

 [image: Cover image]

User's Guide for Toolkit Developers

Scope of this Manual

The User's Guide for Toolkit Developers provides detailed information
about the design of Geant4 classes as well as the information required
to extend the current functionality of the Geant4 toolkit. This manual
is designed to:

	provide a repository of information for those who want to understand
or refer to the detailed design of the toolkit, and

	provide details and procedures for extending the functionality of the
toolkit so that experienced users may contribute code which is
consistent with the overall design of Geant4.

This manual is intended for developers and experienced users of Geant4.
It is assumed that the reader is already familiar with functionality of
the Geant4 toolkit as explained in the "User's Guide For Application
Developers", and also has a working knowledge of programming using C++.
A knowledge of object-oriented analysis and design will also be useful
in understanding this manual. It is also useful to consult the
"Software Reference Manual" which provides a list of Geant4 classes
and their major methods.

Detailed discussions of the physics included in Geant4 are provided in
the "Physics Reference Manual".

Contents

	Introduction

	Design and Function of Geant4 Categories

	Extending Toolkit Functionality

	Bibliography

Status of this Document

Guide for developers of the Geant4 toolkit.

	Rev 1.0: First Sphinx version implemented for Geant4 Release 10.4, 8th Dec 2017

	Rev 2.0: Updates and fixes in documentatio for Geant4 Release 10.4, 15th May 2018

	Rev 3.0: Geant4 Release 10.5, 11th December 2018

	Rev 3.1: Geant4 Updates and fixes - especially to search functionality, 5th March 2019

	Rev 4.0: Geant4 Release 10.6, 6th December 2019

	Rev 5.0: Geant4 Release 10.7, 4th December 2020

	Rev 6.0: Geant4 Release 11.0, 10th December 2021

	Rev 7.0: Geant4 Release 11.1, 9th December 2022

	Rev 7.1: Geant4 Fixes to http links, 15th July 2023

	Rev 8.0: Geant4 Release 11.2, 8th December 2023

Footnotes

Introduction

Contents:

	How to use this manual

	User Requirements Document

Footnotes

How to use this manual

Part I: to understand the goal of the software design of Geant4, it
is useful to begin by reading the User Requirements Document referred to
in the next section.

Part II: "Design and Function of the Geant4 Categories" provides
detailed information about the design of each class category and the
classes in it. Before considering an extension of one of the toolkit
categories, a detailed understanding of that category is required.

Part III: :Extending Toolkit Functionality" explains in some
detail how to extend the functionality of Geant4. Most of the class
categories are covered and some, which are especially useful to most
users, are covered in greater detail.

It is not necessary to understand the entire manual before adding a new
functionality. To add a new physics process, for example, only the
following items must be read and understood:

	the design principle described in the "Physics processes" chapter
of Part II

	techniques explained in the "Physics processes" chapter of Part
III.

Footnotes

User Requirements Document

At the beginning of Geant4 development, a set of user requirements was
collected in order to inform the object-oriented analysis and design of
the toolkit. The User Requirements Document follows the PSS-05 software
engineering standards and is available at here#1.

This document provides a general description of the main capabilities
and constraints of the toolkit. It also defines three types of users
characterised by their level of interaction with the system. Specific
requirements are also listed and classified.

Footnotes

	#1

	https://geant4-userdoc.web.cern.ch/Notes/URD.pdf

Design and Function of Geant4 Categories

Contents:

	Introduction

	Run
	Design Philosophy

	Class Design

	Event
	Design Philosophy

	Class Design

	Tracking
	Design Philosophy

	Class Design
	Track Category

	Tracking Category

	Tracking Algorithm

	Interaction with Physics Processes

	Ordering of Methods of Physics Processes

	Physics Processes
	Design Philosophy

	Class Design
	General

	Electromagnetic

	Hadronic

	Hits and Digitisation
	Design Philosophy

	Class Design

	Geometry
	Design Philosophy

	Class Design

	Additional Geometry Diagrams

	Electromagnetic Fields
	Class Design

	Particles
	Design Philosophy

	Class Design

	Materials
	Design Philosophy

	Design
	Classes For Material Description

	The NIST Manager Utility

	Optical Classes

	Material Extension

	Global Usage
	Design Philosophy

	Class Design
	HEPNumerics

	HEPGeometry

	Design of Visualisation Category
	Design Philosophy

	The Graphics Interfaces

	The Geant4 Visualisation System

	Modelling sub-category

	View parameters

	Visualisation Attributes
	Finding the applicable vis attributes

	Intercoms
	Design Philosophy

	Class Design

	Parallelism in Geant4: multi-threading capabilities
	Event level parallelism

	General Design

	Memory handling in Geant4 Version 10.0
	Introduction

	Thread safety and sharing of objects

	Details on the split classes mechanism

	Explicit memory handling

	Threading model utilities and functions
	Types and functions related to the use of threads

	Types and functions related to the use of mutexes and conditions

	Random Number Generation Seeding in MT

	Additional material

Footnotes

Introduction

Geant4 exploits advanced software engineering techniques based on the
Booch/UML Object Oriented Methodology and follows the evolution of the
ESA Software Engineering Standards for the development process. The
"spiral", or iterative, approach has been adopted. User requirements
were collected in the initial phase and problem domain decomposition,
object-oriented methods, and CASE tools were used for analysis and
design. This produced a clear hierarchical structure of sub-domains
linked by a uni-directional flow of dependencies. This led to a software
product which is modular and flexible (a toolkit) and in which the
physics implementation is transparent and open to user validation of
physics predictions. It allows the user to understand, customise and
extend the toolkit in all domains. At the same time the modular
architecture allows the user to load only needed components.

Footnotes

Run

Design Philosophy

The run category manages collections of events (runs). In a single run
the events share the detector implementation, physics conditions and
primary generation.

The classes associated with the run category can be considered as the
main and higher level application programming interface (API) used in
a Geant4 application. A simple application will use concrete classes
provided with the toolkit, the developer will provide the detector
description a primary generator (possibly using one of the general
purpose ones provided with the toolkit), define the physics for the
application (the physics list, possibly one of the few provided with
the toolkit) and optional user actions to interact with the simulation
itself.

In few cases it is however necessary to modify the default behaviour of
one or more classes in this category to allow for a user-customisation.
As an example the class G4MTRunManager extends the basic run-manager
class to take into account event level parallelism via multi-threading.

During a run some states of the application are invariant and cannot be
modified: the physics list (i.e. the list of processes attached to each
particle) and the detector layout (note that some geometry primitives
allow for changing parameters during the event run: parameterisations.
However technically the class instances representing the detector layout
do not change during a run).

Class Design

The relevant classes for the run category are shown here. This show, in
particular, the relation between classes for the case of a
multi-threaded application. For a sequential application the diagram is
simplified since no G4WorkerRunManager class exist and
G4MTRunManager is replaced by G4RunManager:

[image: Class diagram]

Fig. 1 Class diagram for main run category classes.

For a description
of multi-threading functionality refer to Parallelism in : multi-threading capabilities chapter.

One of the main functions of the run category is to control the
life-cycle of a Geant4 application, again with reference to the case of
a multi-threaded application the following schema describes it:

[image: Simplified life cycle]

Fig. 2 Life cycle of a Geant4 application and main run category classes.

A list of the main classes for the category is provided:

	G4Run - This class represents a run. An object of this class is constructed
and deleted by G4RunManager.

	G4RunManager - the run controller class. Users must register detector
construction, physics list and primary generator action classes to
it. G4RunManager or a derived class must be a singleton. This class
provides several virtual methods that can be used to define
user-specific behaviour for a Geant4 application.

	G4RunManagerKernel - provides control of the Geant4 kernel. This class is constructed by
G4RunManager. This class does not provide virtual methods and user
should not sub-class from it. The application G4RunManager should own
an instance of a G4RunManagerKernel singleton.

	G4{MT,Worker}RunManager[Kernel] - specialised versions to provide a multi-threading enabled
application. Refer to chapter Parallelism in : multi-threading capabilities for additional information.

	G4VUserDetectorConstruction - pure virtual base class that represents the simulation setup.

	G4VUserParallelWorld - pure virtual base class of the user's parallel world.

	G4VUserPhysicsList - pure virtual base class for a physics list.

	G4VUserPrimaryGeneratorAction - pure virtual class used by user to define the primary generation.

	G4VModularPhysicsList - Pure virtual class to construct a physics list from
G4VPhysicsConstructor. More modern and modular approach preferred in current versions of
pre-packaged physics lists.

	G4UserRunAction - user action class for run. Instantiate user-derived G4Run and
provides user-hooks for begin and end of run.

	G4UserWorkerInitialization and G4UserWorkerThreadInitialization
- define here the concrete behaviour for threading model. Both classes
provide several virtual methods that can be modified in derived
classes.

	G4VUserActionInitialization - pure virtual class used by user to instantiate concrete instances
of the user-actions.

	G4WorkerThread - this class encapsulates thread-specific data.

	G4RNGHelper - helper class to register and use RNG seeds. Used by MT applications
to guarantee reproducibility.

Footnotes

Event

Design Philosophy

In high energy physics the primary unit of an experimental run is an
event. The same concept is also known in other fields as history. We
retain the name from the HEP community. An event consists of a set of
primary particles, and a set of detector responses to these particles.

In Geant4, objects of the G4Event class are the primary units of a
simulation run. Before the event is processed, it contains primary
vertices and primary particles produced by a generator (a concrete
implementation of a G4VPrimaryGenerator). After the event is processed,
it may also contain hits, digitisations, and optionally, trajectories
generated by the simulation and additional user information (a sub-class
of G4VUserEventInformation). The event category manages events and
provides an abstract interface to the external generators.

G4Event and its content vertices and particles are independent of other
classes. This isolation allows Geant4-based simulation programs to be
independent of specific choices for physics generators and of specific
solutions for storing the "Monte Carlo truth". G4Event avoids
keeping any transient information which is not meaningful after event
processing is complete. Thus the user can store objects of this class
for processing further down the program chain. For performance reasons,
G4Event and its content classes are not persistent. Instead the user
must provide the transient-to-persistent conversion.

The current event being simulated is managed by G4EventManager, a
singleton responsible of handling the simulation of the event. The
tracks being followed for the current event are stored in a stack
managed by G4StackManager. Different stacks allow for fine control of
the simulation (urgent, waiting and postponed stacks).

User hooks allow for a customisation of the simulation behaviour via
G4UserEventAction, G4UserStackingAction and G4VUserEventInformation.

Event generation is performed via a concrete implementation of a
G4VPrimaryGenerator class. This is usually instantiated by the user in
the user-defined concrete implementation of
G4VUserPrimaryGeneratorAction (belonging to the run category). Geant4
provides three concrete implementation of G4VPrimaryGenerator:
G4ParticleGun, a simple generator that can shoot one or more primaries;
G4HEPEvtInterface, specifically designed for HEP experiments to read
/HEPEVT/ common block format; and the G4GeneralParticleSource able to
generate primaries distributed according to complex and configurable
distributions. This last possibility is described in detail in the
Application Developers Guide.

Class Design

	G4Event - this class represents an event. It is constructed and
deleted by G4RunManager or its derived class.

	G4EventManager - this class controls an event. It must be a
singleton and should be constructed by G4RunManager.

