysisReader;
	where Xyz = Csv, Hdf5, Root, Xml

The readers are implemented as Geant4 singletons. User code will access a
pointer to a single instance of the desired reader object. The reader is created
with the first call to the Instance() function and it is deleted
by Geant4 kernel at the end of a user application. All objects created
via analysis reader are deleted automatically with the manager.

While the histograms and profiles objects handled by the analysis reader
are of the same type as those handled by the analysis manager, the
reader's ntuple type is different.

All objects read with G4AnalysisReader (histograms, profiles and
ntuples) get automatically attributed an integer identifier which value
is returned from the "Read" or "GetNtuple" function. The default start
value is 0 and it is incremented by 1 for each next created object. The
numbering each object type is independent from other objects types and
also from the numbering of the same object type in analysis manager. The
start identifier value can be changed in the same way as with the
analysis manager (see Creating Histograms).

The read objects can be accessed in the analysis reader via their
integer identifiers or by their names in the same way as in the analysis
manager (see Accessing Analysis Objects). Note that the type of
read ntuple is different from the ntuple type in the analysis manager.

The specific manager classes are singletons and so it is not possible to
create more than one instance of an analysis reader of one type, e.g.
G4RootAnalysisReader. However two analysis reader objects of
different types can coexist.

As well as all other Geant4 categories, the analysis code has been
adapted for multi-threading. In multi-threading mode, the analysis
reader instances are internally created on the master or thread workers,
depending on the client code call, and data reading can be processed in
parallel on workers threads.

Analysis Reader

For reading in the output files created with G4AnalysisManager, an
instance of the analysis reader must be created. The analysis reader
object is created with the first call to G4AnalysisReader::Instance()
the next calls to this function will
just provide the pointer to this analysis manager object.

The example of the code for creating the analysis reader for the Root
output type is given below:

#include "G4RootAnalysisReader.hh"

using G4AnalysisReader = G4RootAnalysisReader;

// Create (or get) analysis reader
auto analysisReader = G4AnalysisReader::Instance();
analysisReader->SetVerboseLevel(1);

The using declaration defines the G4RootAnalysisReader as G4AnalysisReader
type.

The level of informative printings can be set by
SetVerboseLevel(G4int). Currently the levels from 0 (default) up to
4 are supported.

File handling

The name of file to be read can be specified either via
G4AnalysisReader::SetFileName() function, or directly when reading
an object. It is possible to change the base file name at any time. The
analysis reader can handle more than one file at same time.

auto analysisReader = G4AnalysisReader::Instance();
// Define a base file name
analysisReader->SetFileName("MyFileName");

The following functions are defined for handling files:

void SetFileName(const G4String& fileName);
G4String GetFileName() const;

A file is open only when any "Read" function is called. When more
objects are read from the same file (Xml, Root), the file is open only
once. When reading an object without specifying the file name explicitly
in "Read" call, the object is searched in all open files in the order of
their creation time.

Histograms and Profiles

In the following example the code for reading an histogram is presented.

// Code to create (or get) analysis reader
auto analysisReader = G4AnalysisReader::Instance();

// Define a base file name
analysisReader->SetFileName("MyFileName");

// Read 1D histogram of "Edep" name
G4int h1Id = analysisReader->ReadH1("Edep");
if (h1Id >= 0) {
 G4H1* h1 = analysisReader->GetH1(h1Id);
 if (h1) {
 G4cout << " H1: "
 << " mean: " << h1->mean() << " rms: " << h1->rms() << G4endl;
 }
}

The histograms and profiles can be read with these G4AnalysisReader
functions:

G4int ReadH1(const G4String& h1Name, const G4String& fileName = "");
G4int ReadH2(const G4String& h2Name, const G4String& fileName = "");
G4int ReadH3(const G4String& h3Name, const G4String& fileName = "");
G4int ReadP1(const G4String& h1Name, const G4String& fileName = "");
G4int ReadP2(const G4String& h2Name, const G4String& fileName = "");

where hNname is the name of the object to be read from a file. The
file name can be defined explicitly for each reading object.

All histograms and profiles created by G4AnalysisReader are
automatically deleted with deleting the G4AnalysisReader object
in the end of the application.

Ntuples

In the following example the code for reading ntuples is presented.

// Code to create (or get) analysis reader
auto analysisReader = G4AnalysisReader::Instance();

// Define a base file name
analysisReader->SetFileName("MyFileName");

// Read ntuple
G4int ntupleId = analysisReader->GetNtuple("TrackL");;
if (ntupleId >= 0) {
 G4double trackL;
 analysisReader->SetNtupleDColumn("Labs", trackL);
 G4cout << "Ntuple TrackL, reading selected column Labs" << G4endl;
 while (analysisReader->GetNtupleRow()) {
 G4cout << counter++ << "th entry: "
 << " TrackL: " << trackL << std::endl;
 }
}

When the ntuple columns are associated with the variables of the
appropriate type, the ntuple they can be read in a loop with
GetNtupleRow() function. The function returns true until all data
are read in.

An overview of all available functions for ntuple reading is given below:

// Methods to read ntuple from a file
G4int GetNtuple(const G4String& ntupleName, const G4String& fileName = "");

// Methods for ntuple with id = FirstNtupleId
G4bool SetNtupleXColumn(const G4String& columnName, Xtype& value);
G4bool SetNtupleXColumn(const G4String& columnName, std::vector<Xtype>& vector);
G4bool GetNtupleRow();

// Methods for ntuple with id > FirstNtupleId
G4bool SetNtupleXColumn(G4int ntupleId,
 const G4String& columnName, Xtype& value);
G4bool SetNtupleXColumn(G4int ntupleId,
 const G4String& columnName, std::vector<Xtype>& vector);
G4bool GetNtupleRow(G4int ntupleId);

where [X, Xtype] in SetNtupleXColumn() can be
[I, G4int], [F, G4float], [D, G4double] or [S, G4String].

All ntuples and ntuple columns created by G4AnalysisReader are
automatically deleted with deleting the G4AnalysisReader object
in the end of the application.

Footnotes

Accumulables

The classes for users accumulables management were added in 10.2 release
for the purpose of simplification of users application code. The
accumulables objects are named variables registered to the accumulable
manager, which provides the access to them by name and performs their
merging in multi-threading mode according to their defined merge mode.
Their usage is demonstrated in the basic examples B1 and B3a.

To better reflect the meaning of these objects, the classes base name
"Parameter" used in 10.2 was changed in "Accumulable" in 10.3. Further
integration in the Geant4 framework is foreseen in the next Geant4
versions.

G4Accumulable<T>

G4Accumulable<T> templated class can be used instead of built-in
types in order to facilitate merging of the values accumulated on
workers to the master thread. The G4Accumulable<T> object has,
besides its value of the templated type T, also a name, the initial
value, which the value is set to in Reset() function and a merge
mode, specifying the operation which is performed in Merge()
function.

The accumulable object can be either instantiated using its constructor
and registered in G4AccumulablesManager explicitly, or it can be
created using G4AccumulablesManager::CreateAccumulable() function,
their registering is then automatic. The first way is used in the basic
examples B1 and B3a:

// B1/include/RunAction.hh
class RunAction : public G4UserRunAction
{
 // ...
 private:
 G4Accumulable<G4double> fEdep = 0.;
 G4Accumulable<G4double> fEdep2 = 0.;
};

// B1/src/RunAction.cc
RunAction::RunAction()
{
 // ..
 // Register accumulable to the accumulable manager
 G4AccumulableManager* accumulableManager = G4AccumulableManager::Instance();
 accumulableManager->RegisterAccumulable(fEdep);
 accumulableManager->RegisterAccumulable(fEdep2);
}

An alternative way of creating an accumulable using
G4AccumulablesManager is demonstrated below:

// B1/src/RunAction.cc
RunAction::RunAction()
{
 // ..
 // Accumulables can be also created via accumulable manager
 G4AccumulableManager* accumulableManager = G4AccumulableManager::Instance();
 accumulableManager->CreateAccumulable<G4double>("EdepBis", 0.);
 accumulableManager->CreateAccumulable<G4double>("Edep2Bis", 0.);
}

The G4AccumulablesManager takes ownership of the accumulables
created by its CreateAccumulable() function the accumulables
allocated in the user code has to be deleted in the user code.

Since Geant4 10.3, the name of the accumulable can be omitted. A generic
name "accumulable_N", where N is the current number of registered
objects, will be then attributed.

In multi-threading mode all accumulables registered to
G4AccumulablesManager accumulated on workers can be merged to the
master thread by calling G4AccumulablesManager::Merge() function.
This step may be not necessary in future after a planned closer
integration of G4Accumulable classes in the Geant4 kernel.

// B1/src/RunAction.cc
void RunAction::EndOfRunAction(const G4Run* run)
{
 // ...
 // Merge accumulables
 G4AccumulableManager* accumulableManager = G4AccumulableManager::Instance();
 accumulableManager->Merge();
}

The merging mode can be specified using the third (or the second one, if
the name is omitted) G4Accumulable<T> constructor argument. The
merge modes are defined in G4MergeMode class enumeration:

enum class G4MergeMode {
 kAddition, // "Or" if boolean type
 kMultiplication, // "And" if boolean type
 kMaximum, // "Or" if boolean type
 kMinimum // "And" if boolean type
};

The default accumulable merge operation is addition.

The registered accumulables can be accessed via
G4AccumulablesManager by name or by the id, attributed in the order
of registering:

// ...
G4AccumulableManager* accumulableManager = G4AccumulableManager::Instance();
// Access accumulables by name
G4double edepBis = accumulableManager->GetAccumulable<G4double>("EdepBis")->GetValue();
G4double edep2Bis = accumulableManager->GetAccumulable<G4double>("Edep2Bis")->GetValue();

// Access accumulables by id
G4VAccumulable* accumulable = accumulableManager->GetAccumulable(id);

User defined accumulables

Users can define their own accumulable class derived from
G4VAccumulable abstract base class. An example of a
ProcessCounterAccumulable class, implementing an accumulable holding
a map of the processes occurrences by the processes names, is given
below. Such processes occurrences map is used in several electromagnetic
extended examples, e.g. TestEm1.

ProcCounterAccumulable.hh:

#include "G4VAccumulable.hh"
#include "globals.hh"
#include <map>
class ProcCounterAccumulable : public G4VAccumulable
{
 public:
 ProcCounterAccumulable(const G4String& name)
 : G4VAccumulable(name, 0), fProcCounter() {}
 virtual ~ProcCounterAccumulable() {}

 void CountProcesses(G4String procName);

 virtual void Merge(const G4VAccumulable& other);
 virtual void Reset();

 private:
 std::map<G4String,G4int> fProcCounter;
};

ProcCounterAccumulable.cc:

void ProcCounterAccumulable::Merge(const G4VAccumulable& other)
{
 const ProcCounterAccumulable& otherProcCounterAccumulable
 = static_cast<const ProcCounterAccumulable&>(other);

 std::map<G4String,G4int>::const_iterator it;
 for (it = otherProcCounterAccumulable.fProcCounter.begin();
 it != otherProcCounterAccumulable.fProcCounter.end(); ++it) {

 G4String procName = it->first;
 G4int otherCount = it->second;
 if (fProcCounter.find(procName) == fProcCounter.end()) {
 fProcCounter[procName] = otherCount;
 }
 else {
 fProcCounter[procName] += otherCount;
 }
 }
}

void ProcCounterAccumulable::Reset()
{
 fProcCounter.clear();
}

The implementation of the CountProcesses() function is identical as
in Run::CountProcesses() function in TestEm1.

Footnotes

g4tools

g4tools is a "namespace protected" part of inlib and exlib
which is of some interest for Geant4, mainly the histograms, the ntuples
and the code to write them at the ROOT, HDF5, AIDA XML and CSV file formats.
The idea of g4tools is to cover, with a very light and easy to
install package, what is needed to do analysis in a "Geant4 batch
program".

As g4tools is distributed through Geant4 and in order to avoid
potential namespace clashes with other codes that use the
inlib/exlib to do Geant4 visualization (as for the g4view
application or some of the exlib examples), the inlib and exlib
namespaces had been automatically changed to tools in the g4tools
distribution. Since in principle Geant4 users will not have to deal
directly with the g4tools classes, but will manipulate histograms
and ntuples through the G4AnalysisManager, we are not going to
extensively document the g4tools classes here. Interested people are
encouraged to go at the inlib/exlib web pages for that (see
inlib/exlib site#1).

g4tools package

g4tools code is pure header

As explained in inlib/exlib, the code found in g4tools is "pure
header". This comes from the need to have an easy way to build
applications, as the ioda one, from smartphone, passing by tablets
and up to various desktops (UNIX and Windows). For example, if building
an application targeted to the Apple AppStore and GooglePlay, the
simplest way is to pass through Xcode and the Android make
system (or Eclipse), and having not to build libraries simplifies a
lot the handling of all these IDEs for the same application. A fallback
of that is that the installation of g4tools (if not using the one
coming with Geant4) is straightforward, you simply unzip the file
containing the source code! To build an application using g4tools,
as for inlib/exlib, you simply have to declare to your build system
the "-I" toward the unfolded directory and do "Build and Run".

g4tools test

g4tools comes with test programs of its own that may be useful in
case of problems (for example porting on a not yet covered platform).
You can build and run them with:

UNIX> <get g4tools.zip>
UNIX> <unzip g4tools.zip>
UNIX> cd g4tools/test/cpp
UNIX> ./build
UNIX> ./tools_test_histo
UNIX> ./tools_test_wroot
UNIX> etc...

and on Windows:

DOS> <setup VisualC++ so that CL.exe is in your PATH>
DOS> <get g4tools.zip>
DOS> <unzip g4tools.zip> (you can use the unzip.exe of CYGWIN)
DOS> cd g4tools\test\cpp
DOS> .\build.bat
DOS> .\tools_test_histo.exe
DOS> .\tools_test_wroot.exe
DOS> etc...

g4tools in Geant4

The g4tools header files are distributed in the Geant4 source in the
source/analysis/include/tools directory and in the Geant4
installation, they are installed in include/tools directory. The
g4tools test programs, included only in Geant4 development versions,
can be downloaded with the g4tools-[version].zip file from the
inexlib development site#2).

While the Geant4 analysis manager provides the methods for booking and
filling the g4tools objects, it does not interface all public functions.
Users can access the g4tools objects (see
Accessing Analysis Objects) and use the g4tools API described
in the next section to get the needed informations.

User API

We describe here some of the public methods potentially seen by a user
doing analysis.

Booking and filling

h1d(const std::string& title,unsigned int Xnumber,double Xmin,double Xmax);
h1d(const std::string& title,const std::vector<double>& edges);

bool fill(double X,double Weight = 1);

example

#include <tools/histo/h1d>
#include <tools/randd>
...
tools::histo::h1d h("Gauss",100,-5,5);
tools::rgaussd rg(1,2);
for(unsigned int count=0;count<entries;count++) h.fill(rg.shoot(),1.4);

Mean and rms

tools::histo::h1d h("Gauss",100,-5,5);
...
std::cout << " mean " << h.mean() << ", rms " << h.rms() << std::endl;

Bin infos

When doing a:

bool fill(double X,double Weight = 1);

the histogram class maintains, for each bin, the number of entries, the
sum of weights that we can note "Sw", the sum of W by W "Sw2", the sum
of X by Weight "Sxw", the sum of X by X by W "Sx2w". Then bin method
names reflect these notations, for example to get the 50 bin sum of
X*X*W:

double Sx2w = h.bin_Sx2w(50);

and the same for the other sums:

double Sw = h.bin_Sw(50);
double Sw2 = h.bin_Sw2(50);
double Sxw = h.bin_Sxw(50);
unsigned int n = h.bin_entries(50);

You can have also all infos on all bins with:

tools::histo::h1d h(...);
...
const std::vector<unsigned int>& _entries = h.bins_entries();
const std::vector<double>& _bins_sum_w = h.bins_sum_w();
const std::vector<double>& _bins_sum_w2 = h.bins_sum_w2();
const std::vector< std::vector<double> >& _bins_sum_xw = h.bins_sum_xw();
const std::vector< std::vector<double> >& _bins_sum_x2w = h.bins_sum_x2w();

for example to dump bin 50 of an histo booked with 100 bins:

std::cout << "entries[50] = " << _entries[50] << std::endl;
std::cout << " sum_w[50] = " << _bins_sum_w[50] << std::endl;
std::cout << " sum_w2[50] = " << _bins_sum_w2[50] << std::endl;
std::cout << " sum_xw[50] = " << _bins_sum_xw[50][0] << std::endl; //0 = xaxis
std::cout << "sum_x2w[50] = " << _bins_sum_x2w[50][0] << std::endl; //0 = xaxis

(Take care that the [0] entries in the upper vectors are for the
"underflow bin" and the last one is for the "overflow bin").

All data

You can get all internal data of an histo through the histo_data class:

const tools::histo::h1d::hd_t& hdata = h.dac(); //dac=data access.

and then, for example, find back the bins infos with:

const std::vector<unsigned int>& _entries = hdata.m_bin_entries;
const std::vector<double>& _bins_sum_w = hdata.m_bin_Sw;
const std::vector<double>& _bins_sum_w2 = hdata.m_bin_Sw2;
const std::vector< std::vector<double> >& _bins_sum_xw = hdata.m_bin_Sxw;
const std::vector< std::vector<double> >& _bins_sum_x2w = hdata.m_bin_Sx2w;
// dump bin 50 :
std::cout << "entries[50] = " << _entries[50] << std::endl;
std::cout << " sum_w[50] = " << _bins_sum_w[50] << std::endl;
std::cout << " sum_w2[50] = " << _bins_sum_w2[50] << std::endl;
std::cout << " sum_xw[50] = " << _bins_sum_xw[50][0] << std::endl; //0 = xaxis
std::cout << "sum_x2w[50] = " << _bins_sum_x2w[50][0] << std::endl; //0 = xaxis

See the tools/histo/histo_data class for all internal fields.

Projections

From a 2D histo, you can get the x projection with:

tools::histo::h1d* projection = tools::histo::projection_x(h2d,"ProjX");
...
delete projection;

See test/cpp/histo.cpp for example code. Other slicing and projection
methods are:

// h2d -> h1d. (User gets ownership of the returned object).
h1d* slice_x(const h2d&,int y_beg_ibin,int y_end_ibin,const std::string& title);
h1d* projection_x(const h2d&,const std::string& title);
h1d* slice_y(const h2d&,int x_beg_ibin,int x_end_ibin,const std::string& title);
h1d* projection_y(const h2d&,const std::string& title);
// h2d -> p1d. (User gets ownership of the returned object).
p1d* profile_x(const h2d&,int y_beg_ibin,int y_end_ibin,const std::string& title);
p1d* profile_x(const h2d&,const std::string&);
p1d* profile_y(const h2d&,int x_beg_ibin,int x_end_ibin,const std::string& title);
p1d* profile_y(const h2d&,const std::string& title);
// h3d -> h2d. (User gets ownership of the returned object).
h2d* slice_xy(const h3d&,int z_beg_ibin,int z_end_ibin,const std::string& title);
h2d* projection_xy(const h3d&,const std::string& title);
h2d* slice_yz(const h3d&,int x_beg_ibin,int x_end_ibin,const std::string& title);
h2d* projection_yz(const h3d&,const std::string& title);
h2d* slice_xz(const h3d&,int y_beg_ibin,int y_end_ibin,const std::string& title);
h2d* projection_xz(const h3d&,const std::string& title);

Footnotes

	#1

	https://inexlib.lal.in2p3.fr

	#2

	https://inexlib.lal.in2p3.fr

Examples

	Introduction

	Basic Examples
	Basic Examples Summary

	Basic Examples Macros

	Multi-threading

	Example B1

	Example B2

	Example B3

	Example B4

	Example B5

	Extended Examples
	Analysis

	Biasing

	Common

	Electromagnetic

	Error Propagation

	Event Generator

	Exotic Physics

	Fields

	Geant3 to Geant4

	Geometry

	Hadronic

	Medical Applications

	Optical Photons

	Parallel Computing

	Parameterisations

	Persistency

	Physics lists

	Polarisation

	Radioactive Decay

	Run & Event

	Visualization

	Advanced Examples

	Novice Examples

Footnotes

Introduction

The Geant4 toolkit includes several fully coded examples that
demonstrate the implementation of the user classes required to build a
customized simulation.