	G4TrajectoryContainer - this class can contain the concrete
G4VTrajectory objects defined by user or used to display the current
event.

	G4UserEventAction - the abstract base class to allow for a user
to inject code at the beginning and end of an event.

	G4UserStackingAction - the abstract base class to allow for the
user to control and tune the stacking of particles. See documentation
in class and Geant4 examples.

	G4StackManager - controls the stacks of tracks belonging to the
event currently being processed. The three stacks are: urgent,
waiting and postponed. The first is of type G4SmartTrackStack while
the other two are of the simple G4TrackStack type.

	G4VPrimaryGenerator - the abstract base class of all of primary
generators. This class has only one pure virtual method,
GeneratePrimaryVertex(), which takes a G4Event object, generates a
primary vertex and associates primary particles with the vertex.

UML class diagrams for classes related to the event and event generator
classes are shown in Fig. 3.

[image: Class diagram]

Fig. 3 Event Category UML Diagram. Classes in grey are to be sub-classed by user.

Footnotes

Tracking

In Geant4 the term 'tracking' means propagating a particle through a
geometrical structure. There are two class categories closely related
each other to describe the particle propagation:

	tracking category: manages the contribution of the physics
processes to the evolution of a track's state and provides
information in sensitive volumes for hits and digitisation.

	track category: represents physical information of a particle to
be propagated.

Design Philosophy

The tracking in Geant4 is based on step-wise propagation of the particle
through a given geometry. The overall performance of the Geant4
simulation depends critically on the CPU time spent to move the particle
by one step. Therefore the most important consideration in the object
design of the tracking and track categories is maintaining high
execution speed of step-wise propagation of the particle while utilising
the power of the object-oriented approach.

During the design stage of tracking two possible approaches were
investigated: 'single-class' versus 'structured-classes'. The
'single-class' approach is based on a class design of mimicking a
particle in the real world. This approach looks object-oriented because
a particle in the real world propagates by itself while interacting with
the material surrounding it. The design would be to integrate all
functionalities required for the propagation of a particle into a single
class, for example the 'particle class'. Combining all the necessary
functionalities into this single class exposes all the data attributes
to a large number of methods in the class. This is against the strategy
of 'data hiding', which is one of the most important ingredients in the
object-oriented approach.

The simulation of a particle passing through matter is a complex task
involving particles, detector geometry, physics interactions and hits in
the detector. In the 'structured-classes' approach the class design is
based on the idea of managing the complexity of the tracking task by
separating it into structured multiple classes. Object-oriented
techniques, such as inheritance and aggregation, play the essential
roles in this design. In this approach it is also possible to categorise
the classes into multiple categories. This approach enables each class
category to be designed independently to others.

The 'structured-classes' approach was employed for the tracking design
because it provides more flexibility in the designing and implementing
stages.

In order to maintain high-performance tracking, use of the inheritance
('is-a' relation) hierarchy in the tracking and categories was avoided
as much as possible. For example, track and particle classes
might have been designed so that a track 'is a' particle. In
this scheme, however, whenever a track object is used, time is spent
copying the data from the particle object into the track object.
Adopting the aggregation ('has-a' relation) hierarchy requires only
pointers to be copied, thus providing a performance advantage.

Class Design

Track Category

The class diagram shown in Fig. 4
describes the static structure of classes in the 'track' category and
their relation to closely coupled classes. The design is characterised
by the hierarchic structure of three major classes, i.e. G4Track, G4Step
and G4StepPoint. Main features of these classes are explained below.

	G4Track represents a particle which is pushed by
G4SteppingManager. It holds information required for stepping a
particle, for example, the current position, the time since the start
of stepping, the identification of the geometrical volume which
contains the particle, etc.

Dynamic information, such as particle momentum and energy, is held in
the class through a pointer to the G4DynamicParticle class.
Static information, such as the particle mass and charge is stored in
the G4DynamicParticle class through the pointer to the
G4ParticleDefinition class. Here the aggregation hierarchical
design is extensively employed to maintain high tracking performance.

G4Track has information of the most recent step pushed by
G4SteppingManager as a G4Step object. For G4Step see the
explanation below.

	G4Step keeps information of a step pushed by
G4SteppingManager. It holds information, for example, the step
length and the deposited energy during a step. Information related to
the begin/end points of a step are kept in the aggregated objects of
G4StepPoint, which is described below.

	G4StepPoint keeps information of either the beginning or the end
points of a step. This includes the geometry position, the volume to
which the step point belongs, the global time when a step point is
created, the physics process which occurred at a step point, etc.

Two objects of G4StepPoint (PreStepPoint and PostStepPoint) are
aggregated by a step.

[image: ../../_images/classDgmTrack_V10-3.jpg]

Fig. 4 Tracking design.

Tracking Category

As mentioned already the tracking in Geant4 is based on step-wise
propagation of the particle. The propagation is steered by two major
classes in the 'tracking' category - G4TrackingManager and
G4SteppingManager. G4TrackingManager propagates a particle from
its start point to end. G4SteppingManager steers a single step in
the particle propagation.

The class diagram shown in Fig. 4
describes the static structure of classes in the tracking category and
their relation to closely coupled classes. The design is characterised
by the hierarchic structure of two major classes, i.e. G4TrackingManager
and G4SteppingManager. Main features of these classes and their closely
related ones are explained below.

	G4TrackingManager
	is responsible for processing one track passed
from the event manager G4EventManager. G4EventManager belongs
to the event class category and is the hierarchically upper manager
class to G4TrackingManager - see the previous section Event for
details. Receiving one track G4TrackingManager propagates it
step-by-step. Steering each step is delegated to the stepping manager
G4SteppingManager, which is the the hierarchically lower manager
class to G4TrackingManager.

G4TrackingManager aggregates the pointers to closely related
classes:

	G4SteppingManager (composite aggregation)

	G4Trajectory (composite aggregation)

	G4UserTrackingAction (composite aggregation)

	G4Track (shared aggregation)

	G4SteppingManager
	plays an essential role in transporting a
particle. Its public method Stepping() steers propagation of the
particle by one step. In this method messages are passed to objects
in the categories which are related to particle propagation, such as
geometry and physics processes. In designing the message passing
scheme between G4SteppingManager and physics processes, the key
feature is the abstraction of physics processes utilising the
inheritance hierarchy. The hierarchical design of the physics
interactions enables the stepping manager to handle them as abstract
objects. Hence, the manager need not interact directly with concrete
physics process objects such as bremsstrahlung, pair creation, etc.
The actual invocations of various interactions during the stepping
are done through a dynamic binding mechanism. This mechanism shields
the tracking category from any change in the design of the physics
process classes, including the addition or subtraction of new
processes.

G4SteppingManager aggregates pointers to closely related
classes:

	G4Navigator (geometry category)

	G4Track under the current tracking (track category)

	G4TrackVector for the list of secondaries created during the
current tracking (track category)

	G4UserSteppingAction

	G4ProcessManager (physics processes category)

	G4ParticleChange (physics processes category)

	G4TrajectoryPoint
	holds information of the particle after
propagating one step. Among other things, it includes information on
space-time, energy-momentum and geometrical volumes.

	G4Trajectory
	aggregates all G4TrajectoryPoint objects which
belong to the particle being propagated. G4TrackingManager takes
care of adding the G4TrajectoryPoint to a G4Trajectory object
if the user requested it (see Geant4 User's Guide For Application
Developers#1).
The life of a G4Trajectory object spans an event, contrary to
G4Track objects, which are deleted from memory after being
processed. G4RichTrajectory and G4SmoothTrajectory are
derived classes from G4Trajectory. These classes are used for
elaborate drawing of a trajectory on a graphic device.

	G4UserTrackingAction
	is a base class from which user actions at
the beginning or end of tracking may be derived.

	G4UserSteppingAction
	is a base class from which user actions at
the beginning or end of each step may be derived.

Tracking Algorithm

The key classes for tracking in Geant4 are G4TrackingManager and
G4SteppingManager. The singleton object 'TrackingManager' created
from the class G4TrackingManager keeps all information related to a
particular track, and it also manages all actions necessary to complete
the tracking. The tracking proceeds by pushing a particle by a step, the
length of which is defined by one of the active physics processes. The
'TrackingManager' object delegates the management of each step to the
object 'SteppingManager' created from the class G4SteppingManager .
This object keeps all information related to a single step.

The public method ProcessOneTrack() in G4TrackingManager is the
key of managing the tracking, while the public method Stepping() in
G4SteppingManager is the key of managing one step. The basic
algorithms used in these methods are described below.

ProcessOneTrack() in G4TrackingManager:

	Clear the secondary particle vector before starting to track the
particle.

	Invoke pre-tracking user intervention process.

	Construct a trajectory if it is requested.

	Give SteppingManager the pointer to the track which will be tracked.

	Inform 'beginning of tracking' to all the active physics processes.

	Track the particle step-by-step while it is alive:

	Call the method 'Stepping' of G4SteppingManager.

	Append a trajectory point to the trajectory object if it is
requested.

	Invoke post-tracking user intervention process.

	Delete the trajectory if it was created.

Stepping() in G4SteppingManager:

	Initialise current step.

	If the given particle has 'zero' kinetic energy, get the minimum life
time from all the at rest processes and invoke InvokeAtRestDoItProcs
of the selected AtRest processes.

	If particle has 'non-zero' kinetic energy:

	Invoke the method 'DefinePhysicalStepLength', that finds the
minimum step length demanded by the active processes.

	Invoke the method 'InvokeAlongStepDoItProcs'.

	Update current track properties by taking into account all changes
by 'AlongStepDoIt' methods of the processes .

	Update the value 'safety'.

	Invoke Invoke the method 'PostStepDoItPrcs' of the active discrete
process.

	Update the track length.

	Send G4Step information to Hit/Dig if the volume is sensitive.

	Invoke the user intervention process.

	Return the value of the StepStatus.

Interaction with Physics Processes

The interaction of the tracking category with the physics processes is
done in two stages by G4SteppingManager. The first stage is to find
minimum step length demanded by active discrete and continues physics
processes. Also to find the processes which will be invoked in the step.
The second stage is to execute the selected processes by calling their
DoIt methods. More details of the interaction are explained below.

The first stage of the interaction with the physics processes is to
execute the private method DefinePhysicalStepLength() of
G4SteppingManager. The general flow in this method is as follows:

	Obtain 'maximum allowed step' in the volume define by the user
through G4UserLimits.

	The PostStepGetPhysicalInteractionLength methods of all active
processes are called. Each process returns a step length and the
process which proposed the minimum value is identified - sometimes
this race of selection is called the GPIL (Get Physical Interaction
Length) selection. The method also returns the G4ForceCondition flag
which indicate if the process is forced for execution or not:

	Forced : Corresponding PostStepDoIt is forced.

	NotForced : Corresponding PostStepDoIt is not forced unless this
process limits the step.

	Conditionally : Only when AlongStepDoIt limits the step,
corresponding PostStepDoIt is invoked.

	ExclusivelyForced : Corresponding PostStepDoIt is exclusively
forced.

	Then the AlongStepGetPhysicalInteractionLength methods of all active
processes are called. Each process returns a step length and the
process which proposed the minimum value is identified. This method
also returns a fGPILSelection flag, to indicate if the process can
join the race of selection:

	CandidateForSelection: this process can be the winner. If its step
length is the smallest, it will be the process defining the step

	NotCandidateForSelection: this process cannot be the winner. Even
if its step length is taken as the smallest, it will not be the
process defining the step

The second stage of the interaction mentioned above is divided in three
actions.