The new "basic" examples cover the most typical use-cases of a Geant4
application while keeping simplicity and ease of use. They are provided
as a starting point for new Geant4 application developers.

A set of "extended" examples range from the simulation of a
non-interacting particle and a trivial detector to the simulation of
electromagnetic and hadronic physics processes in a complex detector.
Some of these examples require some libraries in addition to those of
Geant4.

The "advanced" examples cover the use-cases typical of a
"toolkit"-oriented kind of development, where real complete applications
for different simulation studies are provided.

All examples can be compiled and run without modification. Most of them
can be run both in interactive and batch mode using the input macro
files (*.in) and reference output files (*.out) provided. Most
examples are run routinely as part of the validation, or testing, of
official releases of the Geant4 toolkit.

The previous set of examples oriented to novice users, "novice", has
been refactored in "basic" and "extended" examples sets in Geant4 10.0.
The information about the original set of these examples can be found at
the last section of this chapter.

Footnotes

Basic Examples

Basic Examples Summary

Descriptions of the 5 basic examples are provided here along with links
to source code documentation automatically generated with Doxygen.

Example B1 (see also Doxygen
page#1)

	Simple geometry with a few solids

	Geometry with simple placements (G4PVPlacement)

	Scoring total dose in a selected volume in user action classes

	Using G4Accumulable for automatic merging of scored values inmulti-threading mode

	Geant4 physics list (QBBC)

Example B2 (see also Doxygen
page#2)

	Simplified tracker geometry with uniform magnetic field

	Geometry with simple placements (G4PVPlacement) and parameterisation
(G4PVParameterisation)

	Scoring within tracker via G4 sensitive detector and hits

	Geant4 physics list (FTFP_BERT) with step limiter

	Started from novice N02 example

Example B3 (see also Doxygen
page#3)

	Schematic Positron Emission Tomography system

	Geometry with simple placements with rotation (G4PVPlacement)

	Radioactive source

	Scoring within Crystals via G4 scorers plus via user actions (a), via user
own Run object (b)

	Using G4Accumulable for automatic merging of scored values in multi-threading mode (a) and G4StatAnalysis for accumulating statistics (b)

	Modular physics list built via builders provided in Geant4

Example B4 (see also Doxygen
page#4)

	Simplified calorimeter with layers of two materials

	Geometry with replica (G4PVReplica)

	Scoring within layers in four ways: via user actions (a), via user
own Run object (b), via G4 sensitive detector and hits (c) and via
scorers (d)

	Geant4 physics list (FTFP_BERT)

	Saving histograms and ntuple in a file using Geant4 analysis tools

	UI commands defined using G4GenericMessenger

	Started from novice/N03 example

Example B5 (see also Doxygen
page#5)

	A double-arm spectrometer with wire chambers, hodoscopes and
calorimeters with a local constant magnetic field

	Geometry with placements with rotation, replicas and parameterisation

	Scoring within wire chambers, hodoscopes and calorimeters via G4
sensitive detector and hits

	Geant4 physics list (FTFP_BERT) with step limiter

	UI commands defined using G4GenericMessenger

	Saving histograms and ntuple in two files using Geant4 analysis tools

	Plotting of histograms with visualization drivers

	Started from extended/analysis/A01

The next three tables display the "item charts" for
the examples currently prepared in the basic level.
(Table 19,
Table 20,
and Table 21.)

Table 19 The "item chart" for basic level examples B1 and B2.

	
	Example B1

	Example B2

	Description

	Simple application for accounting dose in a selected volume

	Fixed target tracker geometry

	Geometry

	
	solids: box, cons, trd

	simple placements with translation

	
	solids: box, tubs

	simple placements with translation (a)

	parameterised volume (b)

	uniform magnetic field

	Physics

	Geant4 physics list: QBBC

	Geant4 physics list: FTFP_BERT

	Primary generator

	Particle gun

	Particle gun

	Scoring

	User action classes

	Sensitive detector & hits

	Vis/GUI

	Detector & trajectory drawing

	
	Detector, trajectory & hits drawing

	GUI

	Stacking

	
	

	Analysis

	
	

Table 20 The "item chart" for basic level examples B3 and B4.

	
	Example B3

	Example B4

	Description

	Schematic Positron Emitted Tomography system

	Simplified calorimeter with layers of two materials

	Geometry

	
	solids: box, tubs

	simple placements with rotation

	
	solids: box

	simple placements with translation

	replica

	uniform magnetic field

	Physics

	Modular physics list with Geant4 builders

	Geant4 physics list: FTFP_BERT

	Primary generator

	Radioactive source (particle gun with Fluor ions)

	Particle gun

	Scoring

	Multi functional (sensitive) detector & scorers and

	User action classes

	User own run object

	
	User action classes

	User own object (runData)

	Sensitive detector & hits

	Multi functional (sensitive) detector & scorers

	Vis/GUI

	Detector, trajectory & hits drawing

	
	Detector, trajectory & hits drawing

	GUI

	Stacking

	Killing all neutrina

	

	Analysis

	
	Histograms 1D, ntuple

Table 21 The "item chart" for basic level example B5.

	
	Example B5

	Description

	Double-arm spectrometer with several detectors and a local constant magnetic field

	Geometry

	
	solids: box, tubs

	simple placements with rotation

	replica

	parameterised volume

	local constant magnetic field

	modifying geometry between runs

	Physics

	Geant4 physics list: FTFP_BERT

	Primary generator

	Particle gun

	Scoring

	Sensitive detectors & hits

	Vis/GUI

	
	Detector, trajectory & hits drawing

	User defined visualization attributes

	Plotting of histograms

	Stacking

	

	Analysis

	
	Histograms 1D, ntuple

	Saving two files per run

Basic Examples Macros

All basic examples can be run either interactively or in a batch mode
(see section How to Define the main() Program and How to Execute a Program)
and they are provided with the following set of macros:

	init_vis.mac

	vis.mac

	[gui.mac]

	[plotter.mac]

	run1.mac, run2.mac

	exampleBN.in

The selection is done automatically according to the application build
configuration.

The init_vis.mac macro is always executed just after the Geant4
kernel and user application classes instantiation. It sets first some
defaults, then performs Geant4 kernel initialization and finally calls
the vis.mac macro with visualization setting.

The vis.mac macros in each of the examples all have the same
structure - except for example B1, see below. There are only a few lines
in each example with a setting different from the other examples and so
they can be easily spotted when looking in the macro. Various commands
are proposed in commented blocks of lines with explanations so that a
user can just uncomment lines and observe the effect. Additionally, in
example B4, there are some visualization tutorial macros in
macros/visTutor/. See more on visualization in section
How to Visualize the Detector and Events and chapter Visualization.

From Release 9.6 the vis.mac macro in example B1 has additional
commands that demonstrate additional functionality of the vis system,
such as displaying text, axes, scales, date, logo and shows how to
change viewpoint and style. Consider copying these to your favourite
example or application. To see even more commands use help or ls
or browse the available UI commands in section
Built-in Commands.

The gui.mac macros are provided in examples B2, B4 and B5. This macro is
automatically executed if Geant4 is built with any GUI session. See more
on graphical user interfaces in section How to Set Up an Interactive Session.

When running interactively, the example program stops after processing
the init_vis.mac macro and the Geant4 kernel initialization, invoked
from the macro, with the prompt Idle>. At this stage users can type
in the commands from run1.mac line by line (recommended when running
the example for the first time) or execute all commands at once using
the "/control/execute run1.mac" command.

The run2.mac macros define conditions for execution a run with a
larger number of events and so they are recommended to be executed in a
batch. The exampleBN.in macros are also supposed to be run in a
batch mode and their outputs from the Geant4 system testing are
available in the files exampleBN.out.

The plotter.mac macro is provided in example B5. This macro shows
how to use the plotting coming with some of the visualization drivers
(for example the ToolsSG ones) to see histograms. This macro can be run
interactively, after example start at the prompt Idle>,
using the "/control/execute plotter.mac" command, the content of the
histograms is then displayed at the end of each run.

Multi-threading

Multi-threading mode

All basic examples have been migrated to multi-threading (MT). No
special steps are needed to build the examples in multi-threading mode.
They will automatically run in MT when they are built against the Geant4
libraries built with MT mode activated, otherwise they will run in
sequential mode.

The choice of multi-threading mode is handled automatically by the use
of G4RunManagerFactory in the example main():

#include "G4RunManagerFactory.hh"

// ...

auto* runManager = G4RunManagerFactory::Create();

The concrete type of runManager will be G4MTRunManager when
the Geant4 install used supports multithreading, or G4RunManager` otherwise.

Action Initialization class [B1, B2, B3, B4, B5]

See B1#6, B2#7, B3#8, B4#9, B5#10

A newly introduced Bn::ActionInitialization class derived from
G4VUserActionInitialization, present in all basic examples,
instantiates and registers all user action classes with the Geant4
kernel.

While in sequential mode the action classes are instantiated just once,
via invocation of the method BnActionInitialization::Build(). In
multi-threading mode the same method is invoked for each worker thread,
so all user action classes are defined thread-locally.

A run action class is instantiated both thread-locally and globally;
that is why its instance is created also in the method
Bn::ActionInitialization::BuildForMaster(), which is invoked only in
multi-threading mode.

Example B1

See also Doxygen
page#11

Basic concept:

This example demonstrates a simple (medical) application within which
users will familiarize themselves with simple placement, use the NIST
material database, and can utilize electromagnetic and/or hadronic
physics processes. Two items of information are collected in this
example: the energy deposited and the total dose for a selected volume.

This example uses the Geant4 physics list QBBC, which is instantiated in
the main() function. It requires data files for electromagnetic and
hadronic processes. See more on installation of the datasets in Geant4
Installation Guide - Geant4 Build Options#12.
The following datasets: G4LEDATA, G4LEVELGAMMADATA, G4NEUTRONXSDATA,
G4SAIDXSDATA and G4ENSDFSTATEDATA are mandatory for this example.

Namespace:

Since Geant4 version 11 all example classes are defined in namespace B1#13.

Classes:

	B1::DetectorConstruction
	The geometry is constructed in the B1::DetectorConstruction class.
The setup consists of a box shaped envelope containing two volumes: a
circular cone and a trapezoid.

Some common materials from medical applications are used. The
envelope is made of water and the two inner volumes are made from
tissue and bone materials. These materials are created using the
G4NistManager class, which allows one to build a material from
the NIST database using their names. Available materials and their
compositions can be found in the Appendix Material Database.

The physical volumes are made from Constructive Solid Geometry (CSG)
solids and placed without rotation using the G4PVPlacement class.

	B1::PrimaryGeneratorAction
	The default kinematics is a 6 MeV gamma, randomly distributed in
front of the envelope across 80% of the transverse (X,Y) plane. This
default setting can be changed via the commands of the
G4ParticleGun class.

	B1::SteppingAction
	It is in the UserSteppingAction() function that the energy
deposition is collected for a selected volume.

	B1::EventAction
	The statistical event by event accumulation of energy deposition. At
the end of event, the accumulated values are passed in
B1::RunAction and summed over the whole run.

	B1::RunAction
	Sums the event energy depositions. In multi-threading mode the energy
deposition accumulated in G4Accumulable objects per worker is
merged to the master. Information about the primary particle is
printed in this class along with the computation of the dose. An
example of creating and computing new units (e.g., dose) is also
shown in the class constructor.

G4Accumulable<G4double> type instead of G4double is used for
the B1::RunAction data members in order to facilitate merging of
the values accumulated on workers to the master. At present the
accumulables have to be registered to G4AccumulablesManager and
G4ParametersManager::Merge() has to be called from the users
code. This is planned to be further simplified with a closer
integration of G4Accumulable classes in the Geant4 kernel next
year.

Example B2

See also Doxygen
page#14

This example simulates a simplified fixed target experiment. To
demonstrate alternative ways of constructing the geometry two variants
are provided: B2a (explicit construction) and B2b (parametrized
volumes).

The set of available particles and their physics processes are defined
in the FTFP_BERT physics list. This Geant4 physics list is instantiated
in the main() function. It requires data files for electromagnetic and
hadronic processes. See more on installation of the datasets in |Geant4|
Installation Guide#15.
The following datasets: G4LEDATA, G4LEVELGAMMADATA, G4NEUTRONXSDATA,
G4SAIDXSDATA and G4ENSDFSTATEDATA are mandatory for this example.

This example also illustrates how to introduce tracking constraints like
maximum step length via G4StepLimiter, and minimum kinetic energy,
etc., via the G4UserSpecialCuts processes. This is accomplished by
adding G4StepLimiterPhysics to the physics list.

Namespaces:

Since Geant4 version 11 the example classes are defined in namespaces B2#16, B2a#17 and B2b#18

Classes:

	B2[a, b]::DetectorConstruction
	The setup consists of a target followed by six chambers of increasing
transverse size at defined distances from the target. These chambers
are located in a region called the Tracker region. Their shape are
cylinders constructed as simple cylinders (in
B2a::DetectorConstruction) and as parametrised volumes (in
B2b::DetectorConstruction) - see also
B2b::ChamberParameterisation#19
class.

In addition, a global uniform transverse magnetic field can be
applied using G4GlobalMagFieldMessenger, instantiated in
ConstructSDandField() with a non zero field value, or via an
interactive command. An instance of the B2::TrackerSD class is
created and associated with each logical chamber volume (in B2a) and
with the one G4LogicalVolume associated with
G4PVParameterised (in B2b).

One can change the materials of the target and the chambers
interactively via the commands defined in B2a::DetectorMessenger
(or B2b::DetectorMessenger).

This example also illustrates how to introduce tracking constraints
like maximum step length, minimum kinetic energy etc. via the
G4UserLimits class and associated G4StepLimiter and G4UserSpecialCuts
processes. The maximum step limit in the tracker region can be set by
the interactive command defined in B2a::DetectorMessenger (or
B2b::DetectorMessenger).

	B2::PrimaryGeneratorAction
	The primary generator action class employs the G4ParticleGun. The
primary kinematics consists of a single particle which hits the
target perpendicular to the entrance face. The type of the particle
and its energy can be changed via the G4 built-in commands of the
G4ParticleGun class.

	B2::EventAction
	The event number is written to the log file every requested number of
events in BeginOfEventAction() and EndOfEventAction().
Moreover, for the first 100 events and every 100 events thereafter
information about the number of stored trajectories in the event is
printed as well as the number of hits stored in the
G4VHitsCollection.

	B2::RunAction
	The run number is printed at BeginOfRunAction(), where the
G4RunManager is also informed how to SetRandomNumberStore for
storing initial random number seeds per run or per event.

	B2::TrackerHit
	The tracker hit class is derived from G4VHit. In this example, a
tracker hit is a step by step record of the track identifier, the
chamber number, the total energy deposit in this step, and the
position of the energy deposit.

	B2::TrackerSD
	The tracker sensitive detector class is derived from
G4VSensitiveDetector. In ProcessHits() - called from the
Geant4 kernel at each step - it creates one hit in the selected
volume so long as energy is deposited in the medium during that step.
This hit is inserted in a HitsCollection. The HitsCollection is
printed at the end of each event (via the method
B2::TrackerSD::EndOfEvent()), under the control of the
"/hits/verbose 2" command.

Example B3

See also Doxygen
page#20

This example simulates a Schematic Positron Emission Tomography system.
To demonstrate alternative ways of accumulation event statistics in a
run two variants are provided: B3a (using new G4Accumulable class)
and B3b (using G4Run class).

Namespaces:

Since Geant4 version 11 the example classes are defined in namespaces B3#21, B3a#22 and B3b#23

Classes:

	B3::DetectorConstruction
	Crystals are circularly arranged to form a ring. A number rings make
up the full detector (gamma camera). This is done by positioning
Crystals in Ring with an appropriate rotation matrix. Several copies
of Ring are then placed in the full detector.

The Crystal material, Lu2SiO5, is not included in the G4Nist
database. Therefore, it is explicitly built in DefineMaterials().

Crystals are defined as scorers in
DetectorConstruction::CreateScorers(). There are two
G4MultiFunctionalDetector objects: one for the Crystal
(EnergyDeposit), and one for the Patient (DoseDeposit).

	B3::PhysicsList
	The physics list contains standard electromagnetic processes and the
radioactiveDecay module for GenericIon. It is defined in the
B3::PhysicsList class as a Geant4 modular physics list with
registered Geant4 physics builders:

	G4DecayPhysics

	G4RadioactiveDecayPhysics

	G4EmStandardPhysics

	B3::PrimaryGeneratorAction
	The default particle beam is an ion (F18), at rest, randomly
distributed within a zone inside a patient and is defined in
GeneratePrimaries().

	B3a::EventAction, B3a::RunAction
	Energy deposited in crystals is summed by G4Scorer.

The scorers hits are saved in form of ntuples in a Root file using Geant4
analysis tools. This feature is activated in the main () function with instantiating
G4TScoreNtupleWriter.

At the end of event, the values accumulated in B3aEventAction are passed in
B3a::RunAction and summed over the whole run. In multi-threading
mode the data accumulated in G4Accumulable objects per workers is
merged to the master in B3a::RunAction::EndOfRunAction() and the
final result is printed on the screen.

G4Accumulable<> type instead of G4double and G4int types
is used for the B3a::RunAction data members in order to facilitate
merging of the values accumulated on workers to the master. At
present the accumulables have to be registered to
G4AccumulablesManager and G4AccumulablesManager::Merge() has
to be called from the users code. This is planned to be further
simplified with a closer integration of G4Accumulable classes in
the Geant4 kernel next year.

	B3b::Run, B3b::RunAction
	Energy deposited in crystals is summed by G4Scorer.
B3b::Run::RecordEvent() collects information event by event from the
hits collections, and accumulates statistics for
B3b::RunAction::EndOfRunAction(). In multi-threading mode the
statistics accumulated per worker is merged to the master in
Run::Merge().

In addition, results for dose are accumulated in a
standard floating-point summation and using a new lightweight statistical
class called G4StatAnalysis. The G4StatAnalysis class records four values:
(1) the sum, (2) sum^2, (3) number of entries, and (4) the number of entries
less than mean * machine-epsilon (the machine epsilon is the difference
between 1.0 and the next value representable by the floating-point type).
From these 4 values, G4StatAnalysis provides the mean, FOM, relative error,
standard deviation, variance, coefficient of variation, efficiency, r2int,
and r2eff.

	B3::StackingAction
	Beta decay of Fluorine generates a neutrino. One wishes not to track
this neutrino; therefore one kills it immediately, before created
particles are put in a stack.

Example B4

See also Doxygen
page#24

This example simulates a simple Sampling Calorimeter setup. To
demonstrate several possible ways of data scoring, the example is
provided in four variants: B4a, B4b, B4c, B4d. (See also
examples/extended/electromagnetic/TestEm3).

The set of available particles and their physics processes are defined
in the FTFP_BERT physics list. This Geant4 physics list is instantiated
in the main() function. It requires data files for electromagnetic and
hadronic processes. See more on installation of the datasets in |Geant4|
Installation Guide#25.
The following datasets: G4LEDATA, G4LEVELGAMMADATA, G4NEUTRONXSDATA,
G4SAIDXSDATA and G4ENSDFSTATEDATA are mandatory for this example.

Namespaces:

Since Geant4 version 11 the example classes are defined in namespaces B4#26, B4a#27, B4b#28, B4c#29 and B4d#30

Classes:

	B4[c, d]::DetectorConstruction
	The calorimeter is a box made of a given number of layers. A layer
consists of an absorber plate and of a detection gap. The layer is
replicated. In addition a transverse uniform magnetic field can be
applied using G4GlobalMagFieldMessenger, instantiated in
ConstructSDandField() with a non zero field value, or via
interactive commands.