The first action is to invoke the AlongStepDoIt method of all processes
by calling the private method InvokeAlongStepDoIts() of
G4SteppingManager. The general flow in this method is as follows:

	If the current step is defined by a process which returned
'ExclusivelyForced', no AlongStepDoIt method will be invoked.

	Else, all the active continuous processes will be invoked, and they
return the ParticleChange. Then the following actions are taken:

	Update the G4Step information by using final state information of
the track given by a physics process. This is done through the
UpdateStepForAlongStep method of the ParticleChange.

	Apply the production cut to all created secondaries by invoking the
private method
ApplyProductionCut()
of
G4SteppingManager
. Actions taken in this method are as follows:

	Check if the kinetic energy of a secondary is smaller than the
production threshold of the particle set in the material. If it
is smaller, the kinetic energy is added to the total energy
deposit of the parent track. Then the energy of the particle is
assigned 'zero'. This check is only done if the flag
ApplyCutFlag is set for the particle (by default it is set to
'false' for all particles - user may change it in its
G4VUserPhysicsList). If the track has the flag
IsGoodForTracking 'true', this check will have no effect (used
mainly to track particles below threshold).

	The parentID and the process pointer which created this track
are set.

	The secondary particle is added to the list of secondaries. If
the particle has 'zero' kinetic energy, it is added only if it
has a rest process to be invoked at the beginning of its
tracking.

	The track status is set according to what the process defined

The second action in the second stage is to invoke the method
G4SteppingManager::InvokePostStepDoIts, which is in charge of
calling the PostStepDoIt methods of all processes.

	Invoke the PostStepDoIt methods of the specified discrete processes
(the ones selected by the PostStepGetPhysicalInteractionLength, and
they return the ParticleChange. The order of invocation of processes
is inverse to the order used for the GPIL selection. After the
execution of all PostStepDoIt methods the following actions are
taken:

	Update PostStepPoint of the step according to ParticleChange.

	Update G4Track according to ParticleChange after each
PostStepDoIt.

	Update safety after each invocation of PostStepDoIt.

	The secondaries from ParticleChange are stored to SecondaryList.

	Apply the production cut to all created secondaries by invoking
the private method
ApplyProductionCut()
of
G4SteppingManager
. The details of this method is described in the previous
paragraph of
InvokeAlongStepDoIts()
.

	The track status is set according to what the process defined

The third action in the second stage is to invoke the method
G4SteppingManager::InvokeAtRestDoIts. This invocation is done only
if the track passed from the event manager has the status
'fStopAndALive'. If this the case the two methods
(InvokeAlongStepDoIts and InvokePostStepDoIts) mentioned above
will not be executed. In the method 'InvokeAtRestDoIts' the selection is
executed to find the rest process which has the shortest lifetime. After
this selection, the corresponding rest process will be invoked:

	To select the process which has the shortest lifetime, the AtRestGPIL
method of all active rest processes is called. Each process returns
an lifetime and the minimum one is chosen. This method return also
the G4ForceCondition flag, to indicate if the process is forced or
not:

	Forced : Corresponding AtRestDoIt is forced.

	NotForced : Corresponding AtRestDoIt is not forced unless this
process limits the step.

	Set the step length of current track and step to 'zero'.

	Invoke the AtRestDoIt methods of rest processes selected in the above
step. Each invocation returns the ParticleChange. The order of
invocation of processes is inverse to the one used for the GPIL
methods.

Completing the previous step, the following actions are taken:

	Set the current process as a process which defined this step
length.

	Update the G4Step information by using final state information of
the track given by a physics process. This is done through the
UpdateStepForAtRest method of the ParticleChange.

	The secondaries from ParticleChange are stored to SecondaryList.

	Apply the production cut to all created secondaries by invoking
the private method ApplyProductionCut() of
G4SteppingManager. The details of this method is described in
the previous paragraph of InvokeAlongStepDoIts().

	The track is updated and its status is set according to what the
process defined

Ordering of Methods of Physics Processes

As shown in Fig. 4, 'G4Track' has
'G4ParticleDefinition' through 'G4DynamicParticle'. The class
'G4ParticleDefinition' aggregates an object of 'G4ProcessManager' which
has information of ordering of physics processes the particle
undertakes. G4SteppingManager invokes the processes at each phase
just following the process ordering given by the ProcessManager.

For some processes the order is important. Geant4 provides by default
the right ordering. It is always possible for the user to choose the
order of process invocations at the initial set up phase of Geant4. This
default ordering is the following:

	Ordering of GetPhysicalInteractionLength

	In the loop of GetPhysicalInteractionLength of AlongStepDoIt, the
transportation process has to be invoked at the end.

	In the loop of GetPhysicalInteractionLength of AlongStepDoIt, the
multiple scattering process has to be invoked just before the
Transportation process.

	Ordering of DoIts

	Most cases ordering does not matter, though there are some
exceptions. For example, the Cerenkov process needs the energy
loss information of the current step for its DoIt invocation.
Therefore, the EnergyLoss process has to be invoked before the
Cerenkov process. This ordering is provided by the process
manager. Energy loss information necessary for the Cerenkov
process is passed using G4Step (or the static dE/dX table is used
together with the step length information in G4Step to obtain the
energy loss information).

Footnotes

	#1

	http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/index.html

Physics Processes

Design Philosophy

The processes category contains the implementations of particle
transportation and physical interactions. All physics process conform to
the basic interface G4VProcess, but different approaches have been
developed for the detailed design of each sub-category.

For the decay sub-category, the decays of all long-lived, unstable
particles are handled by a single process. This process gets the step
length from the mean life of the particle. The generation of decay
products requires a knowledge of the branching ratios and/or data
distributions stored in the particle class.

The electromagnetic sub-category is divided further into the following
packages:

	standard: handling basic properties for electron, positron, photon and hadron
interactions,

	lowenergy: providing alternative models extended down to lower energies than
the standard package,

	dna: providing DNA physics and chemistry simulation,

	highenergy: providing models for rare high energy processes,

	muons: handling muon interactions and energy loss propagator,

	adjoint: implementing reverse Monte Carlo approach,

	xrays: providing specific code for x-ray physics,

	optical: providing specific code for optical photons,

	utils: collecting utility classes used by the above packages.

It provides the features of openness and extensibility resulting from the
use of object-oriented technology; alternative physics models, obeying
the same process abstract interface, are often available for a given
type of interaction.

For hadronic physics, an additional set of implementation frameworks was
added to accommodate the large number of possible modelling approaches.
The top-level framework provides the basic interface to other Geant4
categories. It satisfies the most general use-case for hadronic shower
simulations, namely to provide inclusive cross sections and final state
generation. The frameworks are then refined for increasingly specific
use-cases, building a hierarchy in which each level implements the
interface specified by the level above it. A given hadronic process may
be implemented at any one of these levels. For example, the process may
be implemented by one of several models, and each of the models may in
turn be implemented by several sub-models at the lower framework levels.

The hadronic sub-category is divided into the following packages:

	management: providing the top level hadronic process classes;

	cross_sections: providing inelastic and elastic cross sections for hadron-nucleon,
hadron-nucleus and nucleus-nucleus interactions; it also contains
inelastic cross sections for gamma- and lepto-nuclear interactions;

	models: providing hadronic final-state models; there is a further
sub-level, corresponding to each model
(abla, abrasion binary_cascade, cascade, coherent_elastic,
de_excitation, em_dissociation, fission, im_r_matrix, inclxx,
lend, lepto_nuclear, management, parton_string, pre_equilibrium,
qmd, quasi_elastic, radioactive_decay, rpg, theo_high_energy,
util);

	processes: providing the in-flight hadronic physics processes: inelastic,
elastic, capture and fission;

	stopping: providing the nuclear capture of hadrons and muon at rest;

	util: collecting utility classes used by the above packages.

Class Design

General

The object-oriented design of the generic physics process G4VProcess
and its relation to the process manager is shown in
Fig. 5.
Fig. 6 shows how specific physics
processes are related to G4VProcess.

[image: class diagram]

Fig. 5 Management of Physics Processes

[image: class diagram]

Fig. 6 Management of Physics Processes

Electromagnetic

The electromagnetic (EM) processes of Geant4 follow the basic
interfaces:

	G4VEnergyLossProcess;

	G4VEmProcess;

	G4VMultipleScattering.

The class diagram is shown in Fig. 7.

[image: Class diagram]

Fig. 7 Design of EM physics processes.

These base classes provide all management work of initialisation of
processes, creation and filling of physics tables, and generic run-time
actions. Concrete process classes are responsible for the initialisation
of parameters and defining the set of models for the process. In some
specific cases these interfaces are not applicable and the high level
interface G4VProcess is used.

Concrete physics models are implemented via EM model interfaces:

	G4VEmModel;

	G4VMscModel.

In the majority of use-cases when new EM physics is needed, it is enough
to create only a new model class and use it in the existing EM process
class. A new model may be added to an existing process using
AddEmModel(G4int, G4VEmModel*, G4Region*) method. The class diagram
is shown in Fig. 8.

[image: Class diagram]

Fig. 8 Design of EM physics processes.

Hadronic

The hadronic physics of Geant4 has been designed to allow three basic
types of modelling: data-driven, parameterisation-driven, and
theory-driven. Five implementation frameworks have been used to allow
great flexibility in these modelling approaches. An overview of the first
two framework levels will be given here (for a wider and more detailed
coverage please refer to the next Chapter).

The top-level framework defines the hadronic processes, and provides the
basic interface to other Geant4 categories. All processes have a common
base-class G4VProcess, from which a set of specialised classes are
derived. Two of them are used as base classes for hadronic processes for
particles (G4VDiscreteProcess), and for processes like radioactive
decay that can be both in-flight or at-rest
(G4VRestDiscreteProcess). Each of these classes declares two types
of methods: one for calculating the time to interaction (for at-rest
processes) or the physical interaction length (for in-flight processes),
allowing tracking to request the information necessary to decide on the
process responsible for final-state production.

Note on at-rest processes: starting with Geant4 version 9.6 - when
the Bertini and Fritiof final-state models have been extended down to
zero kinetic energy and used also for simulating the nuclear capture
at-rest - the at-rest processes derive from G4HadronicProcess, hence
from G4VDiscreteProcess, instead than from G4VRestProcess as in
the initial design of at-rest processes. This requires some adaptation a
discrete process to handle an at-rest one using top level interface
G4VProcess. A different solution, under consideration but not yet
implemented, would be instead to have G4HadronicProcess inheriting
from G4VRestDiscreteProcess: in this way, G4HadronicProcess, and
therefore any theory-driven final-state model, could be deployed for any
kind of hadronic process, including capture-at-rest processes and
radioactive decays.

The class diagram is shown in the Fig. 9.

[image: ../../_images/Level11.jpg]

Fig. 9 First level implementation framework of the hadronic category of Geant4.

Whenever possible, it is preferable to add any new hadronic physics to
Geant4 in terms of a model, and assign the model to an existing process,
rather than develop a new, specific process. However, in some cases, a
directly implemented hadronic process may be necessary. In these cases,
the new process must derive from G4HadronicProcess and the following
three methods must be implemented:

virtual G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&) ,
virtual G4bool IsApplicable(const G4ParticleDefinition&) ,
G4double GetMeanFreePath(const G4Track& aTrack, G4double, G4ForceCondition*) .

More details on these methods will be provided in the next Chapter.

At the next level of abstraction, only processes that occur for
particles in flight are considered. For these, the main design
requirement is to treat cross sections and the final-state models (i.e.
the models responsible for the production of the secondaries)
independently, so that it is possible to change cross section while
keeping a particular final-state model, or, vice versa, to keep a given
cross section while replacing the final-state model. Moreover, a set of
cross sections can be used for a single hadronic process to cover a wide
kinematical range (e.g. from thermal energies up to several
tera-electronvolts of the projectile kinetic energy). Similarly, for the
same reason, a set of different final-state models can be used for a
single hadronic process, allowing the overlapping between two models in
an interval of the projectile kinetic energy, to insure a smooth
transition between these models.

The class diagram for hadronic cross-sections is shown in
Fig. 10 and in
Fig. 11 for final-state models.

[image: Implementation framework.]

Fig. 10 Second level implementation framework of the hadronic category of Geant4:
cross-section aspect.

[image: Implementation framework.]

Fig. 11 Second level implementation framework of the hadronic category of Geant4:
final-state production aspect.

Each hadronic process is derived from G4HadronicProcess, which holds
a list of "cross section data sets". All cross section data set
classes are derived from the abstract class G4VCrossSectionDataSet.
The process stores and retrieves the data sets through a data store that
acts like a FILO (First-In-Last-Out) stack. Details on how to write a
new hadronic cross section set will be provided in the next Chapter.

The G4HadronicProcess class provides a registration service for
classes deriving from G4HadronicInteraction, and delegates
final-state production to the applicable model. Models inheriting from
G4HadronicInteraction can be restricted in applicability in
projectile type and energy, and can be activated/deactivated for
individual materials and elements. Details on how to write a new
hadronic final-state model will be provided in the next Chapter.

Footnotes

Hits and Digitisation

Design Philosophy

In Geant4 a hit is a snapshot of a physical interaction or an
accumulation of interactions of a track or tracks in a "sensitive"
detector component. A digitisation, or digit, represents a detector
output, such as an ADC/TDC count or a trigger signal. A digit is
created from one or more hits and/or other digits.

Given the wide variety of Geant4 applications, ways of describing
detector sensitivity and the quantities to be stored in the hits and
digits vary greatly. This category therefore provides only abstract
classes for both detector sensitivity and hits/digits. It also
provides tools for organising the hits/digits into collections.

Class Design

	G4VHit - this class has all the information about a particular
hit caused by a single step.

	G4VHitsCollection - base class for a collection of hits.

	G4THitsCollection - template class for a collection of hits of
the (template) type. Implements G4VHitsCollection interface
providing efficient storage of hits via allocators.

	G4HCofThisEvent - container class for collections of hits for the
current event.

	G4VSensitiveDetector - pure virtual class representing a
sensitive element responsible for creating and managing associated
hits. The user should implement the method ProcessHits a filter and
readout geometry (optional) are also allowed.

	G4SDManager - singleton managing sensitive detectors.

	G4SDMessenger - SD manager associated messenger.

	G4SDStructure - used exclusively used by G4SDManager for handling
the tree structure of the user's sensitive detector names. Each
branch represents the hits in given sub-detector. For example, the
first level of branches may consist of a tracker, ECAL, and HCAL,
while the second level, in HCAL, consists of the barrel and endcaps.
Finally the barrel may have phi-slices, Z-slices, etc.

For digitisation features a similar design as for hits is applied:

	G4VDigi - an abstract (base) class for all G4 digitisations. This
could be data as simple as a singe byte, or as complex as an Ntuple.

	G4VDigiCollection - base class for a collection of digits.

	G4TDigiCollection - template class for a collection of digits of
the (template) type. Implements G4VDigiCollection interface
providing efficient storage of digits via allocators.

	G4DCofThisEvent - container class for collections of digits for
the current event.

	G4VDigitizerModule - the class of objects which transform the
hits deposited by particles into digitisations.

	G4DigiManager - singleton managing digitiser modules.

	G4DigiMessenger - Digi manager associated messenger.

The UML class diagram for sensitivity related classes is shown in the
following class diagram. Fig. 12 shows
the general management of hit classes.

[image: ../../_images/classDgmHitMain.jpg]

Fig. 12 Overview of hit classes management. Classes in grey represent the
main components that a user must subclass to implement a sensitive
detector. User is also responsible of creating the binding between
G4THitsCollection and its hit class.

Footnotes

Geometry

Design Philosophy

The geometry category provides the ability to describe a geometrical
structure and propagate particles efficiently through it. This is done
in part with the aid of two central concepts, the logical and
physical volumes. A logical volume represents a detector element of a
given shape which may contain other volumes, and which may have other
attributes. It has access to other information which is independent of
its physical location in the detector, such as material and sensitive
detector behaviour. A physical volume represents the spatial positioning
or placement of the logical volume with respect to an enclosing mother
(logical) volume. Thus a hierarchical tree structure of volumes can be
built with each volume containing smaller volumes (which may not
overlap). Repetitive structures can be represented by specialised
physical volumes, such as replicas and parameterised placements,
sometimes resulting in a large savings in memory.

In Geant4 the logical volume has been refined by defining the shape as a
separate entity, called a solid. Solids with simple shapes, like
rectilinear boxes, trapezoids, spherical or cylindrical sections or
shells, each have their properties coded separately, in accord with the
concept of Constructed Solid Geometry (CSG). More complex solids are
defined for specific use, or having their surfaces approximated by
facets (tessellated solids).

Another way to build solids is by Boolean combination - union,
intersection and subtraction. The elemental solids should be CSGs.

Although a detector is naturally and best described as by a hierarchy of
volumes, efficiency is not critically dependent on this. An optimisation
technique, called voxelization, allows efficient navigation even in
"flat" geometries, typical of those produced by CAD systems.

Class Design

	G4GeometryManager - responsible for managing "high level"
objects in the geometry subdomain, notably including opening and
closing ("locking") the geometry, and creating/deleting
optimisation information for G4Navigator. The class is a "singleton".

	G4LogicalVolumeStore - a container for optionally storing created
logical volumes. It enables traversal of all logical volumes by the
UI/user/etc.

	G4LogicalVolume - represents a leaf node or unpositioned subtree
in the geometry hierarchy. It may have daughters ascribed to it, and
is also responsible for retrieval of the physical and tracking
attributes of the physical volume that it represents. These
attributes include solid, material, magnetic field, and optionally
user limits, sensitive detectors, etc. Logical volumes are optionally
entered into the G4LogicalVolumeStore.

	G4MagneticField - a class responsible for the magnetic field in
each volume, including the calculation of particle trajectories along
curved paths. In cases where the geometry step limits the particle's
step, the distance calculated is guaranteed to be the distance to a
volume boundary.

	G4Navigator - a class used by the tracking management, able to
obtain/calculate tracking-time geometrical information such as
distance to the next volume, or to find the physical volume
containing a given point in the world reference system. The navigator
maintains a transformation history and other information used to
optimise the tracking time performance.

	G4NavigationHistory - responsible for maintenance of the history
of the path taken through the geometrical hierarchy. It is
principally a utility class for use by G4Navigator.

	G4NormalNavigation - a utility class for navigation in volumes
containing only G4PVPlacement daughter volumes.

	G4ParameterisedNavigation - a utility class for navigation in
volumes containing a single G4PVParameterised volume for which voxels
for the replicated volumes have been constructed.

	G4VoxelNavigation - a utility class for navigation in volumes
containing only G4PVPlacement daughter volumes for which voxels have
been constructed.

	G4ReplicaNavigation - a utility class for navigation in volumes
containing a single G4PVParameterised volume for which voxels for the
replicated volumes have been constructed.

	G4PhysicalVolumeStore - a container for optionally storing
created physical volumes. It enables traversal of all physical
volumes by the UI/user/etc. All solids should be registered with
G4PhysicalVolumeStore, and removed on their destruction. It is
intended principally for the UI browser.

	G4VPhysicalVolume - a volume positioned within and relative to a
given mother volume, and also represented by a given logical volume.
They are optionally entered into the G4PhysicalVolumeStore.

	G4PVPlacement - a physical volume corresponding to a single
touchable detector element, positioned within and relative to a
mother volume.

	G4PVReplica - a physical volume representing many identically
formed touchable detector elements, differing only in their
positioning. The elements' positions are determined by means of a
simple formula, and the elements completely fill the containing
mother volume.

	G4PVParameterised - a physical volume representing many touchable
detector elements differing in their positioning and dimensions. Both
are calculated by means of a G4VParameterisation object. Each
element's position is calculated as per G4PVReplica, and each
element's shape can be modified by means of a user supplied formula.

	G4VPVParameterisation - a parameterisation class able to compute
the transformation and, indirectly, the dimensions of parameterised
volumes, given a replication number.

	G4SmartVoxelProxy - a class for proxying smart voxels. The class
represents either a header (in turn referring to more VoxelProxies) or
a node. If created as a node, calls to GetHeader cause an exception,
and likewise GetNode when a header.

	G4SmartVoxelHeader - represents a single axis of virtual
division. Contains the individual divisions which are potentially
further divided along different axes.

	G4SmartVoxelNode - a single virtual division, containing the
physical volumes inside its boundaries and those of its parents.

	G4VoxelLimits - represents limitation/restrictions of space,
where restrictions are only made perpendicular to the Cartesian axes.

	G4SolidStore - a container for optionally storing created solids.
It enables traversal of all/any solids by the UI/user/etc. The class
is a "singleton".

	G4VSolid - position independent geometrical entities. They have
only 'shape', and encompass both CSG and boundary representations.
They are optionally entered into the G4SolidStore. This class
defines, but does not implement, functions to compute distances
to/from the shape. Functions are also defined to check whether a
point is inside the shape, to return the surface normal of the shape
at a given point, and to compute the extent of the shape.

	G4VTouchable - a class that maintains a "reference" on a
given touchable element of the detector - a kind of bookmark. It
enables a given detector element to be saved during tracking (in case
of Booleans/user code/etc.) and the corresponding G4PhysicalVolume
retrieved later, with its "state" information (path through the
tree) optionally restored so that navigation can be restarted.
G4Touchables provide fast access to the transformation from the
global reference system to that of the saved detector element.

	G4TouchableHistory - object representing a touchable detector
element, and its history in the geometrical hierarchy, including its
net resultant local->global transform.

	G4GRSSolid - object representing a touchable solid. It maintains
the association between a solid and its net resultant local-to-global
transform.

	G4GRSVolume - object representing a touchable detector element.
It maintains associations between a physical volume and its net
resultant local-to-global transform.

	G4AffineTransform - a class for geometric affine transformations.
It supports efficient arbitrary rotation and transformation of
vectors and the computation of compound and inverse transformations.
A "rotation flag" is maintained internally for greater
computational efficiency for transforms that do not involve rotation.

	G4UserLimits - responsible for user limits on step size,
ascribable to individual volumes.

Fig. 13 shows a general overview, in UML
notation, of the geometry design. A detailed collection of class
diagrams from the geometry category is found in the Appendix.