	B4::PrimaryGeneratorAction
	The primary generator action class uses G4ParticleGun. It defines
a single particle which hits the calorimeter perpendicular to the
input face. The type of the particle can be changed via the G4
built-in commands of the G4ParticleGun class.

	B4::RunAction
	It accumulates statistics and computes dispersion of the energy
deposit and track lengths of charged particles with the aid of
analysis tools. H1D histograms are created in BeginOfRunAction()
for the energy deposit and track length in both Absorber and Gap
volumes. The same values are also saved in an ntuple. The histograms
and ntuple are saved in the output file in a format according to a
selected file extension. In EndOfRunAction(),
the accumulated statistics and computed dispersion are printed. When
running in multi-threading mode, the histograms accumulated on
threads are automatically merged in a single output file, while the
ntuple is written in files per thread.

Classes in B4a (scoring via user actions):

	B4a::SteppingAction
	In UserSteppingAction() the energy deposit and track lengths of
charged particles in each step in the Absorber and Gap layers are
collected and subsequently recorded in B4a::EventAction.

	B4a::EventAction
	It defines data members to hold the energy deposit and track lengths
of charged particles in the Absorber and Gap layers. In
EndOfEventAction(), these quantities are printed and filled in
H1D histograms and ntuple to accumulate statistic and compute
dispersion.

Classes in B4b (via user own object):

	B4b::RunData
	A data class, derived from G4Run, which defines data members to
hold the energy deposit and track lengths of charged particles in the
Absorber and Gap layers. It is instantiated in
B4b::RunAction::GenerateRun. The data are collected step by step in
B4b::SteppingAction, and the accumulated values are entered in
histograms and an ntuple event by event in B4b::EventAction.

	B4b::SteppingAction
	In UserSteppingAction() the energy deposit and track lengths of
charged particles in Absorber and Gap layers are collected and
subsequently recorded in B4b::RunData.

	B4b::EventAction
	In EndOfEventAction(), the accumulated quantities of the energy
deposit and track lengths of charged particles in Absorber and Gap
layers are printed and then stored in B4b::RunData.

Classes in B4c (via |Geant4| sensitive detector and hits):

	B4c::DetectorConstruction
	In addition to materials, volumes and uniform magnetic field
definitions as in B4DetectorConstruction, in
ConstructSDandField() two instances of the B4c::CalorimeterSD
class are created and associated with Absorber and Gap volumes.

	B4c::CalorHit
	The calorimeter hit class is derived from G4VHit. It defines data
members to store the energy deposit and track lengths of charged
particles in a selected volume.

	B4c::CalorimeterSD
	The calorimeter sensitive detector class is derived from
G4VSensitiveDetector. Two instances of this class are created in
B4c::DetectorConstruction and associated with Absorber and Gap
volumes. In Initialize(), it creates one hit for each calorimeter
layer and one more hit for accounting the total quantities in all
layers. The values are accounted in hits in the ProcessHits()
function, which is called by the Geant4 kernel at each step.

	B4c::EventAction
	In EndOfEventAction(), the accumulated quantities of the energy
deposit and track lengths of charged particles in Absorber and Gap
layers are printed and then stored in the hits collections.

Classes in B4d (via |Geant4| scorers):

	B4d::DetectorConstruction
	In addition to materials, volumes and uniform magnetic field
definitions as in B4DetectorConstruction, in
ConstructSDandField() sensitive detectors of
G4MultiFunctionalDetector type with primitive scorers are created
and associated with Absorber and Gap volumes.

	B4d::EventAction
	Energy deposited in crystals is summed by G4Scorer.

The scorers hits are saved in form of ntuples in a Root file using Geant4
analysis tools. This feature is activated in the main () function with instantiating
G4TScoreNtupleWriter.

In EndOfEventAction(), the accumulated quantities of the energy
deposit and track lengths of charged particles in Absorber and Gap
layers are printed and then stored in the hits collections.

Example B5

See also Doxygen
page#31

This example simulates a double-arm spectrometer with wire chambers,
hodoscopes and calorimeters with a uniform local magnetic field.

The set of available particles and their physics processes are defined
in the FTFP_BERT physics list. This Geant4 physics list is instantiated
in the main() function. It requires data files for electromagnetic and
hadronic processes. See more on installation of the datasets in |Geant4|
Installation Guide#32.
The following datasets: G4LEDATA, G4LEVELGAMMADATA, G4NEUTRONXSDATA,
G4SAIDXSDATA and G4ENSDFSTATEDATA are mandatory for this example.

This example also illustrates how to introduce tracking constraints like
maximum step length via G4StepLimiter, and minimum kinetic energy,
etc., via the G4UserSpecialCuts processes. This is accomplished by
adding G4StepLimiterPhysics to the physics list.

Namespace:

Since Geant4 version 11 all example classes are defined in namespace B5#33.

Classes:

	B5::DetectorConstruction
	The spectrometer consists of two detector arms. One arm provides
position and timing information of the incident particle while the
other collects position, timing and energy information of the
particle after it has been deflected by a magnetic field centered at
the spectrometer pivot point.

First arm: box filled with air, also containing:

	1 hodoscope (15 vertical strips of plastic scintillator)

	1 drift chamber (horizontal argon gas layers with a "virtual wire"
at the center of each layer)

Second arm: box filled with air, also containing:

	1 hodoscope (25 vertical strips of plastic scintillator)

	1 drift chamber (5 horizontal argon gas layers with a "virtual
wire" at the center of each layer)

	1 electromagnetic calorimeter: a box sub-divided along x,y and z
axes into cells of CsI (see also
B5::CellParameterisation
class)

	1 hadronic calorimeter: a box sub-divided along x,y, and z axes
into cells of lead, with a layer of plastic scintillator placed at
the center of each cell

The magnetic field region is represented by an air-filled cylinder
which contains the field (see
B5::MagneticField.#34).
The maximum step limit in the magnetic field region is also set via
the G4UserLimits class in a similar way as in Example B2.

The rotation angle of the second arm and the magnetic field value can
be set via the interactive command defined using the
G4GenericMessenger class.

	B5::PrimaryGeneratorAction
	The primary generator action class employs the G4ParticleGun. The
primary kinematics consists of a single particle which is is sent in
the direction of the first spectrometer arm.

The type of the particle and its several properties can be changed
via the Geant4 built-in commands of the G4ParticleGun class or
this example command defined using the G4GenericMessenger class.

	B5::EventAction
	An event consists of the generation of a single particle which is
transported through the first spectrometer arm. Here, a scintillator
hodoscope records the reference time of the particle before it passes
through a drift chamber where the particle position is measured.
Momentum analysis is performed as the particle passes through a
magnetic field at the spectrometer pivot and then into the second
spectrometer arm. In the second arm, the particle passes through
another hodoscope and drift chamber before interacting in the
electromagnetic calorimeter. Here it is likely that particles will
induce electromagnetic showers. The shower energy is recorded in a
three-dimensional array of CsI crystals. Secondary particles from the
shower, as well as primary particles which do not interact in the CsI
crystals, pass into the hadronic calorimeter. Here, the remaining
energy is collected in a three-dimensional array of scintillator-lead
sandwiches.

In first execution of BeginOfEventAction() the hits collections
identifiers are saved in data members of the class and then used in
EndOfEventAction() for accessing the hists collections and
filling the accounted information in defined histograms and ntuples
and printing its summary in a log file. The frequency of printing can
be tuned with the built-in command
"/run/printProgress frequency".

	B5::RunAction
	The run action class handles the histograms and ntuples with the aid
of Geant4 analysis tools in a similar way as in Example B4. From
Release 10.2 the vectors of energy deposits in Electromagnetic and
Hadronic calorimeter cells are also stored in the ntuple. In difference from
example B4, G4GenericAnalysisManager is used to demonstrate saving
histograms and ntuple in two separate files.

	Hit and Sensitive Detector Classes
	All the information required to simulate and analyze an event is
recorded in hits. This information is recorded in the following
sensitive detectors:

	Hodoscope (B5::HodoscopeSD, B5::HodoscopeHit)

	particle time

	strip ID, position and rotation

	Drift chamber: (B5::DriftChamberSD, B5::DriftChamberHit)

	particle time

	particle position

	layer ID

	Electromagnetic calorimeter: (B5::EmCalorimeterSD,
B5::EmCalorimeterHit)

	energy deposited in cell

	cell ID, position and rotation

	Hadronic calorimeter: (B5::HadCalorimeterSD,
B5::HadCalorimeterHit)

	energy deposited in cell

	cell column ID and row ID, position and rotation

The hit classes include methods GetAttDefs and
CreateAttValues to define and then fill extra "HepRep-style"
Attributes that the visualization system can use to present extra
information about the hits. For example, if you pick a
B5::HadCalorimeterHit in OpenGL or a HepRep viewer, you will be
shown the hit's "Hit Type", "Column ID", "Row ID", "Energy Deposited"
and "Position".

These attributes are essentially arbitrary extra pieces of
information (integers, doubles or strings) that are carried through
the visualization. Each attribute is defined once in G4AttDef
object and then is filled for each hit in a G4AttValue object.
These attributes can also be used by commands to filter which hits
are drawn: "/vis/filtering/hits/drawByAttribute".

Detector Geometry and trajectories also carry HepRep-style
attributes, but these are filled automatically in the base classes.
HepRep is further described at:
http://www.slac.stanford.edu/~perl/heprep/

Footnotes

	#1

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleB1.html

	#2

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleB2.html

	#3

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleB3.html

	#4

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleB4.html

	#5

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleB5.html

	#6

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/classB1_1_1ActionInitialization.html

	#7

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/classB2_1_1ActionInitialization.html

	#8

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/classB3a_1_1ActionInitialization.html

	#9

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/classB4a_1_1ActionInitialization.html

	#10

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/classB5_1_1ActionInitialization.html

	#11

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleB1.html

	#12

	https://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/InstallationGuide/html/installguide.html#geant4-build-options

	#13

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/namespaceB1.html

	#14

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleB2.html

	#15

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/InstallationGuide/html/postinstall.html

	#16

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/namespaceB2.html

	#17

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/namespaceB2a.html

	#18

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/namespaceB2b.html

	#19

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/classB2b_1_1ChamberParameterisation.html

	#20

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleB3.html

	#21

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/namespaceB3.html

	#22

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/namespaceB3a.html

	#23

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/namespaceB3b.html

	#24

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleB4.html

	#25

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/InstallationGuide/html/postinstall.html

	#26

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/namespaceB4.html

	#27

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/namespaceB4a.html

	#28

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/namespaceB4b.html

	#29

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/namespaceB4c.html

	#30

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/namespaceB4d.html

	#31

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleB5.html

	#32

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/InstallationGuide/html/postinstall.html

	#33

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/namespaceB5.html

	#34

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/classB5_1_1MagneticField.html

Extended Examples

Geant4 extended examples serve three purposes:

	testing and validation of processes and tracking,

	demonstration of Geant4 tools, and

	extending the functionality of Geant4.

The code for these examples is maintained as part of the categories to
which they belong. Links to descriptions of the examples are listed
below.

Analysis

	AnaEx01#1
- histogram and tuple manipulations using Geant4 internal g4tools
system

	AnaEx02#2
- histogram and tuple manipulations using ROOT

	AnaEx03#3
- usage of analysis commands for file management, writing histograms and ntuples in a file multiple times and commands for histogram deleting

	B1Con#4
- modified basic example B1 showing how to use a Convergence Tester

	[A01]#5
- this examples has been refactored in Example B5 in the basic set.

Biasing

	Variance Reduction#6
- examples (B01, B02 and B03) on variance reduction techniques
and scoring and application of Reverse Monte Carlo in Geant4
ReverseMC#7

	Generic biasing examples illustrate the usage of a biasing scheme
implemented since version Geant4 10.0.

	GB01#8
This example illustrates how to bias process cross-sections in
this scheme.

	GB02#9
Illustrates a force collision scheme similar to the MCNP one.

	GB03#10
Illustrates geometry based biasing.

	GB04#11
Illustrates a bremsstrahlung splitting.

	GB05#12
Illustrates a "splitting by cross-section" technique: a
splitting-based technique using absorption cross-section to
control the neutron population.

	GB06#13
Illustrates the usage of parallel geometries with generic biasing.

	GB07#14
Illustrates how to use the leading particle biasing option.

Common

	ReadMe#15
- a set of classes independent on each other which can be reused in "feature" examples demonstrating just a particular feature or users applications

Electromagnetic

	TestEm0#16
- how to print cross-sections and stopping power used in input by the
standard EM package

	TestEm1#17
- how to count processes, activate/inactivate them and survey the
range of charged particles. How to define a maximum step size

	TestEm2#18
- shower development in an homogeneous material : longitudinal and
lateral profiles

	TestEm3#19
- shower development in a sampling calorimeter : collect energy
deposited, survey energy flow and print stopping power

	TestEm4#20
- 9 MeV point like photon source: plot spectrum of energy deposited
in a single media

	TestEm5#21
- how to study transmission, absorption and reflection of particles
through a single, thin or thick, layer.

	TestEm6#22
- physics list for rare, high energy, electromagnetic processes:
gamma conversion and e+ annihilation into pair of muons

	TestEm7#23
- how to produce a Bragg curve in water phantom. How to compute dose
in tallies

	TestEm8#24
- test of photo-absorption-ionisation model in thin absorbers, and
transition radiation

	TestEm9#25
- shower development in a crystal calorimeter; cut-per-region

	TestEm10#26
- XTR transition radiation model, investigation of ionisation in thin
absorbers

	TestEm11#27
- how to plot a depth dose profile in a rectangular box

	TestEm12#28
- how to plot a depth dose profile in spherical geometry : point like
source

	TestEm13#29
- how to compute cross sections of EM processes from rate of
transmission coefficient

	TestEm14#30
- how to compute cross sections of EM processes from direct
evaluation of the mean-free path. How to plot final state

	TestEm15#31
- compute and plot final state of Multiple Scattering as an isolated
process

	TestEm16#32
- simulation of synchrotron radiation

	TestEm17#33
- check the cross sections of high energy muon processes

	TestEm18#34
- energy lost by a charged particle in a single layer, due to
ionization and bremsstrahlung

Table 22 TestEm by theme

	Check basic quantities

	Total cross sections, mean free paths ...

	Em0, Em13, Em14

	Stopping power, particle range ...

	Em0, Em1, Em5, Em11, Em12

	Final state : energy spectra, angular distributions

	Em14

	Energy loss fluctuations

	Em18

	Multiple Coulomb scattering

	as an isolated mechanism

	Em15

	as a result of particle transport

	Em5

	More global verifications

	Single layer: transmission, absorption, reflection

	Em5

	Bragg curve, tallies

	Em7

	Depth dose distribution

	Em11, Em12

	Shower shapes, Moliere radius

	Em2

	Sampling calorimeters, energy flow

	Em3

	Crystal calorimeters

	Em9

	Other specialized programs

	High energy muon physics

	Em17

	Other rare, high energy processes

	Em6

	Synchrotron radiation

	Em16

	Transition radiation

	Em8

	Photo-absorption-ionization model

	Em10

Error Propagation

	errProp#35
- error propagation utility

Event Generator

	exgps#36
- illustrating the usage of the G4GeneralParticleSource utility

	particleGun#37
- demonstrating three different ways of usage of G4ParticleGun,
shooting primary particles in different cases

	userPrimaryGenerator#38
- demonstrating how to create a primary event including several
vertices and several primary particles per vertex

	HepMCEx01#39
- simplified collider detector using HepMC interface and stacking

	HepMCEx02#40
- connecting primary particles in Geant4 with various event
generators using the HepMC interface

	MCTruth#41
- demonstrating a mechanism for Monte Carlo truth handling using
HepMC as the event record

	pythia#42
- illustrating the usage of Pythia#43 as Monte
Carlo event generator, interfaced with Geant4, and showing how to
implement an external decayer. Examples decayer6#44 and py8decayer#45

Exotic Physics

	Channeling#46
- simulates channeling of 400 GeV/c protons in a bent crystal.

	Dmparticle#47
- a very preliminary and simplified Geant4 example for light dark matter (LDM) particles.

	Monopole#48
- illustrating how to measure energy deposition in classical magnetic
monopole.

	Phonon#49
- demonstrates simulation of phonon propagation in cryogenic crystals.

	Saxs#50
- implements the typical setup of a Small Angle X-ray Scattering (SAXS) experiment. It is meant to illustrate the usage of molecular interference (MI) of Rayleigh (coherent) scattering of photons inside the matter.

	UCN#51
- simulates the passage of ultra-cold neutrons (UCN) in a hollow
pipe.

Fields

	BlineTracer#52
- tracing and visualizing magnetic field lines

	field01#53
- tracking using magnetic field and field-dependent processes

	field02#54
- tracking using electric field and field-dependent processes

	field03#55
- tracking in a magnetic field where field associated with selected
logical volumes varies

	field04#56
- definition of overlapping fields either magnetic, electric or both

	field05#57
- demonstration of "spin-frozen" condition, how to cancel the muon
g-2 precession by applying an electric field

	field06#58
- exercising the capability of tracking massive particles in a
gravity field

Geant3 to Geant4

	General
ReadMe#59
- converting simple geometries in Geant3.21 to their Geant4
equivalents (example clGeometry)

Geometry

	General
ReadMe#60

	transforms#61
- demonstrating various ways of definition of 3D transformations for
placing volumes

	vecGeomNavigation#62
- demonstrating integration of the navigation elements of
VecGeom#63

Hadronic

	Hadr00#64
- example demonstrating the usage of G4PhysListFactory to build
physics lists and usage of G4HadronicProcessStore to access the cross
sections

	Hadr01#65
- example based on the application IION developed for simulation of
proton or ion beam interaction with a water target. Different aspects
of beam target interaction are included

	Hadr02#66
- example application providing simulation of ion beam interaction
with different targets. Hadronic aspects of beam target interaction
are demonstrated including longitudinal profile of energy deposition,
spectra of secondary particles, isotope production spectra.

	Hadr03#67
- example demonstrating how to compute total cross section from the
direct evaluation of the mean free path, how to identify nuclear
reactions and how to plot energy spectrum of secondary particles

	Hadr04#68
- example focused on neutronHP physics, especially neutron transport,
including thermal scattering

	Hadr05#69
- examples of hadronic calorimeters

	Hadr06#70
- demonstrates survey of energy deposition and particle's flux from a
hadronic cascade

	Hadr07#71
- demonstrates survey of energy deposition and particle's flux from a
hadronic cascade. Show how to plot a depth dose profile in a
rectangular box.

	Hadr08#72
- demonstrates how to use "generic biasing" to get the following functionality which is currently not available directly in the Geant4 hadronic framework.
We want to use the physics list FTFP_BERT everywhere in our detector, except that in one (or more) logical volume(s) we want to use a different combination of hadronic models, e.g. FTFP + INCLXX (instead of the default FTFP + BERT), for the final-state generation.

	Hadr09#73
- demonstrates how to use Geant4 as a generator for simulating inelastic hadron-nuclear interactions. Notice that the Geant4 run-manager is not used.
See the README file (provided with the example) for more information.

	Hadr10#74
- aims to test the treatment of decays in Geant4. In particular, we want to test the decays of the tau lepton, charmed and bottom hadrons, and the use of pre-assigned decays.

	FissionFragment#75
- This example demonstrates the Fission Fragment model as used within
the neutron_hp model. It will demonstrate the capability for fission
product containment by the cladding in a water moderated sub-critical
assembly. It could also be further extended to calculate the
effective multiplication factor of the subcritical assembly for
various loading schemes.

	NeutronSource#76
- NeutronSource is an example of neutrons production. It illustrates
the cooperative work of nuclear reactions and radioactive decay
processes. It surveys energy deposition and particle's flux. It uses
PhysicsConstructor objects.