[image: ../../_images/overall.jpg]

Fig. 13 Overview of the geometry.

Additional Geometry Diagrams

Additional diagrams for the object-oriented design of the 'geometry'
related classes are included here.
Fig. 14 shows the class diagram for
smart voxels. Fig. 15 shows the class
diagram for the navigator.

[image: ../../_images/smart_voxels.jpg]

Fig. 14 Class diagram for smart voxels

[image: ../../_images/navigator.jpg]

Fig. 15 Class diagram for the navigator

Footnotes

Electromagnetic Fields

Class Design

	G4TransportationManager - singleton class storing the (volume)
navigator used by the transportation process to do the geometrical
tracking. It also stores a pointer to the propagator used in a
(magnetic) field and to the field manager. The class instance is
created before main() is called, and in turn creates the navigator
and the rest.

	G4PropagatorInField - class performing the navigation/propagation
of a particle/track in a magnetic field. The field is in general
non-uniform. For the calculation of the path, it relies on the class
G4ChordFinder.

	G4FieldManager - class managing (storing) a pointer to the Field
subclass that describes the field of a detector (magnetic, electric
or other). Also stores a reference to the chord finder. The
G4FieldManager class exists to allow the user program to specify the
electric, magnetic and/or other field(s) of the detector. A field
manager can be set to a logical volume (or to more than one), in
order to vary its field from that of the world. In this manner a zero
or constant field can override a global field, a more or less exact
version can override the external approximation, lower or higher
precision for tracking can be specified, a different stepper can be
chosen for different volumes, ... It also stores a pointer to the
G4ChordFinder object that can do the propagation in this field.
G4FieldManager allows the other classes/object (of the MagneticField
and other class categories) to find out whether a detector field
object exists and what that object is. A default G4FieldManager is
created by the singleton class G4NavigatorForTracking and exists
before main is called. However a new one can be created and given to
G4NavigatorForTracking. Our current design envisions that one
G4FieldManager is valid for each region detector.

	G4ChordFinder - class providing the integration of motion using
the ODE solver's driver to find the end-point that satisfies the
chord length criterion. It also returns an Approximate point on the
curve near to a (chord) point. The G4ChordFinder handles all
geometrical track "advancements" in the field. The G4ChordFinder must
be created either by calling CreateChordFinder() for a Magnetic Field
from G4FieldManager or by the user creating a G4ChordFinder object
"manually" and setting the pointer.

The object-oriented design of the classes related to the electromagnetic
field is shown in the class diagram of
Fig. 16. The diagram is described in
UML notation.

[image: ../../_images/field-prop.jpg]

Fig. 16 Electromagnetic Field

Footnotes

Particles

Design Philosophy

The particles category implements the facilities necessary to describe
the physical properties of particles for the simulation of
particle-matter interactions. All particles are based on the
G4ParticleDefinition class, which describes basic properties such as
mass, charge, etc., and also allows the particle to carry a list of
processes to which it is sensitive. A first-level extension of this
class defines the interface for particles that carry cuts information,
for example range cut versus energy cut equivalence. A set of virtual,
intermediate classes for leptons, bosons, mesons, baryons, etc., allows
the implementation of concrete particle classes which define the actual
particle properties and, in particular, implement the actual range
versus energy cuts equivalence. All concrete particle classes are
instantiated as singletons to ensure that all physics processes refer to
the same particle properties.

Class Design

The object-oriented design of the 'particles' related classes is shown
in the following class diagrams. The diagrams are described in the Booch
notation. The Fig. 17 shows a general
overview of the particle classes.
Fig. 19 shows classes related to the
particle table and Fig. 18 shows the
classes related to the ion table in the particle table.
Fig. 20 shows the classes related to
the particle decay table in the G4ParticleDefinition. This decay table
is used by decay process and Fig. 21
shows the classes related to the decay process and decay channels

[image: ../../_images/classDgmParticlesMain.jpg]

Fig. 17 Particle classes

[image: ../../_images/classDgmIonTable.jpg]

Fig. 18 Particle Table

[image: ../../_images/classDgmParticleTable.jpg]

Fig. 19 Particle Table

[image: ../../_images/classDgmParticleDecay.jpg]

Fig. 20 Decay Table

[image: ../../_images/classDgmDecay.jpg]

Fig. 21 Particle Decay

Footnotes

Materials

Design Philosophy

The design of the materials category reflects what exists in nature:
materials are made of a single element or a mixture of elements, and
elements are made of a single isotope or a mixture of isotopes.

Materials have been initially designed as amorphous, with properties
obtained by linear combinations of the properties of the elements or
isotopes building them, like radiation and interaction lengths, etc.
Provision was taken though to allow their ionisation parameters for
departing from this assumption with the ability to override the default
calculations, like the mean ionisation potential for example. Since
Geant4 version 10.3, materials have been extended to allow for
crystalline and molecular
structures to be freely defined and associated with a material.

The materials category also defines optical surface properties used in
the tracking of optical photons.

Design

Classes For Material Description

The material description is based on three main classes:

	G4Isotope:
	used to define isotopes by name, atomic number Z and
number of nucleons N. The molar mass A can be specified, and is
otherwise taken from Geant4 NIST database. The isomer state can also
be specified.

This class is essentially a "simple data container" and does not
perform any physics calculations.

	G4Element:
	defines elements as isotopes composition, with
relative abundance. This class also holds the atomic electron shell
structure, that it retrieves for itself using the G4AtomicShells
utility class.

G4AtomicShells is a "database" class holding the atomic shells
and subshells, number of electrons in each and related binding
energies, for the first 100 elements.

Similarly, G4Element also retrieves the element ionisation data,
using the other utility and database class G4IonisParamElm.

The class computes derived quantities : Coulomb correction and Tsai
radiation length factors (Phys Rev. D50 3-1 (1994) page 1254). These
calculations are triggered in the constructor, or in the AddIsotope
method.

	G4Material:
	defines a material as a collection of elements
-directly, or by mixture of materials- adding, on top of the element
composition, the physical properties density, state, temperature,
pressure.

A material has also ionisation properties, gathered in an
G4IonisParamMat object. The material creates this object,
referencing itself to this ionisation object. This one extract
properties from the element material composition. For the mean
ionisation energy, it may use values defined for chemical formulas,
or deduce from the element composition, or accept a value set
directly.

When the composition of the material is changed (adding an element or
a material), derived quantities are computed, including radiation and
nuclear interaction lengths.

These three classes hold each a static vector holding all created
objects of the class.

The diagram of the these three main classes for material description
together with their utility classes is shown in the
Fig. 22.

[image: ../../_images/materials_matDescriptionClasses.png]

Fig. 22 The three main classes used for material description, together with their utility classes.

The NIST Manager Utility

The G4NistManager utility singleton class provides elements and
materials construction according to the NIST database on Atomic Weights
and Isotope Compositions,
http://physics.nist.gov/PhysRefData/Compositions/index.html . The
G4NistManager is an interface class holding and steering one
instance of the following classes:

	G4NistElementBuilder ,

	G4NistMaterialBuilder ,

	G4NistMessenger .

The G4NistElementBuilder and G4NistMaterialBuilder classes
proceed in a similar manner, with an initialisation phase in which known
elements and materials are essentially "registered" (under
std::vector's of names, properties, etc.) but without actual
creation of the G4Element, G4Isotope and G4Material objects.
These creation happen on user's calls FindOrBuildElement or
FindOrBuildMaterial.

During the initialisation phase of these NIST builder objects, vectors
of elements and materials names and properties are hence created. They
may be used by the material construction classes exposed in the previous
section, which explains the dependencies on G4NistManager shown in
the figure.

Optical Classes

The classes for describing optical properties are:

	G4SurfaceProperty: the base class for optical properties, which
consists essentially in the enumeration G4SurfaceType, and which
holds a static std::vector<G4SurfaceProperty*>
of the properties created, accessible by the static method
GetSurfacePropertyTable() ,

	G4OpticalSurface : which specialises G4SurfaceProperty,
defining the enumerations G4OpticalSurfaceFinish and
G4OpticalSurfaceModel (this is presented in details in the user's
guide for application developer),

	G4MaterialPropertiesTable : which holds the various optical properties
as associations of a string key and a G4PhysicsOrderedFreeVector;
this key is used by the optical physics processes to get the
properties they need for the simulation.

Material Extension

Since Geant4 version 10.3, a material extension capability has been introduced. The
idea is to allow a material to get an arbitrary number of extensions,
freely defined, that specialized processes may consume for their physics
calculations. Examples of such extensions are crystal structures -for
channelling-, and molecular properties -for low energy processes-.

The G4Material class has been made abstract, introducing the virtual
method G4bool IsExtended() that responds "false" for a genuine
G4Material object. The class G4ExtendedMaterial class inherits from
G4Material, overriding IsExtended(), to make it responding
"true". This method is checked at tracking time by the specialised
processes. The constructors of G4ExtendedMaterial have the same
signatures than the ones of G4Material.

The extended properties (e.g.: crystal structure, molecular properties)
are to be implemented in concrete classes inheriting from the interface
class G4VMaterialExtension. A G4ExtendedMaterial object can hold
an arbitrary number of G4VMaterialExtension pointers, managed by a
hash map. Each G4VMaterialExtension concrete class object is
associated to a string key, that is used to retrieve the object.

The diagram showing the relation between these three classes is shown in
Fig. 23.

[image: ../../_images/materials_matExtensionClasses.png]

Fig. 23 Classes involved in material extension capability.

The first concrete implementation of G4VMaterialExtension is
G4CrystalExtension.

Footnotes

Global Usage

Design Philosophy

The global category covers the system of units, constants, numerics and
random number handling. It can be considered a place-holder for "general
purpose" classes used by all categories defined in Geant4. No
back-dependencies to other Geant4 categories affect the "global" domain.
There are direct dependencies of the global category on external
packages, such as CLHEP, STL, and miscellaneous system utilities.

Within the management sub-category are "utility" classes generally
used within the Geant4 kernel. They are, for the most part, uncorrelated
with one another and include:

	G4Allocator

	G4FastVector

	G4ReferenceCountedHandle

	G4PhysicsVector, G4LPhysicsFreeVector, G4PhysicsOrderedFreeVector

	G4Timer

	G4UserLimits

	G4UnitsTable

A general description of these classes is given in section 3.2 of the
Geant4 User's Guide for Application Developers.

The module includes wrappers to most CLHEP classes used in Geant4, and
tools for memory management (G4Cache, G4AutoDelete) and for
threading (G4AutoLock, G4Threading, G4ThreadLocalSingleton,
G4TWorkspacePool). It also provides specialised fast implementations
for some heavily used mathematical functions, like
G4Exp, G4Log, G4Pow.

In applications where it is necessary to generate random numbers
(normally from the same engine) in many different methods and parts of
the program, it is highly desirable not to rely on or require knowledge
of the global objects instantiated. By using static methods via a unique
generator, the randomness of a sequence of numbers is best assured.
Hence the use of a static generator has been introduced in the original
design of HEPRandom as a project requirement in Geant4.

Class Design

Analysis and design of the HEPRandom module have been achieved following
the Booch Object-Oriented methodology. Some of the original design
diagrams in Booch notation are reported below.
The figure is a general picture of the
static class diagram.