	ParticleFluence#77
- New set of extended examples, implementing different setups showing how to score particle fluences.

Medical Applications

	DICOM#78
- geometry set-up using the Geant4 interface to the DICOM image format

	DICOM2#79
- inheritance from the DICOM example, method for memory savings, scoring into a sequential container instead of an associative container, accumulating the scoring with a statistics class instead of a simple floating point, and generic iteration over the variety of scoring container storage variants

	electronScattering#80
- benchmark on electron scattering

	electronScattering2#81
- benchmark on electron scattering (second way to implement the same
benchmark as the above)

	fanoCavity#82
- dose deposition in an ionization chamber by a monoenergetic photon
beam

	fanoCavity2#83
- dose deposition in an ionization chamber by an extended
one-dimensional monoenergetic electron source

	GammaTherapy#84
- gamma radiation field formation in water phantom by electron beam
hitting different targets

	radiobiology#85
- an application realized for dosimetric and radiobiological applications of proton and ion beams

	dna#86
- Set of examples using the Geant4-DNA physics processes and models.

	AuNP#87
- Simulation of the track structure of electrons in a microscopic gold volume.

	UHDR#88
- Shows how to activate the mesoscopic model in chemistry and combine with SBS mode. It allows to simulate chemical reactions long time (beyond 1 us) of post- irradiation.

	chem1#89
- Simple activation of the chemistry module.

	chem2#90
- Usage of TimeStepAction in the chemistry module.

	chem3#91
- Activate the full interactivity with the chemistry module.

	chem4#92
- Simulation of G radiochemical yields with the chemistry module.

	chem5#93
- A variation of the chem4 example, using preliminary G4EmDNAPhysics_option8 and G4EmDNAChemistry_option1 constructors.

	chem6#94
- Scoring of the radiochemical yield G as a function of time and LET.

	clustering#95
- Clustering application for direct damage extraction.

	dnadamage1#96
- Simulation of damage on a chromatin fiber.

	dnadamage2#97
- Simulation of scoring of plasmid DNA strand breaks using the IRT method. It extends the chem6 example by adding DNA molecule information and the scoring of Strand Breaks.

	dnaphysics#98
- Simulation of track structures in liquid water using the Geant4-DNA physics processes and models.

	icsd#99
- Use of cross section models for DNA materials.

	jetcounter#100
- Simulation of a typical experiment with the Jet Counter nanodosemeter

	mfp#101
- Simulation of mean free path in liquid water.

	microdosimetry#102
- Simulation of the track of a 5 MeV proton in liquid water. Geant4 standard EM models are used in the World volume while Geant4-DNA models are used in a Target volume, declared as a Region.

	microprox#103
- Computation of proximity functions in liquid water.

	microyz#104
- Simulation of microdosimetry spectra.

	moleculardna#105
- Simulation of physics, physico-chemistry and chemistry processes in DNA geometries. See more details in the molecularDNA docs <https://geant4-dna.github.io/molecular-docs/>

	neuron#106
- Irradiation of a realistic neuron cell.

	pdb4dna#107
- Usage of the Protein Data Bank (PDB) file format to build geometries.

	range#108
- Simulation of ranges.

	scavenger#109
- Simulation of the scavenging process in chemistry using the deterministic treatment of the IRT model.

	slowing#110
- Simulation of slowing down spectra.

	scavenger#111
- Simulation of the scavenging process in chemistry using the deterministic treatment of the IRT model.

	splitting#112
- Acceleration of Geant4-DNA physics simulations by particle splitting.

	spower#113
- Simulation of stopping power.

	svalue#114
- Simulation of S-values in spheres of liquid water using the Geant4-DNA physics processes and models.

	wholeNuclearDNA#115
- Description of the full nucleus of a biological cell.

	wvalue#116
- Simulation of W-values in liquid water using the Geant4-DNA physics processes and models.

Optical Photons

	General
ReadMe#117

	OpNovice#118
- simulation of optical photons generation and transport. (It was
moved in extended examples from novice/N06 with removal of novice
examples.)

	OpNovice2#119
- investigate optical properties and parameters; details of optical photon boundary interactions on a surface, optical photon generation and transport

	LXe#120
- optical photons in a liquid xenon scintillator

	WLS#121
- application simulating the propagation of photons inside a Wave
Length Shifting (WLS) fiber

Parallel Computing

	General
ReadMe#122

	MPI#123
- interface and examples of applications (exMPI01, exMPI02, exMPI03* and
exMPI04) parallelized with different MPI compliant libraries, such
as LAM/MPI, MPICH2, OpenMPI, etc.

	TBB#124
- demonstrate how to interface a simple application with the Intel
Threading Building Blocks library (TBB), and organise MT event-level
parallelism as TBB tasks

	ThreadsafeScorers#125
- demonstrates a very simple application where an energy deposit and
of steps is accounted in thread-local (i.e. one instance per
thread) hits maps with underlying types of plain-old data (POD) and
global (i.e. one instance) hits maps with underlying types of
atomics.

	TopC#126
- set of examples (ParN02 and ParN04) derived from novice
using parallelism at event level with the
TopC#127 application

Parameterisations

	Par01#128
- Demonstrates the use of parameterisation facilities. (It was moved
in extended examples from novice/N05 with removal of novice
examples.)

	Par02#129
- Shows how to do "track and energy smearing" in Geant4, in order to
have a very fast simulation based on assumed detector resolutions.

	Par03#130
- Demonstrates how to create multiple energy deposits using helper class G4FastSimHitMaker.
Thanks to storing hits in the same hit collection (using one sensitive detector class)
whether they originated in the full or fast simulation, this example allows to perform
the same analysis on both outputs and compare the results.

	Par04 (doxygen#131)
- Demonstrates how to use machine learning techniques for the fast simulation of calorimeters, and how to incorporate
inference libraries into C++ framework.

	Gflash#132
- Examples set (gflash1, 2, 3, gflasha) demonstrating the use of the GFLASH parameterisation library. It uses the GFLASH equations (hep-ex/0001020, Grindhammer & Peters) to
parametrise electromagnetic showers in matter.

Persistency

	General
ReadMe#133

	GDML#134
- examples set (G01, G02, G03 and G04) illustrating import
and export of a detector geometry with GDML, and how to extend the
GDML schema or use the auxiliary information field for defining
additional persistent properties

	P01#135
- storing calorimeter hits using reflection mechanism with Root

	P02#136
- storing detector description using reflection mechanism with Root

	P03#137
- illustrating import and export of a detector geometry using ASCII
text description and syntax

Physics lists

	General
ReadMe#138

	factory#139
- demonstrates the usage of G4PhysListFactory to build the concrete physics list.

	extensibleFactory#140
- demonstrates the usage of extensible g4alt::G4PhysListFactory to build a concrete physics list.
It also demonstrates the setting of an alternative "default" physics list; extending existing lists by adding/replacing
physics constructors; and extending the factory with user supplied physics lists.

	genericPL#141
- demonstrates the usage of G4GenericPhysicsList to build the concrete physics list at the run time.

Polarisation

	Pol01#142
- interaction of polarized beam (e.g. circularly polarized photons)
with polarized target

Radioactive Decay

	rdecay01#143
- demonstrating basic functionality of the G4RadioactiveDecay
process

	rdecay02#144
(Exrdm) - decays of radioactive isotopes as well as induced
radioactivity resulted from nuclear interactions

	Activation#145
- compute and plot time evolution of each nuclide in an hadronic cascade.
Compute and plot activity of emerging particles.

Run & Event

	RE01#146
- information between primary particles and hits and usage of
user-information classes

	RE02#147
- simplified fixed target application for demonstration of primitive
scorers

	RE03#148
- use of UI-command based scoring; showing how to create parallel
world(s) for defining scoring mesh(es)

	RE04#149
- demonstrating how to define a layered mass geometry in parallel
world

	RE05#150
- demonstrating interfacing to the PYTHIA primary generator,
definition of a 'readout' geometry, event filtering using the
stacking mechanism. (It was moved in extended examples from
novice/N04 with removal of novice examples.)

	RE06#151
- demonstrating how to modify part of the geometry setup at run-time,
detector description parameterisation by materials, sharing of a
sensitive detector definition for different sub-detectors, different
geometrical regions definition with different production thresholds,
customization of the G4Run (It was moved in extended examples from
novice/N07 with removal of novice examples.)

	RE07#152
- based on extended/electromagnetic/TestEm3, this example demonstrates
how to register specialized tracking managers for a particle or a set
of particles.

Visualization

	General
ReadMe#153
- examples (perspective, standalone and userVisAction) of
customisation for visualization

	movies#154
- illustrating how to create a movie

Footnotes

	#1

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleAnaEx01.html

	#2

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleAnaEx02.html

	#3

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleAnaEx02.html

	#4

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleB1Con.html

	#5

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleB5.html

	#6

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_biasing.html

	#7

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleReverseMC01.html

	#8

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleGB01.html

	#9

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleGB02.html

	#10

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleGB03.html

	#11

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleGB04.html

	#12

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleGB05.html

	#13

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleGB06.html

	#14

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleGB07.html

	#15

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_common.html

	#16

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm0.html

	#17

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm1.html

	#18

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm2.html

	#19

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm3.html

	#20

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm4.html

	#21

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm5.html

	#22

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm6.html

	#23

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm7.html

	#24

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm8.html

	#25

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm9.html

	#26

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm10.html

	#27

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm11.html

	#28

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm12.html

	#29

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm13.html

	#30

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm14.html

	#31

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm15.html

	#32

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm16.html

	#33

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm17.html

	#34

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleTestEm18.html

	#35

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleerrProp.html

	#36

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Exampleexgps.html

	#37

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleparticleGun.html

	#38

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleuserPrimaryGenerator.html

	#39

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleHepMCEx01.html

	#40

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleHepMCEx02.html

	#41

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleMCTruth.html

	#42

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_pythia.html

	#43

	https://pythia.org/

	#44

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Exampledecayer6.html

	#45

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplepy8decayer.html

	#46

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplechanneling.html

	#47

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Exampledmparticle.html

	#48

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplemonopole.html

	#49

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplephonon.html

	#50

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplesaxs.html

	#51

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Exampleucn.html

	#52

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleBlineTracer.html

	#53

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplefield01.html

	#54

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplefield02.html

	#55

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplefield03.html

	#56

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplefield04.html

	#57

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplefield05.html

	#58

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplefield06.html

	#59

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_g3tog4.html

	#60

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_geometry.html

	#61

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Exampletransforms.html

	#62

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExamplevecGeomNavigation.html

	#63

	https://gitlab.cern.ch/VecGeom/VecGeom

	#64

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleHadr00.html

	#65

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleHadr01.html

	#66

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleHadr02.html

	#67

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleHadr03.html

	#68

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleHadr04.html

	#69

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleHadr05.html

	#70

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleHadr06.html

	#71

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleHadr07.html

	#72

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleHadr08.html

	#73

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleHadr09.html

	#74

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleHadr10.html

	#75

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleFissionFragment.html

	#76

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleNeutronSource.html

	#77

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_ParticleFluence.html

	#78

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleDICOM.html

	#79

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleDICOM2.html

	#80

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleelectronScattering.html

	#81

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleelectronScattering2.html

	#82

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExamplefanoCavity.html

	#83

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExamplefanoCavity2.html

	#84

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleGammaTherapy.html

	#85

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Exampleradiobiology.html

	#86

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_dna.html

	#87

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleAuNP.html

	#88

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleUHDR.html

	#89

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleChem1.html

	#90

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleChem2.html

	#91

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleChem3.html

	#92

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleChem4.html

	#93

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleChem5.html

	#94

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleChem6.html

	#95

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Exampleclustering.html

	#96

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleDnadamage1.html

	#97

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleDnadamage2.html

	#98

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleDnaphysics.html

	#99

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Exampleicsd.html

	#100

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplejetcounter.html

	#101

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplemfp.html

	#102

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleMicrodosimetry.html

	#103

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplemicroprox.html

	#104

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplemicroyz.html

	#105

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplemoleculardna.html

	#106

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleNeuron.html

	#107

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExamplePdb4dna.html

	#108

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplerange.html

	#109

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplescavenger.html

	#110

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Exampleslowing.html

	#111

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplescavenger.html

	#112

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplesplitting.html

	#113

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplespower.html

	#114

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplesvalue.html

	#115

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleWholeNuclearDNA.html

	#116

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplewvalue.html

	#117

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_optical.html

	#118

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleOpNovice.html

	#119

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleOpNovice2.html

	#120

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleLXe.html

	#121

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplewls.html

	#122

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_parallel.html

	#123

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_MPI.html

	#124

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_tbb.html

	#125

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleThreadsafeScorers.html

	#126

	https://geant4.kek.jp/lxr/source/examples/extended/parallel/TopC/

	#127

	http://www.ccs.neu.edu/home/gene/topc.html

	#128

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExamplePar01.html

	#129

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExamplePar02.html

	#130

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExamplePar03.html

	#131

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExamplePar04.html

	#132

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_gflash.html

	#133

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_persistency.html

	#134

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_gdml.html

	#135

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleP01.html

	#136

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleP02.html

	#137

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleP03.html

	#138

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_physicslists.html

	#139

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplefactory.html

	#140

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleextensibleFactory.html

	#141

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExamplegenericPL.html

	#142

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExamplePol01.html

	#143

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplerdecay01.html

	#144

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examplerdecay02.html

	#145

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleActivation.html

	#146

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleRE01.html

	#147

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleRE02.html

	#148

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleRE03.html

	#149

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleRE04.html

	#150

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleRE05.html

	#151

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleRE06.html

	#152

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleRE07.html

	#153

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/Examples_visualization.html

	#154

	http://geant4-userdoc.web.cern.ch/geant4-userdoc/Doxygen/examples_doc/html/ExampleMovies.html

Par04

Par04 example focuses on application of Machine Learning (ML) techniques to fast simulation of calorimeters.
Its main goal is to demonstrate how to do ML inference using Geant4.

In order to show how to perform ML inference, Par04 contains an ML model. It was trained externally
(with Python) on dataset from standard (full) simulation done with this example. It is not optimized
as its accuracy is not the concern of this example.

Installation

Par04 example depends on external libraries used for the ML inference. Currently, following libraries can
be used:

	ONNX Runtime#1,

	LWTNN#2.

If those libraries are not available, Par04 example can still be built to run standard (full) simulation.
Such application can be used for instance to simulate the dataset used for ML training. The search for
external libraries is by default switched on, but it can be switched off by setting the CMake variable
INFERENCE_LIB to OFF.

To build the application you need to:

$ cmake <Par04_SOURCE>
$ make

Replace <Par04_SOURCE> with the path to Par04 example source directory. CMake will look for
inference libraries unless you use -DINFERENCE_LIB=OFF. You can point manually to them
using CMAKE_PREFIX_PATH variable.

For instance, to run the example on lxplus8 you could use:

$ source /cvmfs/sft.cern.ch/lcg/contrib/gcc/11.1.0/x86_64-centos8-gcc11-opt/setup.sh
$ cmake <Par04_SOURCE> -DCMAKE_PREFIX_PATH="/cvmfs/sft.cern.ch/lcg/releases/onnxruntime/1.8.0-47224/x86_64-centos8-gcc11-opt;/cvmfs/sft.cern.ch/lcg/releases/lwtnn/2.11.1-72aca/x86_64-centos8-gcc11-opt/"

How to run

Example can be run in batch mode, as well as in the interactive mode with the hit visualization.

To run the example in the batch mode you need to specify the macro (options) passing it with -m:

$./examplePar04 -m <MACRO_FILE>

To run the example in the interactive mode:

$./examplePar04

Example contains following macro files:

	examplePar04.in - runs full simulation.

	examplePar04_onnx.in - runs inference with ONNX Runtime. It is installed in the build directory
only if ONNX Runtime is found by CMake.

	examplePar04_lwtnn.in - runs inference with LWTNN. It is installed in the build directory
only if LWTNN is found by CMake.

	vis.mac - this macro is used in the interactive mode.

ML fast calorimeter simulation

Calorimeter

Calorimeter used in this example is a simple setup of concentric cylinders of active and
passive material. It can be configured from the macro using the UI commands.

Energy deposits are scored in the detector using the cylindrical readout structure, centered
around the particle momentum, as shown in Fig. 28. Dimensions of the readout
structure (number and size of cells) can be also configured using the UI commands.

[image: ../../_images/par04detector.png]

Fig. 28 Energy deposits are scored in cylindrical readout around particle momentum.

This example uses silicon as an active material, and tungsten as the passive absorber.
90 layers of both materials are placed, with 1.4 mm of tungsten and 0.3 mm of silicon.
Size of the cylindrical readout has been optimized to contain (on average) 95 % of energy
of 1 TeV electrons. The size of single cell has been chosen to correspond to (approximately)
0.25 Moliere radius and 0.5 radiation length.

Detector and readout (mesh) used in the example macros are configured with following commands:

Detector Construction
/Par04/detector/setDetectorInnerRadius 80 cm
/Par04/detector/setDetectorLength 2 m
/Par04/detector/setNbOfLayers 90
/Par04/detector/setAbsorber 0 G4_W 1.4 mm false
/Par04/detector/setAbsorber 1 G4_Si 0.3 mm true
2.325 mm of tungsten =~ 0.25 * 9.327 mm = 0.25 * R_Moliere
/Par04/mesh/setSizeOfRhoCells 2.325 mm
2 * 1.4 mm of tungsten =~ 0.65 X_0
/Par04/mesh/setSizeOfZCells 3.4 mm
/Par04/mesh/setNbOfRhoCells 18
/Par04/mesh/setNbOfPhiCells 50
/Par04/mesh/setNbOfZCells 45

Particle momentum that is used to define the orientation and the placement of the cylindrical readout
(which will differ from particle to particle) is measured at the entrance to the calorimeter.
This measurement can be done in several different ways, and this example is using a fast simulation
model (Par04DefineMeshModel) that is triggered at the entrance to the calorimeter and that sets up
particle entrance position and momentum in the event information Par04EventInformation (since
single particle events are used). For simplicity of the example Par04DefineMeshModel is attached to
the same region as Par04InferenceModel. It has two direct consequences:

	In fast simulation order of activation of those model must be respected (first the model which sets up the readout properties, and then the model which kills a particle and creates deposits).

	Full simulation is slowed down by the large region of calorimeter and presence of fast simulation model that is called (to check if particle enters the calorimeter) for every electron or photon. For realistic use case this model should be attached to very thin cylindrical region located just before the entrance to the calorimeter.

Output data

Cylindrical readout is used in the sensitive detector Par04SensitiveDetector which accumulates energy from
the event in the collection of hits, ignoring the deposits outside of the cylindrical mesh. At the end of each
event, hit collection is saved to ntuple and stored in ROOT files. Additionally, simple analysis of the shower
shape is performed and histograms are saved alongside the ntuple (technically, if G4 is run in sequential mode,
otherwise multiple ROOT files are produced because histograms are merged while ntuples are not).

Structure of the output file(s) is the following:

10GeV_100events_fullsim.root
├── events
│ ├── (D) EnergyMC
│ ├── (VD) EnergyCell
│ ├── (VI) rhoCell
│ ├── (VI) phiCell
│ ├── (VI) zCell
│ └── (D) SimTime
├── (H) energyParticle
├── (H) energyDeposited
├── (H) energyRatio
├── (H) time
├── (H) longProfile
├── (H) transProfile
├── (H) longFirstMoment
├── (H) transFirstMoment
├── (H) longSecondMoment
├── (H) transSecondMoment
└── (H) hitType

Where:

	(D) is a double value,

	(VD) is a vector of double values,

	(VI) is a vector of integers,

	(H) is a histogram.

Ntuple events contains information on energy of primary particle (in units of MeV), and vector of energy deposits:
cylindrical coordinates and energy in default Geant4 units (rad for phi, mm for rho and z, MeV for energy). Only
deposits above hard-coded threshold (E>0.5 keV) are stored in the file.
Histograms are created in a simple post-event analysis. Please note that for readability, energy of primary particle
and total deposited energy are plotted in units of GeV. Moreover, all hits with non-zero energy are taken into account (there is no minimal energy threshold). Hit type can be used to distinguish between full and fast simulation. Hit with ID=0 is used for full simulation, and ID=1 for fast simulation.

ML model

The model used in this example was trained externally (in Python) on data from this examples' full simulation. It is a Variational Autoencoder (VAE): a deep learning generative model. The VAE is composed of two stacked deep neural networks acting as encoder and decoder. The encoder learns a mapping from the input space to an unobserved or latent space in which a lower dimensional representation of the full simulation is learned. The decoder learns the inverse mapping, thus reconstructing the original input from this latent representation. The encoded distributions are constrained to be Gaussian distributions and the encoder is tasked to return the mean and the covariance matrix that describe these distributions.

The loss function that is optimized during the training of the VAE is composed of a regularisation loss to minimize Kulback-Leibler divergence between encoded distributions and prior Gaussian distributions, a reconstruction loss to minimize the error by computing the binary cross-entropy between the input and its reconstruction version using the latent representation.

The VAE architecture used in this example comprises 4 hidden layers with width of 100,50,20,14 and 14,20,50,100 for the encoder and decoder respectively as shown in the figure below.

[image: ../../_images/par04VAEModel.png]

Fig. 29 VAE model architecture.

The full simulation samples for the two detector geometries (Si/W as used in the example, and additionally 1.2 mm Scintillator/4.4 mm Pb) are showers of electron particles generated with an energy range from 1 GeV to 1 TeV (in powers of 2) and angles from 50 to 90 degrees (in a step of 10 degrees). 90 degrees means perpendicular to the z-axis. The VAE is conditioned on the three parameters.

The three figures below show the validation plots comparing the full simulation to the (ML) fast simulation after using the inference with ONNX. The plots show the longitudinal (Fig. 30), transverse profiles (Fig. 31) and simulation time (Fig. 32) for 64 GeV particles with an angle of 90 degrees.

[image: ../../_images/par04longProfile_E_64_A_90.png]

Fig. 30 Longitudinal profile for 64 GeV electrons.

[image: ../../_images/par04transProfile_E_64_A_90.png]

Fig. 31 Transvers profile for 64 GeV electrons.

[image: ../../_images/par04time_E_64_A_90.png]

Fig. 32 Simulation time for 64 GeV electrons.

Inference

In this example, the input inference vector is constructed by sampling from a 10D Gaussian distribution. The condition vector comprises condition values of energy and angle of a particle and two values encoding the calorimeter geometry. The condition value of the energy of the particle is normalized to the maximum energy point in the range of training. For the angle, the value in degrees is also normalized to the maximum angle point in the range of training. The model was trained on two detector geometries and the conditioning of the geometry used is a one hot encoding vector with [0,1] for SiW geometry and [1,0] for SciPb geometry. After running the inference, the values are rescaled back by the energy of the particle.

How to run inference of user models

This example was designed to facilitate integration of user model in Geant4 toolkit. Figure Fig. 33 shows how fast simulation components were implemented. Fast simulation model Par04InferenceModel is responsible for taking the particle out of full simulation, and creation of energy deposits with energy and position returned by Par04InferenceSetup. This is the model(user) specific class that should configure the ML model, run the inference using one of the inference libraries (configured in the example with UI commands thanks to Par04InferenceSetupMessenger), do the energy postprocessing, and finally be aware where to place energy inside of the detector. Interface to inference libraries (Par04InferenceInterface) is designed in a model-agnostic way. The inference works for any trained model by sampling N points from a predefined distribution where N represents the size of the input inference vector.

[image: ../../_images/par04inference.png]

Fig. 33 Diagram of the classes used for fast simulation with ML inference.

For a specific application, the user should therefore only change Par04InferenceSetup class, where all inference parameters are defined. These parameters include the name of the inference library, the path and name of the inference model, the size of the input inference vector (latent vector size and condition vector size). In this class the user can define the input inference vector including the vector of conditions, run the inference and also apply a post processing step to retrieve the original energy range if the model was trained on any specific preprocessed values. The important part is also assignment of positions to the energy deposits. Fast simulation model Par04InferenceModel will use those positions to place the deposits, therefore it needs to be a position of the sensitive detector. For this reason, in Par04 example, where simple center of cell positions are used, both materials (active and passive) is considered as sensitive for the fast simulation runs.

Inference with LWTNN

Lightweight Trained Neural Network (LWTNN) supports scikit-learn and Keras models where this model is saved as two separate files of the architecture (in JSON) and the weights (in HDF5). The trained model can be saved into these two separate files with:

save the architecture in a JSON file
with open('architecture.json', 'w') as arch_file:
 arch_file.write(model.to_json())
save the weights as an HDF5 file
model.save_weights('weights.h5')

After building the LWTNN code available at this link#3, run the kerasfunc2json python script (available in lwtnn/converters/) to generate a template file of your functional model input variables by calling:

$ kerasfunc2json.py architecture.json weights.h5 > inputs.json

And run again kerasfunc2json script to get your output file that would be used for the inference in C++:

$ kerasfunc2json.py architecture.json weights.h5 inputs.json > Generator.json

Par04LwtnnInference is the class called if the user chooses the LWTNN library. The object that will do the computation in this class is a LightweightGraph, initialized from Generator.json file. The inference is based on evaluating the graph using the input inference vector constructed in Par04InferenceSetup.

Inference with ONNX runtime

Open Neural Network Exchange (ONNX) runtime supports models from Tensorflow/Keras, PyTorch, TFLite, scikit-learn and other frameworks. For a Keras model for example, to save it into an ONNX, you can first save it as HDF5 file with:

model.save("model.h5")

This model is then converted into an ONNX format using keras2onnx#4 with:

Create the Keras model
kerasModel = tensorflow.keras.models.load_model(“model.h5”)
Convert Keras model into an ONNX model
onnxModel = keras2onnx.convert_keras(kerasModel , ‘name’)
Save the ONNX model
keras2onnx.save_model(onnxModel, ‘Generator.onnx')

Par04OnnxInference is the class that is called if the user chooses ONNX. It creates an environment which manages an internal thread pool and creates as well the inference session for the model. This session runs the inference using the input vector constructed in Par04InferenceSetup.

Footnotes

	#1

	https://github.com/microsoft/onnxruntime

	#2

	https://github.com/lwtnn/lwtnn

	#3

	https://github.com/lwtnn/lwtnn

	#4

	https://github.com/onnx/keras-onnx

Advanced Examples

Geant4 advanced examples illustrate realistic applications of Geant4 in
typical experimental environments. Most of them also show the usage of
analysis tools (such as histograms, ntuples and plotting), various
visualization features and advanced user interface facilities, together
with the simulation core.

Note

Maintenance and updates of the code is under the
responsibility of the authors. No guarantee can be provided on the functionality and
the accuracy deriving from the simulation results.

The advanced examples are fully documented here#1, below is a summary
of what is available:

Table 23 Advanced Examples

	Example Name

	Short Description

	air_shower#2

	Modelling of the ULTRA experiment#3, EUSO mission

	ams_Ecal#4

	Modelling of the electromagnetic Calorimeter (ECAL) of the AMS-02#5 experiment

	brachytherapy#6

	Calculation of dose in a phantom, in the context of brachytherapy

	CaTS#7

	Demonstration of the G4Opticks hybrid workflow for

the creation and propagation of optical photons on GPUs

	ChargeExchangeMC#8

	Simulation of hadronic physics experiments of the Petersburg
Nuclear Physics Institute (PNPI, Russia)

	composite_calorimeter#9

	Example of a test-beam simulation used by the CMS#10

	doiPET#11

	Modelling of a PET scintillator system

	eFLASH_radiotherapy

	Modelling of a FLASH radiotherapy beamline

	eRosita#12

	Modelling of eROSITA#13 astronomical X-ray full-sky
survey mission on-board the Spectrum-X-Gamma space mission

	exp_microdosimetry#14

	Modelling of detectors and their response for microdosimetry for
radiation protection in space

	fastAerosol#15

	Development of a custom geometry class for accurately and efficiently
simulating aerosols with many droplets

	gammaknife#16

	Simulation of an advanced device for Stereotactic Radiosurgery

	gammaray_telescope#17

	Model of a typical telescope for gamma ray analysis in the context
of space exploration

	gorad#18

	Turn-key application for radiation analysis and spacecraft design
built on top of Geant4

	hadrontherapy#19

	Model of hadrontherapy beamlines

	HGCal_testbeam#20

	Demonstration of a high-end High Energy Physics test beam setup,
for the endcap electromagnetic calorimeter of the CMS detector CERN-LHCC-2017-023#21

	human_phantom#22

	Calculation of dose in analytical anthropomorphic phantoms

	ICRP110_HumanPhantoms#23

	Calculation of dose in ICRP110 anthorpomorphic phantoms#24

	ICRP145_HumanPhantoms

	Calculation of dose in ICRP145 anthorpomorphic phantoms#25

	iort_therapy#26

	Model of a typical Intraoperative Radiation Therapy beamline

	lAr_calorimeter#27

	Simulation of the Forward Liquid Argon Calorimeter (FCAL)#28 of the ATLAS Detector, CERN, Switzerland

	medical_linac#29

	Model of a typical medical linear accelerator for
Intensity Modulated Radiation Therapy (IMRT)

	microbeam#30

	Simulation of the microbeam cellular irradiation beam line installed
on the AIFIRA electrostatic accelerator facility located at LP2i#31 Bordeaux, France

	microelectronics#32

	Demonstration on how to activate track structure physics models
for electrons in a silicon microelectronics device

	nanobeam#33

	Simulation of the beam optics of the "nanobeam line" installed on
the AIFIRA electrostatic accelerator facility located at LP2i#34 Bordeaux, France

	purging_magnet#35

	Modelling of electrons traveling through a 3D magnetic field in the radiotherapy context

	STCyclotron#36

	Model of the solid target of the South Australian Health and Medical Research Institute (SAHMRI)#37, Adelaide, South Australia

	stim_pixe_tomography#38

	Simulation of three dimensional proton micro-tomography

	underground_physics

	Example of an underground dark matter experiment. More details are
provided in the README file accompanying the example

	xray_fluorescence

	Example reproducing various setups for PIXE and XRF experiments.
More details are provided in the README file accompanying the example

	xray_telescope#39

	Simulation of a typical X-ray telescope for space exploration

	xray_TESdetector#40

	Application of Geant4 in a space environment. Model of an X-ray detector
derived from the X-IFU, the X-ray spectrometer designed and developed
by the European Space Agency (ESA) for use on the ATHENA telescope.

	Xray_SiliconPoreOptics#41

	Model of a single reflective pore used to simulate on a smaller scale
the effect of the millions of pores forming the mirror of the
ATHENA Silicon Pore Optics (SPO).

Footnotes

	#1

	https://www.geant4.org/docs/advanced_examples_doc

	#2

	https://www.geant4.org/docs/advanced_examples_doc/example_air_shower

	#3

	https://arxiv.org/abs/astro-ph/0602151

	#4

	https://www.geant4.org/docs/advanced_examples_doc/example_ams_Ecal

	#5

	https://ams02.space/

	#6

	https://www.geant4.org/docs/advanced_examples_doc/example_brachytherapy

	#7

	https://www.geant4.org/docs/advanced_examples_doc/example_cats

	#8

	https://www.geant4.org/docs/advanced_examples_doc/example_charge_exchange_MC

	#9

	https://www.geant4.org/docs/advanced_examples_doc/example_composite_calorimeter

	#10

	https://cms.cern/collaboration

	#11

	https://www.geant4.org/docs/advanced_examples_doc/example_doiPET

	#12

	https://www.geant4.org/docs/advanced_examples_doc/example_erosita

	#13

	https://www.mpe.mpg.de/eROSITA

	#14

	https://www.geant4.org/docs/advanced_examples_doc/example_radioprotection

	#15

	https://www.geant4.org/docs/advanced_examples_doc/example_fastaerosol

	#16

	https://www.geant4.org/docs/advanced_examples_doc/example_gammaknife

	#17

	https://www.geant4.org/docs/advanced_examples_doc/example_gammaray_telescope

	#18

	https://www.geant4.org/docs/advanced_examples_doc/example_gorad

	#19

	https://www.geant4.org/docs/advanced_examples_doc/example_hadrontherapy

	#20

	https://www.geant4.org/docs/advanced_examples_doc/example_HGCal

	#21

	https://cds.cern.ch/record/2293646?ln=en

	#22

	https://www.geant4.org/docs/advanced_examples_doc/example_human_phantom

	#23

	https://www.geant4.org/docs/advanced_examples_doc/example_ICRP110Phantom

	#24

	http://www.icrp.org/publication.asp?id=icrp%20publication%20110

	#25

	https://www.icrp.org/publication.asp?id=ICRP%20Publication%20145

	#26

	https://www.geant4.org/docs/advanced_examples_doc/example_IORT

	#27

	https://www.geant4.org/docs/advanced_examples_doc/example_lAr_calorimeter

	#28

	https://ieeexplore.ieee.org/document/4179143

	#29

	https://www.geant4.org/docs/advanced_examples_doc/example_medical_linac

	#30

	https://www.geant4.org/docs/advanced_examples_doc/example_microbeam

	#31

	https://www.lp2ib.in2p3.fr/

	#32

	https://www.geant4.org/docs/advanced_examples_doc/example_microelectronics

	#33

	https://www.geant4.org/docs/advanced_examples_doc/example_nanobeam

	#34

	https://www.lp2ib.in2p3.fr/

	#35

	https://www.geant4.org/docs/advanced_examples_doc/example_purging_magnet

	#36

	https://www.geant4.org/docs/advanced_examples_doc/example_STCyclotron

	#37

	https://sahmri.org.au/

	#38

	https://www.geant4.org/docs/advanced_examples_doc/example_stim_pixe_tomography

	#39

	https://www.geant4.org/docs/advanced_examples_doc/example_xray_telescope

	#40

	https://www.geant4.org/docs/advanced_examples_doc/example_xray_TESdetector

	#41

	https://www.geant4.org/docs/advanced_examples_doc/example_xray_SiliconPoreOptics

Novice Examples

The old "novice" set of examples is now replaced with a new "basic" set,
covering the most typical use-cases of a Geant4 application with keeping
simplicity and ease of use.

The source code of the last version of the novice examples set (in
9.6.p02 release) can be viewed in the Geant4 LXR code
browser.#1

The new location of each example in 10.0 release:

	N01 - removed

	N02 - basic/B2

	N03 - basic/B4

	N04 - extended/runAndEvent/RE05

	N05 - extended/parameterisations/Par01

	N06 - extended/optical/OpNovice

	N07 - extended/runAndEvent/RE06

Footnotes

	#1

	http://www-geant4.kek.jp/lxr/source/examples/novice/?v=9.6.p2

Appendix

	Geant4 Material Database
	Simple Materials (Elements)

	NIST Compounds

	HEP and Nuclear Materials

	Space (ISS) Materials

	Bio-Chemical Materials

	Transportation in Magnetic Field - Further Details
	The challenge of integrating all tracks

	Using preset thresholds for killing loopers

	Finer-grain control of the parameters for killing looping particles

	Full control of the parameters for killing looping particles

	Using a helper object to forward parameter changes

	How to replace the Transportation Process of a particle type

	Avoiding loopers or reducing the incidence of looping particles

Footnotes

Geant4 Material Database

Simple Materials (Elements)

	Z

	Name

	density(g/cm^3)

	I(eV)