	HepRandomEngine - abstract class defining the interface for each
Random engine. Its pure virtual methods must be defined by its
subclasses representing the concrete Random engines.

	HepJamesRandom - class inheriting from HepRandomEngine and
defining a flat random number generator according to the algorithm
described in "F.James, Comp.Phys.Comm. 60 (1990) 329".

	DRand48Engine - class inheriting from HepRandomEngine and
defining a flat random number generator according to the drand48()
and srand48() system functions from the C standard library.

	RandEngine - class inheriting from HepRandomEngine and defining a
flat random number generator according to the rand() and srand()
system functions from the C standard library.

	RanluxEngine - class inheriting from HepRandomEngine and defining
a flat random number generator according to the algorithm described
in "F.James, Comp.Phys.Comm. 60 (1990) 329-344" and originally
implemented in FORTRAN 77 as part of the MATHLIB HEP library. It
provides 5 different "luxury" levels [0..4].

	RanecuEngine - class inheriting from HepRandomEngine and defining
a flat random number generator according to the algorithm RANECU
originally written in FORTRAN 77 as part of the MATHLIB HEP library.
It uses a table of seeds which provides uncorrelated couples of seed
values.

	MixMaxRng - class inheriting from HepRandomEngine and interfacing
the MixMax Matrix PseudoRandom Number Generator described in
J.Comput.Phys. 97, 573 (1991). This class is instantiated by default as
the default random engine.

	HepRandom - the main class collecting all the methods defining
the different random generators applied to HepRandomEngine. It is a
singleton class which all the distribution classes derive from. This
singleton is instantiated by default.

	RandFlat - distribution class for flat random number generation.
It also provides methods to fill an array of flat random values,
given its size or shoot bits.

	RandExponential - distribution class defining exponential random
number distribution, given a mean. It also provides a method to fill
an array of flat random values, given its size.

	RandGauss - distribution class defining Gauss random number
distribution, given a mean or specifying also a deviation. It also
provides a method to fill an array of flat random values, given its
size.

	RandBreitWigner - distribution class defining the Breit-Wigner
random number distribution. It also provides a method to fill an
array of flat random values, given its size.

	RandPoisson - distribution class defining Poisson random number
distribution, given a mean. It also provides a method to fill an
array of flat random values, given its size.

[image: ../../_images/classDgmRandom.jpg]

Fig. 24 HEPRandom module

For detailed documentation about the HEPRandom classes see the CLHEP
documentation <http://proj-clhep.web.cern.ch/proj-clhep/#docu>.

Information written in this manual is extracted from the original
manifesto distributed with the HEPRandom
package
<http://proj-clhep.web.cern.ch/proj-clhep/doc/CLHEP_1_7/UserGuide/Random/Random.html>`__.

HEPNumerics

The HEPNumerics module includes a set of classes which implement
numerical algorithms for general use in Geant4. The User's Guide for
Application Developers contains a description of each class. Most of the
algorithms were implemented using methods from the following books:

	B.H. Flowers, "An introduction to Numerical Methods In C++", Clarendon
Press, Oxford 1995.

	M. Abramowitz, I. Stegun, "Handbook of mathematical functions", DOVER
Publications INC, New York 1965; chapters 9, 10, and 22.

The HEPNumerics module provides general mathematical methods supporting
Geant4 Monte-Carlo simulation processes. Among these, there are methods
for function and array interpolations using known special functions,
class method integration solving polynomial equation (up to 4th order)
and some others.

Of particular interest is the templated class G4Integrator which
consists of methods allowing to integrate class methods. Since the type
whose method should be integrated is not known in advance,
G4Integrator uses templated signatures and pointers to functions in
its API. It provides both usual numerical methods like adaptive Gauss or
Simpson integration, and more sophisticated (faster and at the same
accurate) methods based on the orthogonal polynomials.

Among the different integration methods involving orthogonal polynomials
there are: Gauss-Legendre, Gauss-Chebyshev, Gauss-Hermite and
Gauss-Jacobi methods:

template <class T, class F>
G4double G4Integrator<T,F>::Legendre(T& typeT, F f, G4double a,
 G4double b, G4int nLegendre)
//
// The value nLegendre set the accuracy required, i.e the number of points
// where the function pFunction will be evaluated during integration.
// The function creates the arrays for abscissas and weights that used
// in Gauss-Legendre quadrature method.
// The values a and b are the limits of integration of the function f.
// nLegendre MUST BE EVEN !!!
// Returns the integral of the function f between a and b, by 2*fNumber point
// Gauss-Legendre integration: the function is evaluated exactly
// 2*fNumber times at interior points in the range of integration.
// Since the weights and abscissas are, in this case, symmetric around
// the midpoint of the range of integration, there are actually only
// fNumber distinct values of each.
// Convenient for using with some class object dataT

template <class T, class F>
G4double G4Integrator<T,F>::Legendre10(T& typeT, F f,G4double a,
 G4double b)
//
// Returns the integral of the function to be pointed by T::f between a and b,
// by ten point Gauss-Legendre integration: the function is evaluated exactly
// ten times at interior points in the range of integration. Since the weights
// and abscissas are, in this case, symmetric around the midpoint of the
// range of integration, there are actually only five distinct values of each
// Convenient for using with class object typeT. The method is very fast and accurate enough.
// Roots and weights are from Abramowitz M., Stegun I.A. 1964 , Handbook of Math... , p. 916

template <class T, class F>
G4double G4Integrator<T,F>::Legendre96(T& typeT, F f,G4double a,
 G4double b)
//
// Returns the integral of the function to be pointed by T::f between a and b,
// by 96 point Gauss-Legendre integration: the function is evaluated exactly
// ten Times at interior points in the range of integration. Since the weights
// and abscissas are, in this case, symmetric around the midpoint of the
// range of integration, there are actually only five distinct values of each
// Convenient for using with some class object typeT. The method is very accurate and fast enough.
// Roots and weights are from Abramowitz M., Stegun I.A. 1964 , Handbook of Math... , p. 919

template <class T, class F>
G4double G4Integrator<T,F>::Chebyshev(T& typeT, F f, G4double a,
 G4double b, G4int nChebyshev)
//
// Integrates function pointed by T::f from a to b by Gauss-Chebyshev
// quadrature method.
// Convenient for using with class object typeT

template <class T, class F>
G4double G4Integrator<T,F>::Laguerre(T& typeT, F f, G4double alpha,
 G4int nLaguerre)
//
// Integral from zero to infinity of std::pow(x,alpha)*std::exp(-x)*f(x).
// The value of nLaguerre sets the accuracy.
// The function creates arrays fAbscissa[0,..,nLaguerre-1] and
// fWeight[0,..,nLaguerre-1] .
// Convenient for using with class object 'typeT' and (typeT.*f) function
// (T::f)

template <class T, class F>
G4double G4Integrator<T,F>::Hermite(T& typeT, F f, G4int nHermite)
//
// Gauss-Hermite method for integration of std::exp(-x*x)*f(x)
// from minus infinity to plus infinity.

template <class T, class F>
G4double G4Integrator<T,F>::Jacobi(T& typeT, F f, G4double alpha,
 G4double beta, G4int nJacobi)
//
// Gauss-Jacobi method for integration of ((1-x)^alpha)*((1+x)^beta)*f(x)
// from minus unit to plus unit (-1,+1).

HEPGeometry

Documentation for the HEPGeometry module is provided in the CLHEP
documentation#1.

Footnotes

	#1

	http://proj-clhep.web.cern.ch/proj-clhep/

Design of Visualisation Category

Design Philosophy

The visualisation category consists of the classes required to display
detector geometry, particle trajectories, tracking steps, and hits. It
also provides visualisation drivers, which are interfaces to external
graphics systems.

A wide variety of user requirements went into the design of the
visualisation category, for example:

	very quick response in surveying successive events,

	high-quality output for presentation and documentation,

	flexible camera control for debugging detector geometry and physics,

	selection of visualisable objects,

	interactive picking of graphical objects for attribute editing or
feedback to the associated data,

	highlighting incorrect intersections of physical volumes,

	co-working with graphical user interfaces.

Because it is very difficult to respond to all of these requirements
with only one built-in visualiser, an abstract interface was developed
which supports several complementary graphics systems. Here the term
graphics system means either an application running as a process
independent of Geant4 or a graphics library to be compiled with Geant4.
A concrete implementation of the interface is called a visualisation
driver, which can use a graphics library directly, communicate with an
independent process via pipe or socket, or simply write an intermediate
file for a separate viewer.

The Graphics Interfaces

	G4VVisManager:
	All user code writes to the graphics systems
through this pure abstract interface. It contains Draw methods for
all the graphics primitives in the graphics_reps category
(G4Polyline, G4Circle, etc.), geometry objects (through their base
classes, G4VSolid, G4PhysicalVolume and G4LogicalVolume) and hits and
trajectories (through their base classes, G4VHit and G4VTrajectory).

Since this is an abstract interface, all user code must check that
there exists a concrete instantiation of it. A static method is
provided, so a typical user code fragment is:

G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();
if(pVVisManager) {
 pVVisManager->Draw(G4Circle...
 ...

Note that this allows the building an application without a concrete
implementation, for example for a batch job, even if some code, like
the above, is still included.

The concrete implementation of this interface is hereafter referred
to as the visualisation manager.

	G4VGraphicsScene:
	The visualisation manager must also provide a
concrete implementation of the subsidiary interface,
G4VGraphicsScene. It is only for use by the kernel and the modelling
category. It offers direct access to a "scene handler" through a
reference provided by the visualisation manager. It is described in
more detail in the section on extending the toolkit functionality.

The Geant4 distribution includes implementations of the above
interfaces, namely G4VisManager and G4VSceneHandler
respectively, and their associated classes. These define further
abstract base classes for visualisation drivers. Together they form the
|Geant4| Visualisation System. A variety of concrete visualisation
drivers are also included in the distribution. Details of how to
implement a visualisation driver are given in
Visualisation. Of course, it is always possible for a user
to implement his or her own concrete implementations of G4VVisManager
and G4VGraphicsScene replacing the Geant4 Visualisation System
altogether.

The Geant4 Visualisation System

The Geant4 Visualisation System consists of

	G4VisManager: An implementation of the G4VVisManager interface.
It manages multiple graphics systems and defines three more concepts
-- the scene (G4Scene), the scene handler (base class
G4VSceneHandler, itself a sub-class of G4VGraphicsScene) and the
viewer (base class G4VViewer) -- see below. G4VisManager is a
singleton and an abstract class, requiring the user to derive from it
a concrete visualisation manager (G4VisExecutive is provided -- see
below). Roles and structure of the visualisation manager are
described in Chapter 8 of the User's Guide for Application
Developers.

	G4VisExecutive: A concrete visualisation manager that implements
the virtual functions RegisterGraphicsSystems and
RegisterModelFactories. These functions must be in the users' domain,
since the graphics systems and models that are instantiated by them
are, in many cases, provided by the user (graphics libraries, etc.).
It is therefore implemented as a .hh-.icc combination that is
designed to be included in the users' code. Of course, the user may
write his or her own.