	1

	G4_H

	8.3748e-05

	19.2

	2

	G4_He

	0.000166322

	41.8

	3

	G4_Li

	0.534

	40

	4

	G4_Be

	1.848

	63.7

	5

	G4_B

	2.37

	76

	6

	G4_C

	2

	81

	7

	G4_N

	0.0011652

	82

	8

	G4_O

	0.00133151

	95

	9

	G4_F

	0.00158029

	115

	10

	G4_Ne

	0.000838505

	137

	11

	G4_Na

	0.971

	149

	12

	G4_Mg

	1.74

	156

	13

	G4_Al

	2.699

	166

	14

	G4_Si

	2.33

	173

	15

	G4_P

	2.2

	173

	16

	G4_S

	2

	180

	17

	G4_Cl

	0.00299473

	174

	18

	G4_Ar

	0.00166201

	188

	19

	G4_K

	0.862

	190

	20

	G4_Ca

	1.55

	191

	21

	G4_Sc

	2.989

	216

	22

	G4_Ti

	4.54

	233

	23

	G4_V

	6.11

	245

	24

	G4_Cr

	7.18

	257

	25

	G4_Mn

	7.44

	272

	26

	G4_Fe

	7.874

	286

	27

	G4_Co

	8.9

	297

	28

	G4_Ni

	8.902

	311

	29

	G4_Cu

	8.96

	322

	30

	G4_Zn

	7.133

	330

	31

	G4_Ga

	5.904

	334

	32

	G4_Ge

	5.323

	350

	33

	G4_As

	5.73

	347

	34

	G4_Se

	4.5

	348

	35

	G4_Br

	0.0070721

	343

	36

	G4_Kr

	0.00347832

	352

	37

	G4_Rb

	1.532

	363

	38

	G4_Sr

	2.54

	366

	39

	G4_Y

	4.469

	379

	40

	G4_Zr

	6.506

	393

	41

	G4_Nb

	8.57

	417

	42

	G4_Mo

	10.22

	424

	43

	G4_Tc

	11.5

	428

	44

	G4_Ru

	12.41

	441

	45

	G4_Rh

	12.41

	449

	46

	G4_Pd

	12.02

	470

	47

	G4_Ag

	10.5

	470

	48

	G4_Cd

	8.65

	469

	49

	G4_In

	7.31

	488

	50

	G4_Sn

	7.31

	488

	51

	G4_Sb

	6.691

	487

	52

	G4_Te

	6.24

	485

	53

	G4_I

	4.93

	491

	54

	G4_Xe

	0.00548536

	482

	55

	G4_Cs

	1.873

	488

	56

	G4_Ba

	3.5

	491

	57

	G4_La

	6.154

	501

	58

	G4_Ce

	6.657

	523

	59

	G4_Pr

	6.71

	535

	60

	G4_Nd

	6.9

	546

	61

	G4_Pm

	7.22

	560

	62

	G4_Sm

	7.46

	574

	63

	G4_Eu

	5.243

	580

	64

	G4_Gd

	7.9004

	591

	65

	G4_Tb

	8.229

	614

	66

	G4_Dy

	8.55

	628

	67

	G4_Ho

	8.795

	650

	68

	G4_Er

	9.066

	658

	69

	G4_Tm

	9.321

	674

	70

	G4_Yb

	6.73

	684

	71

	G4_Lu

	9.84

	694

	72

	G4_Hf

	13.31

	705

	73

	G4_Ta

	16.654

	718

	74

	G4_W

	19.3

	727

	75

	G4_Re

	21.02

	736

	76

	G4_Os

	22.57

	746

	77

	G4_Ir

	22.42

	757

	78

	G4_Pt

	21.45

	790

	79

	G4_Au

	19.32

	790

	80

	G4_Hg

	13.546

	800

	81

	G4_Tl

	11.72

	810

	82

	G4_Pb

	11.35

	823

	83

	G4_Bi

	9.747

	823

	84

	G4_Po

	9.32

	830

	85

	G4_At

	9.32

	825

	86

	G4_Rn

	0.00900662

	794

	87

	G4_Fr

	1

	827

	88

	G4_Ra

	5

	826

	89

	G4_Ac

	10.07

	841

	90

	G4_Th

	11.72

	847

	91

	G4_Pa

	15.37

	878

	92

	G4_U

	18.95

	890

	93

	G4_Np

	20.25

	902

	94

	G4_Pu

	19.84

	921

	95

	G4_Am

	13.67

	934

	96

	G4_Cm

	13.51

	939

	97

	G4_Bk

	14

	952

	98

	G4_Cf

	10

	966

NIST Compounds

===
 Ncomp Name density(g/cm^3) I(eV) ChFormula
===
 6 G4_A-150_TISSUE 1.127 65.1
 1 0.101327
 6 0.7755
 7 0.035057
 8 0.0523159
 9 0.017422
 20 0.018378
 3 G4_ACETONE 0.7899 64.2
 6 3
 1 6
 8 1
 2 G4_ACETYLENE 0.0010967 58.2
 6 2
 1 2
 3 G4_ADENINE 1.6 71.4
 6 5
 1 5
 7 5
 7 G4_ADIPOSE_TISSUE_ICRP 0.95 63.2
 1 0.114
 6 0.598
 7 0.007
 8 0.278
 11 0.001
 16 0.001
 17 0.001
 4 G4_AIR 0.00120479 85.7
 6 0.000124
 7 0.755268
 8 0.231781
 18 0.012827
 4 G4_ALANINE 1.42 71.9
 6 3
 1 7
 7 1
 8 2
 2 G4_ALUMINUM_OXIDE 3.97 145.2 Al_2O_3
 13 2
 8 3
 3 G4_AMBER 1.1 63.2
 1 0.10593
 6 0.788974
 8 0.105096
 2 G4_AMMONIA 0.000826019 53.7
 7 1
 1 3
 3 G4_ANILINE 1.0235 66.2
 6 6
 1 7
 7 1
 2 G4_ANTHRACENE 1.283 69.5
 6 14
 1 10
 6 G4_B-100_BONE 1.45 85.9
 1 0.0654709
 6 0.536944
 7 0.0215
 8 0.032085
 9 0.167411
 20 0.176589
 3 G4_BAKELITE 1.25 72.4
 1 0.057441
 6 0.774591
 8 0.167968
 2 G4_BARIUM_FLUORIDE 4.89 375.9
 56 1
 9 2
 3 G4_BARIUM_SULFATE 4.5 285.7
 56 1
 16 1
 8 4
 2 G4_BENZENE 0.87865 63.4
 6 6
 1 6
 2 G4_BERYLLIUM_OXIDE 3.01 93.2
 4 1
 8 1
 3 G4_BGO 7.13 534.1
 83 4
 32 3
 8 12
10 G4_BLOOD_ICRP 1.06 75.2
 1 0.102
 6 0.11
 7 0.033
 8 0.745
 11 0.001
 15 0.001
 16 0.002
 17 0.003
 19 0.002
 26 0.001
 8 G4_BONE_COMPACT_ICRU 1.85 91.9
 1 0.064
 6 0.278
 7 0.027
 8 0.41
 12 0.002
 15 0.07
 16 0.002
 20 0.147
 9 G4_BONE_CORTICAL_ICRP 1.92 110
 1 0.034
 6 0.155
 7 0.042
 8 0.435
 11 0.001
 12 0.002
 15 0.103
 16 0.003
 20 0.225
 2 G4_BORON_CARBIDE 2.52 84.7
 5 4
 6 1
 2 G4_BORON_OXIDE 1.812 99.6
 5 2
 8 3
 9 G4_BRAIN_ICRP 1.04 73.3
 1 0.107
 6 0.145
 7 0.022
 8 0.712
 11 0.002
 15 0.004
 16 0.002
 17 0.003
 19 0.003
 2 G4_BUTANE 0.00249343 48.3
 6 4
 1 10
 3 G4_N-BUTYL_ALCOHOL 0.8098 59.9
 6 4
 1 10
 8 1
 5 G4_C-552 1.76 86.8
 1 0.02468
 6 0.501611
 8 0.004527
 9 0.465209
 14 0.003973
 2 G4_CADMIUM_TELLURIDE 6.2 539.3
 48 1
 52 1
 3 G4_CADMIUM_TUNGSTATE 7.9 468.3
 48 1
 74 1
 8 4
 3 G4_CALCIUM_CARBONATE 2.8 136.4
 20 1
 6 1
 8 3
 2 G4_CALCIUM_FLUORIDE 3.18 166
 20 1
 9 2
 2 G4_CALCIUM_OXIDE 3.3 176.1
 20 1
 8 1
 3 G4_CALCIUM_SULFATE 2.96 152.3
 20 1
 16 1
 8 4
 3 G4_CALCIUM_TUNGSTATE 6.062 395
 20 1
 74 1
 8 4
 2 G4_CARBON_DIOXIDE 0.00184212 85 CO_2
 6 1
 8 2
 2 G4_CARBON_TETRACHLORIDE 1.594 166.3
 6 1
 17 4
 3 G4_CELLULOSE_CELLOPHANE 1.42 77.6
 6 6
 1 10
 8 5
 3 G4_CELLULOSE_BUTYRATE 1.2 74.6
 1 0.067125
 6 0.545403
 8 0.387472
 4 G4_CELLULOSE_NITRATE 1.49 87
 1 0.029216
 6 0.271296
 7 0.121276
 8 0.578212
 5 G4_CERIC_SULFATE 1.03 76.7
 1 0.107596
 7 0.0008
 8 0.874976
 16 0.014627
 58 0.002001
 2 G4_CESIUM_FLUORIDE 4.115 440.7
 55 1
 9 1
 2 G4_CESIUM_IODIDE 4.51 553.1
 55 1
 53 1
 3 G4_CHLOROBENZENE 1.1058 89.1
 6 6
 1 5
 17 1
 3 G4_CHLOROFORM 1.4832 156
 6 1
 1 1
 17 3
10 G4_CONCRETE 2.3 135.2
 1 0.01
 6 0.001
 8 0.529107
 11 0.016
 12 0.002
 13 0.033872
 14 0.337021
 19 0.013
 20 0.044
 26 0.014
 2 G4_CYCLOHEXANE 0.779 56.4
 6 6
 1 12
 3 G4_1,2-DICHLOROBENZENE 1.3048 106.5
 6 6
 1 4
 17 2
 4 G4_DICHLORODIETHYL_ETHER 1.2199 103.3
 6 4
 1 8
 8 1
 17 2
 3 G4_1,2-DICHLOROETHANE 1.2351 111.9
 6 2
 1 4
 17 2
 3 G4_DIETHYL_ETHER 0.71378 60
 6 4
 1 10
 8 1
 4 G4_N,N-DIMETHYL_FORMAMIDE 0.9487 66.6
 6 3
 1 7
 7 1
 8 1
 4 G4_DIMETHYL_SULFOXIDE 1.1014 98.6
 6 2
 1 6
 8 1
 16 1
 2 G4_ETHANE 0.00125324 45.4
 6 2
 1 6
 3 G4_ETHYL_ALCOHOL 0.7893 62.9
 6 2
 1 6
 8 1
 3 G4_ETHYL_CELLULOSE 1.13 69.3
 1 0.090027
 6 0.585182
 8 0.324791
 2 G4_ETHYLENE 0.00117497 50.7
 6 2
 1 4
 8 G4_EYE_LENS_ICRP 1.07 73.3
 1 0.096
 6 0.195
 7 0.057
 8 0.646
 11 0.001
 15 0.001
 16 0.003
 17 0.001
 2 G4_FERRIC_OXIDE 5.2 227.3
 26 2
 8 3
 2 G4_FERROBORIDE 7.15 261
 26 1
 5 1
 2 G4_FERROUS_OXIDE 5.7 248.6
 26 1
 8 1
 7 G4_FERROUS_SULFATE 1.024 76.4
 1 0.108259
 7 2.7e-05
 8 0.878636
 11 2.2e-05
 16 0.012968
 17 3.4e-05
 26 5.4e-05
 3 G4_FREON-12 1.12 143
 6 0.099335
 9 0.314247
 17 0.586418
 3 G4_FREON-12B2 1.8 284.9
 6 0.057245
 9 0.181096
 35 0.761659
 3 G4_FREON-13 0.95 126.6
 6 0.114983
 9 0.545621
 17 0.339396
 3 G4_FREON-13B1 1.5 210.5
 6 1
 9 3
 35 1
 3 G4_FREON-13I1 1.8 293.5
 6 0.061309
 9 0.290924
 53 0.647767
 3 G4_GADOLINIUM_OXYSULFIDE 7.44 493.3
 64 2
 8 2
 16 1
 2 G4_GALLIUM_ARSENIDE 5.31 384.9
 31 1
 33 1
 5 G4_GEL_PHOTO_EMULSION 1.2914 74.8
 1 0.08118
 6 0.41606
 7 0.11124
 8 0.38064
 16 0.01088
 6 G4_Pyrex_Glass 2.23 134
 5 0.0400639
 8 0.539561
 11 0.0281909
 13 0.011644
 14 0.377219
 19 0.00332099
 5 G4_GLASS_LEAD 6.22 526.4
 8 0.156453
 14 0.080866
 22 0.008092
 33 0.002651
 82 0.751938
 4 G4_GLASS_PLATE 2.4 145.4
 8 0.4598
 11 0.0964411
 14 0.336553
 20 0.107205
 4 G4_GLUTAMINE 1.46 73.3
 6 5
 1 10
 7 2
 8 3
 3 G4_GLYCEROL 1.2613 72.6
 6 3
 1 8
 8 3
 4 G4_GUANINE 2.2 75
 6 5
 1 5
 7 5
 8 1
 4 G4_GYPSUM 2.32 129.7
 20 1
 16 1
 8 6
 1 4
 2 G4_N-HEPTANE 0.68376 54.4
 6 7
 1 16
 2 G4_N-HEXANE 0.6603 54
 6 6
 1 14
 4 G4_KAPTON 1.42 79.6
 6 22
 1 10
 7 2
 8 5
 3 G4_LANTHANUM_OXYBROMIDE 6.28 439.7
 57 1
 35 1
 8 1
 3 G4_LANTHANUM_OXYSULFIDE 5.86 421.2
 57 2
 8 2
 16 1
 2 G4_LEAD_OXIDE 9.53 766.7
 8 0.071682
 82 0.928318
 3 G4_LITHIUM_AMIDE 1.178 55.5
 3 1
 7 1
 1 2
 3 G4_LITHIUM_CARBONATE 2.11 87.9
 3 2
 6 1
 8 3
 2 G4_LITHIUM_FLUORIDE 2.635 94
 3 1
 9 1
 2 G4_LITHIUM_HYDRIDE 0.82 36.5
 3 1
 1 1
 2 G4_LITHIUM_IODIDE 3.494 485.1
 3 1
 53 1
 2 G4_LITHIUM_OXIDE 2.013 73.6
 3 2
 8 1
 3 G4_LITHIUM_TETRABORATE 2.44 94.6
 3 2
 5 4
 8 7
 9 G4_LUNG_ICRP 1.04 75.3
 1 0.105
 6 0.083
 7 0.023
 8 0.779
 11 0.002
 15 0.001
 16 0.002
 17 0.003
 19 0.002
 5 G4_M3_WAX 1.05 67.9
 1 0.114318
 6 0.655824
 8 0.0921831
 12 0.134792
 20 0.002883
 3 G4_MAGNESIUM_CARBONATE 2.958 118
 12 1
 6 1
 8 3
 2 G4_MAGNESIUM_FLUORIDE 3 134.3
 12 1
 9 2
 2 G4_MAGNESIUM_OXIDE 3.58 143.8
 12 1
 8 1
 3 G4_MAGNESIUM_TETRABORATE 2.53 108.3
 12 1
 5 4
 8 7
 2 G4_MERCURIC_IODIDE 6.36 684.5
 80 1
 53 2
 2 G4_METHANE 0.000667151 41.7
 6 1
 1 4
 3 G4_METHANOL 0.7914 67.6
 6 1
 1 4
 8 1
 5 G4_MIX_D_WAX 0.99 60.9
 1 0.13404
 6 0.77796
 8 0.03502
 12 0.038594
 22 0.014386
 6 G4_MS20_TISSUE 1 75.1
 1 0.081192
 6 0.583442
 7 0.017798
 8 0.186381
 12 0.130287
 17 0.0009
 9 G4_MUSCLE_SKELETAL_ICRP 1.05 75.3
 1 0.102
 6 0.143
 7 0.034
 8 0.71
 11 0.001
 15 0.002
 16 0.003
 17 0.001
 19 0.004
 8 G4_MUSCLE_STRIATED_ICRU 1.04 74.7
 1 0.102102
 6 0.123123
 7 0.035035
 8 0.72973
 11 0.001001
 15 0.002002
 16 0.004004
 19 0.003003
 4 G4_MUSCLE_WITH_SUCROSE 1.11 74.3
 1 0.0982341
 6 0.156214
 7 0.035451
 8 0.710101
 4 G4_MUSCLE_WITHOUT_SUCROSE 1.07 74.2
 1 0.101969
 6 0.120058
 7 0.035451
 8 0.742522
 2 G4_NAPHTHALENE 1.145 68.4
 6 10
 1 8
 4 G4_NITROBENZENE 1.19867 75.8
 6 6
 1 5
 7 1
 8 2
 2 G4_NITROUS_OXIDE 0.00183094 84.9
 7 2
 8 1
 4 G4_NYLON-8062 1.08 64.3
 1 0.103509
 6 0.648416
 7 0.0995361
 8 0.148539
 4 G4_NYLON-6-6 1.14 63.9
 6 6
 1 11
 7 1
 8 1
 4 G4_NYLON-6-10 1.14 63.2
 1 0.107062
 6 0.680449
 7 0.099189
 8 0.1133
 4 G4_NYLON-11_RILSAN 1.425 61.6
 1 0.115476
 6 0.720818
 7 0.0764169
 8 0.0872889
 2 G4_OCTANE 0.7026 54.7
 6 8
 1 18
 2 G4_PARAFFIN 0.93 55.9
 6 25
 1 52
 2 G4_N-PENTANE 0.6262 53.6
 6 5
 1 12
 8 G4_PHOTO_EMULSION 3.815 331
 1 0.0141
 6 0.072261
 7 0.01932
 8 0.066101
 16 0.00189
 35 0.349103
 47 0.474105
 53 0.00312
 2 G4_PLASTIC_SC_VINYLTOLUENE 1.032 64.7
 6 9
 1 10
 2 G4_PLUTONIUM_DIOXIDE 11.46 746.5
 94 1
 8 2
 3 G4_POLYACRYLONITRILE 1.17 69.6
 6 3
 1 3
 7 1
 3 G4_POLYCARBONATE 1.2 73.1
 6 16
 1 14
 8 3
 3 G4_POLYCHLOROSTYRENE 1.3 81.7
 6 8
 1 7
 17 1
 2 G4_POLYETHYLENE 0.94 57.4 (C_2H_4)_N-Polyethylene
 6 1
 1 2
 3 G4_MYLAR 1.4 78.7
 6 10
 1 8
 8 4
 3 G4_PLEXIGLASS 1.19 74
 6 5
 1 8
 8 2
 3 G4_POLYOXYMETHYLENE 1.425 77.4
 6 1
 1 2
 8 1
 2 G4_POLYPROPYLENE 0.9 56.5 (C_2H_4)_N-Polypropylene
 6 2
 1 4
 2 G4_POLYSTYRENE 1.06 68.7
 6 8
 1 8
 2 G4_TEFLON 2.2 99.1
 6 2
 9 4
 3 G4_POLYTRIFLUOROCHLOROETHYLENE 2.1 120.7
 6 2
 9 3
 17 1
 3 G4_POLYVINYL_ACETATE 1.19 73.7
 6 4
 1 6
 8 2
 3 G4_POLYVINYL_ALCOHOL 1.3 69.7
 6 2
 1 4
 8 1
 3 G4_POLYVINYL_BUTYRAL 1.12 67.2
 6 8
 1 14
 8 2
 3 G4_POLYVINYL_CHLORIDE 1.3 108.2
 6 2
 1 3
 17 1
 3 G4_POLYVINYLIDENE_CHLORIDE 1.7 134.3
 6 2
 1 2
 17 2
 3 G4_POLYVINYLIDENE_FLUORIDE 1.76 88.8
 6 2
 1 2
 9 2
 4 G4_POLYVINYL_PYRROLIDONE 1.25 67.7
 6 6
 1 9
 7 1
 8 1
 2 G4_POTASSIUM_IODIDE 3.13 431.9
 19 1
 53 1
 2 G4_POTASSIUM_OXIDE 2.32 189.9
 19 2
 8 1
 2 G4_PROPANE 0.00187939 47.1
 6 3
 1 8
 2 G4_lPROPANE 0.43 52
 6 3
 1 8
 3 G4_N-PROPYL_ALCOHOL 0.8035 61.1
 6 3
 1 8
 8 1
 3 G4_PYRIDINE 0.9819 66.2
 6 5
 1 5
 7 1
 2 G4_RUBBER_BUTYL 0.92 56.5
 1 0.143711
 6 0.856289
 2 G4_RUBBER_NATURAL 0.92 59.8
 1 0.118371
 6 0.881629
 3 G4_RUBBER_NEOPRENE 1.23 93
 1 0.05692
 6 0.542646
 17 0.400434
 2 G4_SILICON_DIOXIDE 2.32 139.2 SiO_2
 14 1
 8 2
 2 G4_SILVER_BROMIDE 6.473 486.6
 47 1
 35 1
 2 G4_SILVER_CHLORIDE 5.56 398.4
 47 1
 17 1
 3 G4_SILVER_HALIDES 6.47 487.1
 35 0.422895
 47 0.573748
 53 0.003357
 2 G4_SILVER_IODIDE 6.01 543.5
 47 1
 53 1
 9 G4_SKIN_ICRP 1.09 72.7
 1 0.1
 6 0.204
 7 0.042
 8 0.645
 11 0.002
 15 0.001
 16 0.002
 17 0.003
 19 0.001
 3 G4_SODIUM_CARBONATE 2.532 125
 11 2
 6 1
 8 3
 2 G4_SODIUM_IODIDE 3.667 452
 11 1
 53 1
 2 G4_SODIUM_MONOXIDE 2.27 148.8
 11 2
 8 1
 3 G4_SODIUM_NITRATE 2.261 114.6
 11 1
 7 1
 8 3
 2 G4_STILBENE 0.9707 67.7
 6 14
 1 12
 3 G4_SUCROSE 1.5805 77.5
 6 12
 1 22
 8 11
 2 G4_TERPHENYL 1.24 71.7
 6 18
 1 14
 9 G4_TESTIS_ICRP 1.04 75
 1 0.106
 6 0.099
 7 0.02
 8 0.766
 11 0.002
 15 0.001
 16 0.002
 17 0.002
 19 0.002
 2 G4_TETRACHLOROETHYLENE 1.625 159.2
 6 2
 17 4
 2 G4_THALLIUM_CHLORIDE 7.004 690.3
 81 1
 17 1
 9 G4_TISSUE_SOFT_ICRP 1.03 72.3
 1 0.105
 6 0.256
 7 0.027
 8 0.602
 11 0.001
 15 0.002
 16 0.003
 17 0.002
 19 0.002
 4 G4_TISSUE_SOFT_ICRU-4 1 74.9
 1 0.101
 6 0.111
 7 0.026
 8 0.762
 4 G4_TISSUE-METHANE 0.00106409 61.2
 1 0.101869
 6 0.456179
 7 0.035172
 8 0.40678
 4 G4_TISSUE-PROPANE 0.00182628 59.5
 1 0.102672
 6 0.56894
 7 0.035022
 8 0.293366
 2 G4_TITANIUM_DIOXIDE 4.26 179.5
 22 1
 8 2
 2 G4_TOLUENE 0.8669 62.5
 6 7
 1 8
 3 G4_TRICHLOROETHYLENE 1.46 148.1
 6 2
 1 1
 17 3
 4 G4_TRIETHYL_PHOSPHATE 1.07 81.2
 6 6
 1 15
 8 4
 15 1
 2 G4_TUNGSTEN_HEXAFLUORIDE 2.4 354.4
 74 1
 9 6
 2 G4_URANIUM_DICARBIDE 11.28 752
 92 1
 6 2
 2 G4_URANIUM_MONOCARBIDE 13.63 862
 92 1
 6 1
 2 G4_URANIUM_OXIDE 10.96 720.6
 92 1
 8 2
 4 G4_UREA 1.323 72.8
 6 1
 1 4
 7 2
 8 1
 4 G4_VALINE 1.23 67.7
 6 5
 1 11
 7 1
 8 2
 3 G4_VITON 1.8 98.6
 1 0.009417
 6 0.280555
 9 0.710028
 2 G4_WATER 1 78 H_2O
 1 2
 8 1
 2 G4_WATER_VAPOR 0.000756182 71.6 H_2O-Gas
 1 2
 8 1
 2 G4_XYLENE 0.87 61.8
 6 8
 1 10
 1 G4_GRAPHITE 2.21 78 Graphite

HEP and Nuclear Materials

===
 Ncomp Name density(g/cm^3) I(eV) ChFormula
===
 1 G4_lH2 0.0708 21.8
 1 G4_lN2 0.807 82
 1 G4_lO2 1.141 95
 1 G4_lAr 1.396 188
 1 G4_lBr 3.1028 343
 1 G4_lKr 2.418 352
 1 G4_lXe 2.953 482
 3 G4_PbWO4 8.28 0
 8 4
 82 1
 74 1
 1 G4_Galactic 1e-25 21.8
 1 G4_GRAPHITE_POROUS 1.7 78 Graphite
 3 G4_LUCITE 1.19 74
 1 0.080538
 6 0.599848
 8 0.319614
 3 G4_BRASS 8.52 0
 29 62
 30 35
 82 3
 3 G4_BRONZE 8.82 0
 29 89
 30 9
 82 2
 3 G4_STAINLESS-STEEL 8 0
 26 74
 24 18
 28 8
 3 G4_CR39 1.32 0
 1 18
 6 12
 8 7
 3 G4_OCTADECANOL 0.812 0
 1 38
 6 18
 8 1

Space (ISS) Materials

===
 Ncomp Name density(g/cm^3) I(eV) ChFormula
===
 4 G4_KEVLAR 1.44 0
 6 14
 1 10
 8 2
 7 2
 3 G4_DACRON 1.4 0
 6 10
 1 8
 8 4
 3 G4_NEOPRENE 1.23 0
 6 4
 1 5
 17 1

Bio-Chemical Materials

===
 Ncomp Name density(g/cm^3) I(eV) ChFormula
===
 4 G4_CYTOSINE 1.55 72
 1 5
 6 4
 7 3
 8 1
 4 G4_THYMINE 1.23 72
 1 6
 6 5
 7 2
 8 2
 4 G4_URACIL 1.32 72
 1 4
 6 4
 7 2
 8 2
 3 G4_DNA_ADENINE 1 72
 1 4
 6 5
 7 5
 4 G4_DNA_GUANINE 1 72
 1 4
 6 5
 7 5
 8 1
 4 G4_DNA_CYTOSINE 1 72
 1 4
 6 4
 7 3
 8 1
 4 G4_DNA_THYMINE 1 72
 1 5
 6 5
 7 2
 8 2
 4 G4_DNA_URACIL 1 72
 1 3
 6 4
 7 2
 8 2
 4 G4_DNA_ADENOSINE 1 72
 1 10
 6 10
 7 5
 8 4
 4 G4_DNA_GUANOSINE 1 72
 1 10
 6 10
 7 5
 8 5
 4 G4_DNA_CYTIDINE 1 72
 1 10
 6 9
 7 3
 8 5
 4 G4_DNA_URIDINE 1 72
 1 9
 6 9
 7 2
 8 6
 4 G4_DNA_METHYLURIDINE 1 72
 1 11
 6 10
 7 2
 8 6
 2 G4_DNA_MONOPHOSPHATE 1 72
 15 1
 8 3
 5 G4_DNA_A 1 72
 1 10
 6 10
 7 5
 8 7
 15 1
 5 G4_DNA_G 1 72
 1 10
 6 10
 7 5
 8 8
 15 1
 5 G4_DNA_C 1 72
 1 10
 6 9
 7 3
 8 8
 15 1
 5 G4_DNA_U 1 72
 1 9
 6 9
 7 2
 8 9
 15 1
 5 G4_DNA_MU 1 72
 1 11
 6 10
 7 2
 8 9
 15 1

Footnotes

Transportation in Magnetic Field - Further Details

The challenge of integrating all tracks

What leads us to discard tracks looping in a magnetic field

The integration of charged particle tracks in magnetic field is an important
part of the computational cost (CPU time). Part of this cost is due to
integration of low-energy particles in a volume with low density and strong
magnetic field.

In HEP applications the most important type of tracks causing such problems
are electrons in the vacuum of beam pipes. Charged particles in volumes near
decay volumes and muons in large volumes of air are other examples.

To limit this CPU cost, a type of tracking cut for charged particles
was introduced in Geant4
release 7.0 in G4Transportation and G4CoupledTransportation.
Tracks which require more than a threshold number of integration
steps [maxLoopCount] (currently 1,000)
during a physics/tracking step are marked as 'looping' and
are considered candidates for being killed - i.e. they can potentially be
abandoned after the current step, and have their energy deposited locally.

Enhancements introduced in release 10.6 provide more comprehensive
information about the tracks killed, in the form of G4Exception warning
messages.

This section describes this policy, the parameters which the user is able to
set to tune it, and recent refinements implemented in Geant4 10.5.

Cost of integration

Occasionally tracks 'looping' in a strong magnetic field, making little
progress even over thousands of integration steps. This is due to a
combination of a strong magnetic field and a thin material (gas or vacuum)
in which the size of a physics step is substantially larger than the radius
of curvature of the track.

The preferred integration method for tracks in an EM field is the Runge-Kutta
method. This and other similar methods are well suited to variations in
magnetic fields and step sizes up to a few times the radius of curvature of
the charged tracks.

However when the step sizes are hundreds or thousands of times larger than the
curvature of the track, these methods are expensive as they do not progress
the integration of a track adequately.

The amount of CPU time which can be consumed by one or few such tracks
can very large, sometimes contributing per cent increases to the simulation of
some primary particles. Some tracks with a very small drift velocity
(projection of the velocity along the vector of the magnetic field) can stop
the progress of a simulation if they are not limited or integrated using
alternative means.

So it is important to limit the number of integration steps
spent on these tracks. The module for propagation in field in Geant4
flags tracks which take more than a certain number (default 1,000) integration
steps without reaching the requested end of the step size, which was
determined by the physics and geometry.

Parameters for eliminating or controling which particles are killed

The Geant4 G4Transportation and G4CoupledTransportation processes are
tasked to select which of the tracks flagged as looping are killed and which
survive.
To balance the potential significant cost of integrating looping particles,
three thresholds exist:
- the 'Warning' Energy: a track with energy below this value that is found to
loop is killed silently (no warning.) Above the 'Warning Energy', if a track
is selected for killing then a warning is generated.
- the 'Important' Energy: the threshold energy above which a track will survive
for multiple steps if found looping.
- the number of extra 'tracking' steps for important particles. These tracks
will be only be killed only if they still loop more than this number of
trial steps. (So in effect the number of integration steps will be this
number times the maximum number of steps allowed in G4PropagatorInField.

In versions of Geant4 from 7.0 up to release 10.4,
Transportation did not examine the types of a charged particle -
all types of particles were killed if they fulfilled the same criteria.
A short message was written in
the G4cout output that gave the energy and location of the killed track.
This printout was under the G4VERBOSE flag, so it was suppressed if
the G4_NO_VERBOSE configuration option was chosen at installation.

In Geant4 10.5 several changes have been implemented:

	only stable particles are killed.
(Re-enabling the killing of unstable particles as an option is envisioned.)

	each particle with energy above the warning energy which is killed
generates a detailed warning (using G4Exception) with the full
information about the particle location, the current volume and
its material, and the particle momentum and energy.

	for the first 5 tracks killed a detailed description is printed that
describes the criteria and parameters which are used to decide what tracks
are killed, and provides a first guidance regarding how to 'save' tracks
by chaning the values of thresholds or
by adopting different integration methods.

Below we discuss the different way in which a user can change the thresholds
for killing 'looping' tracks,
which criteria can be used to ensure that a track continues to propagate and
for how many steps an 'important' track that is 'looping' can survive.

Two techniques are demonstrated below. An example of using them is available
in the extended example field01, in the directory
examples/extended/field/field01.

Using preset thresholds for killing loopers

This method is new in Geant4 release 10.5, and uses the G4PhysicsListHelper
which has methods to choose a pre-selected set of parameter values. The choices
are between a set each of low and high thresholds. Either one can be enabled
by calling correspondingly method.

It is possible to select a set of pre-selected values of the parameters for
looping particles using

New functionality in G4PhysicsListHelper,
introduced in Geant4 release 10.5,
enables the Transportation
process chosen to be provided with this set of parameters. This reuses
the AddTransportation method, which is called in each thread.

To configure with low values of the thresholds, appropriate for typical
applications using low-energy physics, choose

#include "G4PhysicsListHelper.hh"

int main(int, char**)
{
 auto plHelper = G4PhysicsListHelper::GetPhysicsListHelper();

 plHelper->UseLowLooperThresholds();
 //
 // Use low values for the thresholds
 // Warning 1 keV, Important 1 MeV, trials 10

 auto physList = new FTFP_BERT();
 // ...
}

The original high values of the parameters can be selected with a similar call

plHelper->UseHighLooperThresholds();
//
// Configures with the original (high) values of parameters. Currently:
// Warning 100 MeV, Important 250 MeV, trials 10

and are chosen as starting points for energy-frontier HEP experiments.

The above sequence is demonstrated in the main() of field01.cc, part of the
extended field examples (examples/extended/field/field01 .)

This configuration method works only if modular physics lists are used, or if
the AddTransportation() method is used to construct the transportation in a
user physics list.

These calls must be done before a physics list is instantiated, in
particular before
G4PhysicsListHelper::AddTransportation() is called during the construction
of a physics list.
Else the configuration of the parameters does not occur.

These methods must be called before the physics is constructed - i.e. typically
before G4RunManager 's Initialise method is called.

In order for this method to work the physics list must be constructed in one
of two ways:

	a preconstructed physics lists, from the list of recommended physics lists, or

	the list must be constructed using the G4ModularPhysicsList and its
AddTransportation method.

Note that in each thread the AddTransportation instantiates a single
common transportation process which is then used by all particles types.

Users who build a physics list without making use of
G4ModularPhysicsList and its AddTransportation method,
are responsible to register a Transportation process to each
particle type, and to set its parameters appropriately.
This would allow the most finer grained control, and would also allow
different thresholds to be chosen for different particle types.

Finer-grain control of the parameters for killing looping particles

A new feature to set any value to these parameters is introduced in
Geant4 release 11.1 using the class G4TransportationParameters.
If an instance of G4TransportationParameters exists,
the constructor of G4Transportation will utilise the values
it stored to inititalise its own parameters.

auto transportParams= G4TransportationParameters::Instance();

transportParams->SetWarningEnergy(warningE);
transportParams->SetImportantEnergy(importantE);
transportParams->SetNumberOfTrials(numTrials);
G4cout << "Using G4TransportationParameters to set looper parameters." << G4endl;

A couple of caveats exist. First is that its values will be used by default
for all instances of G4Transporation and its derived classes: whether it is

	the single instance typically registered for all particles (as is done in
the modular physics lists), or

	an instance created separately and registered by a user to one or more
(charged) particles as a replacement.

Secondly, if it exists, the values of all the parameters that
G4TransportationParameters stores are currently used to overwrite the
existing default values in G4Transportation.

So, if you create G4TransportationParameters it is your responsibility to set
the values of all of its parameters.

Full control of the parameters for killing looping particles

Whether you use one of the previous methods or not, it is possible
to exercise full fine-grained control over each values for each type
of particle separately.

The user can choose arbitrary values for the different parametes
related to killing loopers and also refine the integration of charged particle
propagation in particular volumes in order to eliminate or reduce the
incidence of looping tracks.

This is also the only method which will work in all Geant4 versions since 7.0.

To obtain reliable configuration of the G4Transportation (or
G4CoupledTransportation) process in a potentially multi-threaded
application, we configure it using a G4VUserRunAction. In particular such
configuration can be undertaken in the BeginOfRunAction methods.

For example, to ensure that only looping particles with energy 10 keV are
killed silently we change the value of the 'Warning' Energy

transport->SetThresholdWarningEnergy(1.0 * CLHEP::keV);

After this each time a (stable) looping track with energy over 1.0 keV is
killed by this transportation process, it will generate a warning.

The second configurable energy threshold is labelled the 'important' energy
and it enables tracks above its value to survive a chosen number of 'tracking'
steps. They will be only be killed only if they are still looping after the
given number of tracking steps.

These are demonstrated also in the F01RunAction's ChangeLooperParameters method,
which is called by the BeginOfRunAction.

To obtain the appropriate Transportation object for a particular particle type
G4ParticleDefinition *particleDef;
either obtain it manually obtain directly if we know its type

G4VProcess* partclTransport =
 particleDef->GetProcessManager()->GetProcess("G4Transportation");

auto transport= dynamic_cast<G4Transportation*>(partclTransport);

or write code which can adapt to different types to different types which
inherit from G4Transportation

Listing 104 A method to find the transportation object for a particle type.
It can also find the ordinary G4Transportation
or the derived classes G4CoupledTransportation
and the newest G4TransportationWithMsc.

G4Transportation* FindTransport(G4ParticleDefinition* particleDef)
{
 G4Transportation *transport;
 G4VProcess* cplTransport= nullptr, *transportMsc= nullptr;

 auto pm= particleDef->GetProcessManager();

 G4VProcess* ordTransport = pm->GetProcess("G4Transportation");
 transport= dynamic_cast<G4Transportation*>(ordTransport);

 if(!transport) {
 // Maybe it is G4CoupledTransportation ...
 cplTransport= pm->GetProcess("G4CoupledTransportation");
 if (vpCoupledTransport) {
 transport= dynamic_cast<G4Transportation*>(cplTransport);
 }
 }
 return transport;
}

or else use (or copy) the helper method F01RunAction::FindTransportation

auto transport= FindTransportation(G4Electron::Definition(), true);

This example method returns returns a `G4Transportation *`.
(whereas in release 11.0 it returned a pair
`std::pair<G4Transportation*, G4CoupledTransportation*>`.)

Since Geant4 11.1, G4CoupledTransportation and the new
G4TransportationWithMsc classes inherit from G4Transportation
you can use common code to configure them (as shown in Listing 104).

In case a different Transportation type is used which does not
inherit from G4Transportation, such as G4ITTransportation,
and G4DNABrownianTransportation (both relevant for Geant4 DNA)
similar code is required for each such class.

auto pm= particleDef->GetProcessManager();
G4VProcess* vpItTransport= pm->GetProcess("G4ITTransportation");
auto itTransport= dynamic_cast<G4ITTransportation*>(vpItTransport);

NOTE: Up to (and including) release 11.0 G4CoupledTransportation was
an independent class, not inheriting from G4Transportation.
If your application needs to be backward compatible with previous releases
of Geant4 (including release 10.1 through 10.7 and 11.0) you must
ignore this new inheritance relationship.

When using earlier version of Geant4 it was necessary to treat
instances of G4CoupledTransportation separately:

Listing 105 Demonstration of applying cuts to an instance of G4CoupledTransportation.

G4VProcess* vProcCoupled= pm->GetProcess("G4CoupledTransportation");
G4CoupledTransportation* coupledTransport=
 dynamic_cast<G4CoupledTransportation*>(vProcCoupled);

coupledTransport->SetThresholdWarningEnergy(1.0 * CLHEP::keV);
coupledTransport->SetThresholdImportantEnergy(1.0 * CLHEP::MeV);
coupledTransport->SetNumberOfTrials(20);

It is still possible to use this approach (listing Listing 105)
if you are maintaining an application which must work both older versions and
the current release 11.1.

However moving forward the code can now be simplified, as demonstrated in the
next two code excerpts.
First by obtaining a G4Transportation`, e.g. as in
listing Listing 104.

Then using common code, as in listing Listing 106 to overwrite
the thresholds in a G4Transportation (or derived) class
as found in F01RunAction 's ChangeLooperParameters method

Listing 106 Adapted extract of the method ChangeLooperParameters from F01RunAction

void ChangeLooperParameters(const G4ParticleDefinition* particleDef)
{
 auto transport= FindTransportation(particleDef);

 // Since Geant4 11.1 the following code works for several transportation
 // classes:
 // - ordinary G4Transporation,
 // - G4CoupledTransportation used for parallel worlds, and
 // - G4TransportationWithMsc used to speed up charged particles.

 if(transport != nullptr)
 {
 // Change the values of the looping particle parameters of Transportation
 transport->SetThresholdWarningEnergy(warningEnergy);
 transport->SetThresholdImportantEnergy(importantEnergy);
 transport->SetThresholdTrials(numberOfTrials);
 }
}

Note that for all pre-configured and modular physics lists share a single
Transportation process for all types of particles. So the parameters for
killing loopers will be shared by all particle types in this case.

If this is not the desired behaviour, it is necessary to register a
separate instance of the Transporation process for a particular type of
particle. See the subsection ReplacingTransportation
about how this can be done.

F01RunAction plays the role of a helper object, which holds the proposed
(new) values of parameters, and which can allow them to be set, e.g., in the
main() function

runAction->SetWarningEnergy(10.0 * CLHEP::keV);

F01RunAction then forwards them to the Transportation object of each thread at the
start of each run.

Using a helper object to forward parameter changes

Since the type of the transportation
it can be useful to use a helper object to hold the desired
values for the parameters (thresholds, number of iterations),
and to forward them to the Transportation class.

This is demonstrated in the class
F01RunAction and its ChangeLooperParameters method
of the field01 extended example.

It copes with either transportation class,
G4Transportation or a G4CoupledTransportation,
and passes new values of parameters as needed.

In field01 the methods of F01RunAction

runAction->SetImportantEnergy(0.1 * CLHEP::MeV);
runAction->SetNumberOfTrials(30);

which the run action passes to the G4Transportation or
G4CoupledTransportation object registered for the electron
in F01RunAction 's method ChangeLooperParameters.

How to replace the Transportation Process of a particle type

The most advanced use case of controling
requires a separate instance of a G4Transporation
(or G4CoupledTransporation or other process).

If you have configured your application to use G4TransporationWithMsc
only for electrons

Currently in order to undertake this it is necessary to use the
property of the transportation of being first in the process list
and interact directly with the process manager:

Listing 107 Replacing the G4Transportation process for one particle type - electrons

G4ParticleDefinition* particleDef= G4Electron::Definition();
G4int verboseLevel= 0;

G4ProcessManager* procManager = particleDef->GetProcessManager();
auto plist = procManager->GetProcessList();

procManager->RemoveProcess(0); // Remove the current Transport

auto transport = new G4Transportation(verboseLevel);
// Here we can adjust the parameters for this instance/particle, e.g.
transport->SetThresholdWarningEnergy(30.0 * CLHEP::keV);
transport->SetThresholdImportantEnergy(3.0 * CLHEP::MeV);
transport->SetNumberOfTrials(50);

procManager->AddProcess(transport, -1, 0, 0);
// Add the new type of Transport(ation)

You can repeat this for positrons - but we recommend much lower thresholds
for positrons as their annihilation will produce two 0.5 MeV gammas.

Avoiding loopers or reducing the incidence of looping particles

There are different ways to reduce the occurence of looping particles. This
section will provide an overview, and refer the user to the detailed
information on particle propagation in a magnetic field for details.

Volumes which have a strong field and contain vacuum, large air cavities or
large volumes of gases are prime candidates for causing integration
difficulties for low energy charged particles, which result in looping particles.