	G4Scene The scene is a list if models for physical volumes, axes,
hits, trajectories, etc. - see Modelling sub-category.
They are distinguished according to
their lifetime -- "run-duration" for physical volumes, etc.,
"end-of-event" for hits and trajectories, etc. The end-of-event
models are only to be used when the Geant4 state indicates the end of
event has been reached. The scene has an extent (G4VisExtent),
which is updated by the scene when a new model is added (each model
itself has an extent), and a "standard" target point; these are
used to define the standard view -- see below. In addition, the scene
keeps flags which indicate whether end-of-event objects should be
accumulated or refreshed for each event or run.

	G4VGraphicsSystem: This is an abstract base class for scene
handler and viewer factories. It is used by the visualisation manager
to create scene handlers and viewers on request.

	G4VSceneHandler: A sub-class of G4VGraphicsScene, itself an
abstract base class for specific scene handlers, whose job is to
convert the scene into graphics-system-specific code for the viewer.
For example, the scene handler may create a graphical database,
taking care to separate run-duration (persistent) and end-of-event
(transient) information (this is described further in
Dealing with transient objects

	G4VViewer: An abstract base class for specific viewers. Its job
is to create windows or files and identify where and how the final
view should be rendered. It has view parameters
(G4ViewParameters) which specify viewpoint direction, type of
rendering (wireframe or surface), etc. It is the view's
responsibility, noting the scene's extent and target point, to choose
a camera position and magnification that ensures that the scene is
automatically and comfortably rendered in the viewing window. This is
then the standard view, and any further operations requested by
the user - zoom, pan, etc. - are relative to this standard view. The
class G4ViewParameters has utility routines to assist this procedure;
it is strongly advised that toolkit developers writing a viewer
should study the G4ViewParameters class, whose header file contains
much useful information (also preserved in the Software Reference
Manual).

The viewer is messaged by the vis manager when the user issues
commands, such as /vis/viewer/refresh. This invokes methods such
as SetView, ClearView and DrawView. A detailed description of the
call sequences is given in sections
Important Command Actions to
What happens in ProcessScene?.

Note there is no restriction on the number or type of scene handlers or
viewers. There may be several scene handlers processing the same or
different scenes, each with several viewers (for example, the same scene
from differing viewpoints).

By defining a set of three C++ classes inheriting from the virtual base
classes - G4VGraphicsSystem, G4VSceneHandler and G4VViewer - an
arbitrary graphics system can easily be plugged in to Geant4. The
plugged-in graphics system is then available for visualising detector
simulations. Together, this set of three concrete classes is called a
"visualisation driver". The DAWN-File driver, for example, is the
interface to the Fukui Renderer DAWN, and is implemented by the
following set of classes:

	G4DAWNFILE : public G4VGraphicsSystem for creation of the scene
handlers and viewers

	G4DAWNFILESceneHandler : public G4VSceneHandler for modelling 3D
scenes

	G4DAWNFILEView : public G4VView for rendering 3D scenes

Several visualisation drivers are distributed with Geant4. They are
complementary to each other in many aspects. For details, see Chapter 8
of the User's Guide for Application Developers.

Modelling sub-category

	G4VModel
	a base class for visualisation models. A model is a
graphics-system-independent description of a Geant4 component.

The sub-category visualization/modeling defines how to model a 3D
scene for visualisation. The term "3D scene" indicates a set of
visualisable component objects put in a 3D world. A concrete class
inheriting from the abstract base class G4VModel defines a "model",
which describes how to visualise the corresponding component object
belonging to a 3D scene. G4ModelingParameters defines various
associated parameters.

For example, G4PhysicalVolumeModel knows how to visualise a physical
volume. It describes a physical volume and its daughters to any
desired depth. G4HitsModel knows how to visualise hits.
G4TrajectoriesModel knows how to visualise trajectories.

The main task of a model is to describe itself to a 3D scene by
giving a concrete implementation of the following virtual method of
G4VModel:

virtual void DescribeYourselfTo (G4VGraphicsScene&) = 0;

The argument class G4VGraphicsScene is a minimal abstract interface
of a 3D scene for the Geant4 kernel defined in the graphics_reps
category. Since G4VSceneHandler and its concrete descendants inherit
from G4VGraphicsScene, the method DescribeYourselfTo() can pass
information of a 3D scene to a visualisation driver.

It is easy for a toolkit developer of Geant4 to add a new kind of
visualisable component object. It is done by implementing a new class
inheriting from G4VModel.

	G4VTrajectoryModel
	an abstract base class for trajectory drawing models.

A trajectory model governs how an individual trajectory is drawn.
Concrete models inheriting from G4VTrajectoryModel must implement two
pure virtual functions:

virtual void Draw(const G4VTrajectory&, G4int i_mode = 0) const = 0;
virtual void Print(std::ostream& ostr) const = 0;

See for example G4TrajectoryDrawByParticleID.

	G4VModelFactory
	an abstract base class for factories creating
models and associated messengers.

It is not necessary to generate messengers for a trajectory model
that will be constructed and configured directly in compiled code. If
the user requires model creation and configuration features through
interactive commands, however, there must be a mechanism to generate
both models and their associated messengers. This is the role of
G4VModelFactory. Concrete factories inheriting from G4VModelFactory
are responsible for creating a concrete model and concrete
messengers. To help ensure a type safe messenger to model interaction
on the command line, the messengers should inherit from
G4VModelCommand.

Concrete factories must implement one pure virtual function:

virtual ModelAndMessengers
Create(const G4String& placement, const G4String& modelName) = 0;

where placement indicates which directory space the commands should
occupy. See for example G4TrajectoryDrawByParticleIDFactory.

View parameters

View parameters such as camera parameters, drawing styles
(wireframe/surface etc) are held by G4ViewParameters. Each viewer holds
a view parameters object which can be changed interactively and a
default object (for use in the /vis/viewer/reset command).

If a toolkit developer of Geant4 wants to add entries of view
parameters, he should add fields and methods to G4ViewParameters. Detailed
instructions are given in Visualisation under Extending Toolkit Functionality.

Visualisation Attributes

All drawable objects (should) have a method:

const G4VisAttributes* GetVisAttributes() const;

A drawable object might be:

	a "visible" (i.e., inheriting G4Visible), such as a polyhedron,
polyline, circle, etc. (note that text is a slightly special case -
see below) or

	a solid whose vis attributes are held in its logical volume.

Finding the applicable vis attributes

This is an issue for all scene handlers. The scene handler is where the
colour, style, auxiliary edge visibility, marker size, etc., of
individual drawable objects are needed.

Visibles

If the vis attributes pointer is zero, drivers should pick up the
default vis attributes from the viewer:

const G4VisAttributes* pVisAtts = visible.GetVisAttributes();
if (!pVisAtts)
 pVisAtts = fpViewer->GetViewParameters().GetDefaultVisAttributes();

where visible denotes any visible object (polyhedron, circle, etc.).

There is a utility function G4VViewer::GetApplicableVisAttributes which
does this, so an alternative is:

const G4VisAttributes* pVisAtts =
 fpViewer->GetApplicableVisAttributes(visible.GetVisAttributes());

Confusingly, there is a utility function G4VSceneHandler::GetColour
which also does this, so if it's only colour you need, the following
suffices:

const G4Colour& colour GetColour(visible);

but equally well:

const G4VisAttributes* pVisAtts =
 fpViewer->GetApplicableVisAttributes(visible.GetVisAttributes());
const G4Colour& colour pVisAtts->GetColour();

or even:

const G4VisAttributes* pVisAtts = visible.GetVisAttributes();
if (!pVisAtts)
 pVisAtts = fpViewer->GetViewParameters().GetDefaultVisAttributes();
const G4Colour& colour pVisAtts->GetColour();

Text

Text is a special case because it has its own default vis attributes:

const G4VisAttributes* pVisAtts = text.GetVisAttributes();
if (!pVisAtts)
 pVisAtts = fpViewer->GetViewParameters().GetDefaultTextVisAttributes();
const G4Colour& colour pVisAtts->GetColour();

and there is a utility function G4VSceneHandler::GetTextColour:

const G4Colour& colour GetTextColour(text);

Solids

For specific solids, the G4PhysicalVolumeModel that provides the solids
also provides, via PreAddSolid, a pointer to its vis attributes. If the
vis attributes pointer in the logical volume is zero, it provides a
pointer to the default vis attributes in the model, which in turn is
(currently) provided by the viewer's vis attributes (see
G4VSceneHandler::CreateModelingParameters). So the vis attributes
pointer is guaranteed to be pertinent.

If the concrete driver does not implement AddSolid for any particular
solid, the base class converts it to primitives (usually a G4Polyhedron)
and again, the vis attributes pointer is guaranteed.

Drawing style

The drawing style is normally determined by the view parameters but for
individual drawable objects it may be overridden by the forced drawing
style flags in the vis attributes. A utility function
G4ViewParameters::DrawingStyle G4VSceneHandler::GetDrawingStyle is
provided:

G4ViewParameters::DrawingStyle drawing_style = GetDrawingStyle(pVisAtts);

Auxiliary edges

Similarly, the visibility of auxiliary/soft edges is normally determined
by the view parameters but may be overridden by the forced auxiliary
edge visible flag in the vis attributes. Again, a utility function
G4VSceneHandler::GetAuxEdgeVisible is provided:

G4bool isAuxEdgeVisible = GetAuxEdgeVisible (pVisAtts);

LineSegmentsPerCircle

Also, the precision of rendering curved edges in the polyhedral
representation of volumes is normally determined by the view parameters
but may be overridden by a forced attribute. A utility function that
respects this, G4VSceneHandler::GetNoOfSides, is provided. For example:

G4Polyhedron::SetNumberOfRotationSteps (GetNoOfSides (pVisAttribs));

Marker size

These have nothing to do with vis attributes; they are an extra property
of markers, i.e., objects that inherit G4VMarker (circles, squares,
text, etc.). However, the algorithm for the actual size is quite
complicated and a utility function G4VSceneHandler::GetMarkerSize is
provided:

MarkerSizeType sizeType;
G4double size = GetMarkerSize (text, sizeType);

sizeType is world or screen, signifying that the size is in world
coordinates or screen coordinates respectively.

Footnotes

Intercoms

Design Philosophy

The intercoms category implements an expandable command interpreter
which is the key mechanism in Geant4 for realising customizable and
state-dependent user interactions with all categories without being
perturbed by the dependencies among classes. The capturing of commands
is handled by a C++ abstract class G4UIsession. Various concrete
implementations of the command capturer are contained in the [user]
interfaces category. Taking into account the rapid evolution of
graphical user interface (GUI) technology and consequent dependence on
external facilities, plural and extensible GUIs are offered.

Programmers need only know how to register the commands and parameters
appropriate to their problem domain; no knowledge of GUI programming is
required to allow an application to use them through one of the
available GUIs.

The intercoms category also provides the virtual base classes

	G4VVisManager,

	G4VGraphicsScene, and

	G4VGlobalFastSimulationManager.

Class Design

	G4UISession -

	G4UIBatch -

	G4UICommand -

	G4UIparameter -

	G4UImessenger -

	G4UIExecutive: A concrete interface manager. It will register the UI selected by
the environment variable set. It will take first by default the
following order : G4UI_USE_QT, G4UI_USE_XM, G4UI_USE_WIN32,
G4UI_USE_TCSH, Terminal

The object-oriented design of the 'user interface' related classes is
shown in the class diagram Fig. 25.
The diagram is described in the Booch notation.