	A very simple way to reduce the incidence of looping particles is to reduce
the maximum step size which particles that interact very infrequently can
travel.
Geant4 attempts to estimate an effective maximum using the diameter of the
world volume, and frequently the maximum step size is large if the
experimental hall is used as the world volume and has large dimentions.
A smaller value can be impose by using the method.
G4PropagatorInField::SetMaximumStepSize()

	Another ways is to change the maximum number of integration substeps.
The default value is 1000, but it can be obtained from
G4PropagatorInField

auto *transportMgr = G4TransportationManager::GetTransportationManager();
G4PropagatorInField* propFld= transportMgr->GetPropagatorInField();
G4cout << " The maximum number of substeps for integration is "
 << propFld->GetMaxLoopCount() << G4endl;

It can be also be changed simply by calling the corresponding set method,
e.g.

propFld->SetMaxLoopCount(2500);

	Assign a separate G4FieldManager class to each such volume. It can use
adapted methods for the integration of the ODEs of motion.

	One solution is to use a helical stepper, such as G4HelixImplicitEuler or
G4HelixHeum which are inherently for steps over multiple 'turns' of a
helix-like track. Their reason d' etre is the ability to use the
helix solution as baseline 'first-order' like solution and treat deviations
from this as something like pertubations.

	A new integration driver G4BFieldIntegrationDriver, introduced in
Geant4 10.6 samples the value of the magnetic field at the start of each
step and using the estimated track curvature determines whether the current
step will traverse an angler smaller or larger than [image: 2 * \pi].
For larger steps the hybrid-helical stepper G4HelixHeum is used,
and for smaller steps the G4DormandPrince745 stepper is used.
This driver is the default driver in Geant4 10.6, created by
G4ChordFinder for magnetic fields, and when G4FieldManager 's
CreateChordFinder method is called.
Note that it is applicable only for charged particles in pure magnetic field.

	An older approach, usable before Geant4 10.6, is to use the
G4HelixMixedStepper. This also combines a helix stepper for large steps
with a Runge-Kutta stepper for small and intermediate step sizes. It does
this by checking the value of the field at the start of every integration.
As a result it is less efficient than the new method G4BFieldIntegrationDriver.

Ensuring progress for particles

To allow better progress for looping particles,
the default behaviour was changed in Geant4 10.6, so that a track's
parameters are changed within a Geant4 step after it has undertaken 100
integration substeps.

For the remainder of the current step the track 'tightness' parameter
delta chord is relaxed, first by a factor of 2 at the hundredth step,
and again by another factor of 2 after every 100 subsequent steps.
The original value of delta chord is restored at the end of the current
Geant4 step.

This will allow tracks which are in a tight spiral with a radius of curvature
less than the user-defined delta chord to make substantial progress.

Note that this applies only to particles below the 'Important' energy
threshold, which would be killed if their integration is not completed
within a single Geant4 step.

Footnotes

Bibliography

	Booch1994

	Grady Booch Object-Oriented Analysis and Design with Applications. The Benjamin/Cummings Publishing Co. Inc 1994 ISBN: 0-8053-5340-2

	Ellis1990

	Margaret Ellis and Bjarne Stroustrup Annotated C++ Reference Manual (ARM). Addison-Wesley Publishing Co. 1990

	Hecht1974

	E. Hecht and A. Zajac Optics. Addison-Wesley Publishing Co. 1974 pp. 71-80 and pp. 244-246

	Janecek2010

	M. Janecek, W. W. Moses, IEEE Trans. Nucl. Sci. 57 (3) (2010)
964-970 http://ieeexplore.ieee.org/document/5485130/

	Knoll1988

	G.F. Knoll, T.F. Knoll and T.M. Henderson, Light Collection Scintillation
Detector Composites for Neutron Detection, IEEE Trans. Nucl. Sci., 35
(1988) 872.

	Levin1996

	A. Levin and C. Moisan, A More Physical Approach to Model the Surface
Treatment of Scintillation Counters and its Implementation into DETECT,
TRIUMF Preprint TRI-PP-96-64, Oct. 1996 https://inis.iaea.org/collection/NCLCollectionStore/_Public/29/030/29030591.pdf;
https://doi.org/10.1109/NSSMIC.1996.591410

	Plauger1995

	P.J. Plauger The Draft Standard C++ Library. Prentice Hall, Englewood Cliffs 1995

	RoncaliCherry2013

	Roncali E & Cherry S 2013 Simulation of light
transport in scintillators based on 3D characterization of crystal surfaces.
(https://www.ncbi.nlm.nih.gov/pubmed/23475145) Phys. Med. Biol., Volume 58(7), p. 2185–2198.

	Roncali2017

	Roncali et al. 2017 An integrated model of scintillator-reflector
properties for advanced simulations of optical transport.
(https://www.ncbi.nlm.nih.gov/pubmed/28398905) Phys. Med. Biol., Volume 62(12), p. 4811-4830.

	Stockhoff2017

	Stockhoff et al. 2017 Advanced optical simulation of scintillation
detectors in GATE V8.0: first implementation of a reflectance model based on measured data.
(https://www.ncbi.nlm.nih.gov/pubmed/28452339) Phys. Med. Biol., Volume 62(12), L1-L8.

Footnotes

Index

 Status of this Document

Guide for Application Developers using the Geant4 toolkit.

	Rev 1.0: First Sphinx version implemented for Geant4 Release 10.4, 8th Dec 2017

	Rev 2.0: Updates and fixes in documentatio for Geant4 Release 10.4, 15th May 2018

	Rev 3.0: Geant4 Release 10.5, 11th December 2018

	Rev 3.1: Geant4 Updates and fixes - especially to search functionality, 5th March 2019

	Rev 4.0: Geant4 Release 10.6, 6th December 2019

	Rev 5.0: Geant4 Release 10.7, 4th December 2020

	Rev 6.0: Geant4 Release 11.0, 10th December 2021

	Rev 7.0: Geant4 Release 11.1, 9th December 2022

	Rev 7.1: Geant4 Fixes to http links, 15th July 2023

	Rev 8.0: Geant4 Release 11.2, 8th December 2023

Footnotes

 _images/ComponentsWithRegion.jpg
GARegion

oot @dagialvolme |
rvolue of hierarchy tse)

fropt GaLagialVolmae 2
(uanther voluae of
Hierarchy tres)

GdFastSimulationManager

G4VFastSimulationdodel
eg: etie-fgamma model
G4VFastSimulationhodel
eg: pionmodel

G4VFastSimulationhodel

_images/DAVID_SAMPLE.jpg

_images/par04time_E_64_A_90.png
80

o)}
o

Number of events
D
1)

N
o

e”, 64 [GeV], 90°, SiW

FullSim
MLSim

time [s]

_images/FluxPlots.jpg
Entres 32700
Mean 703846
RS 924956

33332

1Ll

Entres 6817
Probes_ protorfluc 0
Meon 1368
R 957345
oot 01 1 0w oo

_images/pobject.jpg
Datatase Environment.

versistert abied

_images/par04transProfile_E_64_A_90.png
e, 64 [GeV], 90°, SiW

10°

r [mm]

FullSim
MLSim

_images/view_parameters.jpg
up vector

viewpoint direction

_images/scoreCombinedPicture.jpg
, ‘—“l\\\
o I'A-“‘\\\

_images/vtkIntroExample.jpg
camera position :-1839.9 0.9 -3
camera focal pom‘r -0.00.0-0.0
view angle : 60.0

distance 1 3974.1

clip near/far :21.221244.3
parallel scale : 1266.3

number actors ;21

fos : 342935.5

N\

&

Useful tips

exampleVtk

viewer-0 (VtkQt)

_images/view_parameters_default.jpg
up vector

_images/wwconcept.jpg
splitting
to survival weight

upper weight bound

survival weight

weight window

lower weight bound -
Russian roulette

kill or move to survival weight

_images/wTrap.jpg
SLTX

_images/par04longProfile_E_64_A_90.png
E [MeV]

16000

14000

12000

10000

8000

6000

4000

2000

e, 64 [GeV], 90°, SiW

0 20 40 60 80 100 120 140
t [mm]

_images/par04inference.png
MLFastSimModel

Dolt()

Energy, Angle

=

InferenceSetup

t GetEnergies()
GetPositions()

- Inference Library
- Path + name of the ML model
- Dimension of the latent space

- Dimension of the condition vector
- Optimization flag

- Debug flag

InferenceMessanger

Inferencelnterface

Runlinference()

OnnxInterface

Lwtnninterface

**Inference

-+

_images/avex1and2.jpg

_images/aTwistedTubs.jpg
Eioaeeeeuanee]

_images/cad-tess-combined.jpg

_images/avpic.jpg

_images/geomtest.jpg

_images/classCategory.jpg
Readout

_images/par04detector.png

_images/par04VAEModel.png
sjomoys g%
pejelsuss) 3
n1eykes
00l
asua(g

n1eyiyes

o 0S
(0] osuo
3 d
Q
3
n1eyAyes
o 0c
asua(g
n1eyiyes
vl
asua(g
Q
g
an
2
g<
8
neulies]
14
asua(g
nrv n1eylies]
3 mwmwo
()
c
L

n1eylies]
0sS

asua(g

n1eylies]
00l

asua(g

ﬁ

uonenwis
pjuess

18x50x45

Energy

Angle

Geometry

_images/aTwistedTrap.jpg

_images/aTwistedBox.jpg

_images/aTwistedTrd.jpg

_images/ReverseMC_tracking.png
Reverse Tracking of adjoint

particles from the Forward Tracking of normal
Boundary of the sensitive particles trough the
region sensitive region from the
to the External source. same starting position than

the reverse tracking.

Adjoint source External
Boundary of the region Xxternal
with sensitive source

components

_images/Shape1overlapsdrawn.png

_images/Shape1overlap.png
Shape2

Shape1

x

_images/UNIFIED_model_diagram.png
UNIFIED MODEL FOR OPTICAL SURFACES

Polished Ground PolishedFrontPainted GraundFrontpainted PolishedBackPainted GroundBackPainted
Reflectivity is used to Ouly Refiectionay i wrappi
determine whether Absorption; No e e e g v | | The Groun efers o the wrapping. I
] refraction; Only Refecton or Absorption; No s the wrapping i pefeclysmooth | | 1. the wrapping s ground miror
Snell's ow s appled | | Stricty speaking here | | Reflecton probabilty set etecion; ey with only Lambertian refection taking
by Reflectivity. Reflection probability set by 1 - place
based on Refractive | | reflectiviy is ot the i wr i
index of the two | | reflection coefficient, | | 1freflected, then i is feteciis feflection offthe wropper st by Refectivity Reflection off the wrapper set by
" | |specular Spike reflection. Only Lambertian reflection i
media BEilasin SO v The Sigma Alpha value specified refers to the etiectiuhy
But Before this absorption z 5 The Sigma Alpha value specified refers to
e crystal-air gap interface. Snell’slawis applied | | i 28708 PI002 X218 SRECEAE TES B0
Reflectivty is used to coefficent) ater sampling the FacetNormal, and it rystal-ai gap
determine whether applied after sampling the FacetNormal,
reflection takes place, one of the four
hoton s absorbed (| | First, FacetNormalis and if refiction takes place, one of the
P " {specular spike, specular lobe, backscatter, [eymtae ey e
strictly speaking here | | sampled using Sigma lambertian) takes place with respect to 2 Ll .
reflectivity is not the Alpha backscatter, lambertian) takes place with
v o FacetNormal according to assigned
reflection coefficert, espect to FacetNormal according to
3 probabilties
itis 1 minus the + assigned probabilities
absorption
memnpmm; Polished |«— Dielectric_metal Ground
Now, Snell's Lawis
applied with respect
o this facet normal

Only Reflection or Absorption; No refraction;
Reflection probabilty set by Reflectivity.
If reflected, one of the four specular spike,

1 Snell's law results in backscater, lambertian, or specular lobe
reflection, then one of reflection with respect to a FacetNormal, takes.
the four (specular spike, place according to assigned probabilties.

specular lobe,
backscatter, lambertian)
takes place with respect
to FacetNormal
according to assigned

NOTE: Applying Snells Law includes applying Fresnel's
equations of reflection and refraction, and these combined
AT may result in Fresnel Refraction or Total Internal Reflection or
Fresnel Reflection

_images/TorusCloud.png

_images/IntersectionError.jpg

_images/GPSrotation.png

_images/MissDistance.jpg
miss distance

“Tracking’ Step

real trajectory

_images/LUT_figure1.png
[User setings |——

Normal

e e e e ™

Calculate
Incidence
angle 6

ysiuy

T

Random generator
0> rand <1

LUT

Reflection
probability P

Transmission

91 El

‘ @

=2
LUT ?
Reflection r
direction ¢, 6, [~
¢

0 l el

[72]

145
LUT ?
Transmission t
direction ¢, 6, ?

Calculate
New Momentum

_images/ResultatsCDD_RM.png
Transmittance [%]

100.0 A

97.5 A

95.0 1

92.5 A

90.0 A

87.5 A

85.0 A

82.5 A

—— Théorie
e G4

350 400

450 500 550 600 650 700
Wavelength [nm]

_images/ResultatsCDD.png
Transmittance [%]

100 A

90 A

80 A

70 A

60 -

50 A

40 A

1;—38:—6—-e—-e-—-e——e——e—-e——e——e——e—-e;-—-e——-

—-== 0°-simple
0°-20 nm
0°-100 nm

50° - 100 nm (TE)
50°-100 nm (TM)

350 400 450 500 550 600 650 700
Wavelength [nm]

_images/GPS.png
<<thread-private>>

GaGeneralParticleSource

< Sngleton>>
GaGeneralParticleSourceMessenger

<<thread-shared> >
GaGeneralParticleSourceData

GaSingleParticleSource

GasPSPosDistrbution

GaSPSAngDIstribution

GasPSEneDi trbution

GasPSRandomGenerator

_images/G4debug.png
Output

TrakLeng

0
2.703
2.935

6.604

7.131

9.028

10.31

m
o
o

5}

5}

5

<)

Volume
Envelope
Envelope

Shape2

Shape2

Shape2

Shape2

Envelope

Process
initStep
Transportation

hIoni

hIoni

hIoni

Transportation

hIoni

Threads: ~ All |
GAWTO > sorpiokiomrfomioio otk AR AR AR AR ISR AR AR AR AR A AAAAAKAAAK A
G4WTO > * G4Track Information: Particle = pit, Track ID = 6, Parent ID = 1
GAWTO > sorpiokiorfiomisiok ook IR IR AR IR IR ISR AR AR AR AR AR AR AR AAKAAAK A
G4NTO >
G4WTO > Step# X Y z KineE dEStep SteplLeng
GaWTo > @ 2.672mm 1.177 cm 1.413 cn 116.2 MeV 0 eV o fm
GaWTo > 1 -512.7 um 1.891 cm 4cm 109.9 Mev 6.236 MeV 2,703 cm
GaWTO > 2 -776.5 um 1.952 cm 4.223 cn 108.5 MeV 1.042 MeV 2,322 mm
G4NTO >

:——— List of secondaries — —
G4WTO > e-: energy = 427 keV time = 744 ps
G4uTO > :
IGdWTE > Deposited in scorer: 1.04163 MeV
GaWTO > 3 -5.445mm 2.949 cm 7.72 cn 93.64 MeV 14.84 MeV 3.669 cm
|GawTe > Deposited in scorer: 14.8355 MeV
GaWTo > 4 -6.27 mm 3.104 cm 8.217 cn 90.46 MeV 2.02 MeV 5.272 mn
GAWTO >

:——— List of secondaries — —
GauTO > e-: energy = 1.159 MeV time = 913.9 ps
GAWTO >
164WTe > Deposited in scorer: 2.02035 MeV
GaWTe > 5 -9.099 mm 3.686 cm 10 cm 82.03 MeV 8.431 MeV 1.897 cm
164wT0 > Deposited in score MeV
GawTe > 6 -1.117 cm 11.23 cm 77.68 MeV 3.295 MeV 1.286 cm
GawTe >

— List of secondaries —

Session :

_images/GPSparallelpiped.png

_images/GPSexample.png
3000

2000

1000

E b
| 1 B ST B |
5 10 is 4 2 0 2+
Source Energy Spectrum Source ¥~ distribution
E L E
ST N [ST T |
4 -2 o 2z 4 4 2 o0 2 4
Source Y~Z distribution
150
100
50
o 100 200 300 O o 200 300

Source gos(theta)—phi distribution

Source theta/phi distribution

_images/aParaboloid.jpg

_images/aTet.jpg

_images/aSphere.jpg

_images/aTrap.jpg

_images/aTorus.jpg

_images/aTubs.jpg
s

_images/aTrd.jpg

_images/aHyperboloid.jpg

_images/aGenericTrap3.jpg

_images/aPara.jpg

_images/aOrb.jpg

_static/g4-logo-small.png
G4

_images/aEllipticalCone.jpg

_static/minus.png

_images/aEllipsoid.jpg
S,
S,
T

NEUEAVEVERRRLIRRRY

_static/g4-logo.png
G4

_images/aExtrudedSolid.jpg

_images/aEllipticalTube.jpg
S S aa e
EANIEIEIIIRAANNAERRRN
\ELENLELILTEISATANAIRRN N
LINENNLRERETERRRR Y
5 A

_static/plus.png

_images/aGenericTrap2.jpg

_images/aGenericTrap1.jpg

_images/aBREPSolidPolyhedra.jpg
-10.0

30.0

20.0

100

0.0

100

_images/aBREPSolidPCone.jpg
-10

30

%20

10

10

_images/aCons.jpg

_static/file.png

_images/aBox.jpg

_images/aCutTube.jpg

nav.xhtml

 Table of Contents

 		
 Book For Application Developers

 		
 Introduction

 		
 How to use this manual

 		
 Getting Started with Geant4 - Running a Simple Example

 		
 How to Define the main() Program

 		
 How to Define a Detector Geometry

 		
 How to Specify Materials in the Detector

 		
 How to Specify Particles

 		
 How to Specify Physics Processes

 		
 How to Generate a Primary Event

 		
 Geant4 General Particle Source

 		
 How to Make an Executable Program

 		
 How to Set Up an Interactive Session

 		
 How to Execute a Program

 		
 How to Visualize the Detector and Events

 		
 Toolkit Fundamentals

 		
 Class Categories and Domains

 		
 Global Usage Classes

 		
 System of units

 		
 Run

 		
 Event

 		
 Event Generator Interface

 		
 Event Biasing Techniques

 		
 Detector Definition and Response

 		
 Geometry

 		
 Material

 		
 Electromagnetic Field

 		
 Hits

 		
 Digitization

 		
 Birks Quenching

 		
 Object Persistency

 		
 Parallel Geometries

 		
 Command-based scoring

 		
 Tracking and Physics

 		
 Tracking

 		
 Physics Processes

 		
 Particles

 		
 Production Threshold versus Tracking Cut

 		
 Cuts per Region

 		
 Physics Table

 		
 User Limits

 		
 Track Error Propagation

 		
 Exotic Physics

 		
 User Actions

 		
 User Actions

 		
 Mandatory User Actions and Initializations

 		
 Optional User Actions

 		
 User Information Classes

 		
 Multiple User Actions

 		
 Control

 		
 Built-in Commands

 		
 User Interface - Defining New Commands

 		
 Visualization

 		
 Introduction to Visualization

 		
 Adding Visualization to Your Executable

 		
 The Visualization Drivers

 		
 Controlling Visualization from Commands

 		
 Controlling Visualization from Compiled Code

 		
 Visualization Attributes

 		
 Enhanced Trajectory Drawing

 		
 Trajectory Filtering

 		
 Polylines, Markers and Text

 		
 Making a Movie

 		
 Debugging geometry with vis

 		
 External Boolean processing

 		
 Analysis

 		
 Introduction

 		
 Analysis Manager Classes

 		
 Analysis Reader Classes

 		
 Accumulables

 		
 g4tools

 		
 Examples

 		
 Introduction

 		
 Basic Examples

 		
 Extended Examples

 		
 Advanced Examples

 		
 Novice Examples

 		
 Appendix

 		
 Geant4 Material Database

 		
 Transportation in Magnetic Field - Further Details

 		
 Bibliography