[image: ../../_images/classDgmUserInterface.jpg]

Fig. 25 Overview of intercom classes

Footnotes

Parallelism in Geant4: multi-threading capabilities

Event level parallelism

Geant4 event-level parallelism is based on a master-worker model in
which a set of threads (the workers) are spawned and are responsible
for the simulation of events, while the steering and control of the
simulation is given to an additional entity (the master).

Multi-threading functionalities are implemented with new classes or
modifications of existing classes in the run category:

	The new run-manager class G4MTRunManager (that inherits from
G4RunManager) implements the master model. It uses the mandatory class
G4MTRunManagerKernel, a multi-threaded equivalent of
G4RunManagerKernel

	The new run-manager class G4WorkerRunManager (that inherits from
G4RunManager) implements the worker model. It uses the mandatory class
G4WorkerRunManagerKernel, the worker equivalent of
G4RunManagerKernel

	The new user-initialisation class G4VUserActionInitialization is
responsible for the instantiating of thread-local user actions

	The new user-initialisation class G4UserWorkerInitialization
is responsible for the initialisation of worker threads

Additional information on Geant4 multi-threading model can be found in
the section General Design.

In this chapter, after a brief reminder of basic design choices, we will
concentrate on aspects that are important for kernel developers,
particularly the most critical aspects for multi-threading in Geant4:
memory handling, split-classes and thread-local storage. In the
following it is assumed that the user is already familiar with the
general aspects of multi-threading. The section Additional material
provides more information on this topic.

General Design

Geant4 Version 10.0 introduces parallelism at the event level: events
are tracked concurrently by independent threads. The parallelism model
is master-worker in which one or more threads are responsible of
performing the simulation, while a separate control flow controls and
steers the work. A diagram of the general overview of a multi-threaded
Geant4 application is shown here:

[image: General schema]

Fig. 26 Simplified schema of the master-worker model employed in Geant4

The user interacts with the master which is responsible for creating and
controlling worker threads. Before the simulation is started per-event
seeds are generated by the master. This operation guarantees
reproducibility. Once threads are spawned and configured, each worker is
responsible for creating a new G4Run and for simulating a subset of
the events. At the end of the run the results from each run are merged
into the global run. Details on how to interact with a multi-threaded
simulation are discussed in the Guide for Application Developers.

Geant4 parallelization makes use of the POSIX standard. The use of this
standard in Geant4 guarantees maximum portability between systems and
integration with advanced parallelization frameworks (for example we
have verified that this model co-works with TBB and MPI).

To effectively reduce the memory consumption in a multi-threaded
application, workers share instances of objects that consume the
majority of memory (geometry and physics tables); workers own
thread-private instances of the other classes (e.g. SensitiveDetectors,
hits, etc). This choice allowed the design of a lock-free code (i.e. no
use of mutex during the event loop), which guarantees maximum
scalability (cfr: Euro-Par2010, Part II LNCS6272, pp.287-303). Thread
safety is obtained via Thread Local Storage.

Similar to the sequential version of Geant4, master and workers are
represented by instances of classes inheriting from G4RunManager:
the G4MTRunManager class represents the master model, while
G4WorkerRunManager instances represent worker models. The user is
responsible for instantiating a single G4MTRunManager (or derived
user-class) instance. This class will instantiate and control one or
more G4WorkerRunManager instances. Users should never instantiate
directly an instance of the G4WorkerRunManager class.

A simplified class-diagram of the relevant classes for multi-threading
and their relationship is shown here:

[image: MasterWorker]

Fig. 27 Relevant classes and their interaction for multi-threaded applications

As in sequential Geant4 users interact with the Geant4 kernel via user
initialisations and user actions. User initialisations
(G4VUserDetectorConstruction, GVUserPhysicsList and the new
G4VUserActionInitializtion) instances are shared among all threads
(as such they are registered to the G4MTRunManager instance); while
user actions (G4VUserPrimaryGeneratorAction, G4UserRunAction,
G4UserSteppingAction and G4UserTrackingAction) are not shared
and a separate instance exists for each thread. Since the master does
not perform simulation of events user actions do not have functions for
G4MTRunManager and should not be assigned to it. G4RunAction is
the exception to this rule since it can be attached to the master
G4MTRunManager to allow for merging of partial results produced by
workers.

Memory handling in Geant4 Version 10.0

Introduction

In Geant4 we distinguish two broad types of classes: ones whose
instances are separate for each thread (such as a physics process, which
has a state), and ones whose instances are shared between threads (e.g.
an element G4Element which holds constant data).

A few cases classes exist which have mixed behaviour - part of their
state is constant, and part is per-worker. A simple example of this is a
particle definition, such as G4Electron, which holds both data
(which is constant) and a pointer to the G4ProcessManager object for
electrons - which must be different for each worker (thread).

We handle these 'split' classes specially, to enable data members and
methods which correspond to the per-thread state to give a different
result on each worker thread. The implementation of this requires an
array for each worker (thread) and an additional indirection - which
imposes a cost each time the method is called. However this overhead is
small and has been measured to be about 1%. In this section we will
discuss the details of how we achieve thread-safety for different
use-cases. The information contained here is of particular relevance for
toolkit developers that need to adapt code to multi-threading to
increase performances (typically to reduce the memory footprint of an
application sharing between threads' memory consuming objects). It is
however of general interest to understand some of the more delicate
aspects of multi-threading.

Thread safety and sharing of objects

To better understand how memory is handled and what are the issues
introduced by multi-threading it is easier to proceed with a simplified
example.

Let us consider the simplest possible class G4Class that consists of
a single data member:

class G4Class {
 [static] G4double fValue; //static keyword is optional
};

Our goal is to transform the code of G4Class to make it thread-safe.
A class (or better, a method of a class) is thread-safe if more than one
thread can simultaneously operate on the class data member or its
methods without interfering with each other in an unpredictable way. For
example if two threads concurrently write and read the value of the data
field fValue and this data field is shared among threads, the two
threads can interfere with each other if no special code to synchronise
the thread is added. This condition is called data-race and is
particularly dangerous and difficult to debug.

A classical way to solve the data-race problem is to protect the
critical section of the code and the concurrent access to a shared
memory location using a lock or a mutex (see section
Threading model utilities and functions).
However this technique can reduce overall performance because only one
thread at a time is allowed to be executed. It is important to reduce to
a minimum the use of locks and mutexes, especially in the event loop. In
Geant4 we have achieved thread-safety via the use of thread local
storage. This allows for virtually lock-free code at the price of an
increased memory footprint and a small CPU penalty. Explanations of
thread-local storage are provided by several external resources. For a
very simple introduction, but adequate for our discussion, web resources
give sufficient detail (e.g.
wikipedia#1).

Before going into the details of how to use the thread-local storage
mechanism we need to introduce some terminology.

We define an instance of a variable to be thread-local (or
thread-private) if each thread owns a copy of the variable. A
thread-shared variable, on the contrary, is an instance of a variable
that is shared among the threads (i.e. all threads have access to the
same memory location holding the value of the variable). If we need to
share the same memory location containing the value of fValue between
several instances of G4Class we call the data field
instance-shared otherwise (the majority of cases) it is
instance-local. These definitions are an over-simplification that does
not take into account pointers and sharing/ownership of the pointee,
however the issues that we will discuss in the following can be extended
to the case of pointers and the (shared) pointee.

It is clear that, for the case of thread-shared variables, all threads
need synchronisation to avoid data-race conditions (it is worth
recalling that there are no race conditions if the variable is accessed
only to be read, for example in the case that the variable is marked as
const.

One or more instances of G4Class can exist at the same time in our
application. These instances can be thread-local (e.g. G4VProcess)
or thread-shared (e.g. G4LogicalVolume). In addition the class data
field fValue can be by itself thread-local or thread-shared. The
actions to be taken to transform the code depend on three key aspects:

	Do we need to make the instance(s) of
G4Class, thread-local or thread-shared ?

	Do we need to make the data field fValue , thread-local or
thread-shared ?

	In case more than one instance of G4Class exits at the same
time, do we need fValue to be instance-local or
instance-shared?

This gives rise to 8 different possible combinations, summarised in the
following figures, each one discussed in detail in the following.

[image: split classes]

Fig. 28 Four of the eight possible scenarios for sharing of objects

[image: split classes]

Fig. 29 Four of the eight possible scenarios for sharing of objects

Case A: thread-local class instance(s), thread-shared and instance-shared data field

In this case each thread has its own instance(s) of type G4Class. We
need to share fValue both among threads and among instances. As for a
sequential application, we can simply add the static keyword to the
declaration of fValue. This technique is common in Geant4 but has the
disadvantage that the resulting code is thread-unsafe (unless locks are
used). Trying to add const or modify its value (with the use of a
lock) only outside of the event loop is
the simplest and best solution:

class G4Class {
 static const G4double fValue;
};

Case B: thread-local class instance(s), thread-local and instance-shared data field.

This scenario is also common in Geant4: we need to share a variable
(e.g. a data table) between instances of the same class. However it is
impractical or it would lead to incorrect results if we share among
threads fValue (i.e. the penalty due to the need of locks is high or
the data field holds a event-dependent information). To make the code
thread-safe we mark the data field thread-local via the keyword
G4ThreadLocal:

#include "G4Types.hh"
class G4Class {
 static G4ThreadLocal G4double fValue;
};

It should be noted that only simple data types can be declared
G4ThreadLocal. More information and the procedures to make an object
instance thread-safe via thread-local-storage are explained in this
web-page#2.

Case C: thread-local class instance(s), thread-shared and instance-local data field

One possible use-case is the need to reduce the application memory
footprint, providing a component to the thread-local instances of
G4Class that is shared among threads (e.g. a large cross-section
data table that is different for each instance). Since this scenario
strongly depends on the implementation details it is not possible to
define a common strategy that guarantees thread-safety. The best option
is to try to make this shared component const.

Case D: thread-local class instance(s), thread-local and instance-local data field

This case is the simplest; nothing has to be changed in the original
code.

Case E: thread-shared class instance(s), thread-shared and instance-shared data field

With respect to thread-safety this case is equivalent to Case A, and the
same recommendations and comments hold.

Case F: thread-shared class instance(s), thread-local and instance-shared data field

Concerning thread-safety this case is equivalent to Case B, and the same
recommendations and comments hold.

Case G: thread-shared class instance(s), thread-shared and instance-shared data field

Since the class instances are shared among threads the data fields are
automatically thread-shared. No action is needed, however access to the
data fields is in general thread unsafe, and the same comments and
recommendations for Case A are valid.

Case H: thread-shared class instance(s), thread-local and instance-local data field

This is the most complex case and it is relatively common in Geant4
Version 10.0. For example G4ParticleDefinition instances are shared
among the threads, but the G4ProcessManager pointer data field needs
to be thread- and instance-local. To obtain thread-safe code two
possible solutions exist:

	Use the split-class mechanism. This requires some deep understanding
of Geant4 multi-threading and coordination with the kernel
developers. Split-classes result in thread-safe code with good CPU
performance, however they also require modification in other aspects
of the kernel category (in particular the run category). The idea
behind the split-class mechanism is that each thread-shared instance
of G4Class initialises the thread-local data fields by
copying the initial status from the equivalent instance of the master, which
is guaranteed to be fully configured. Additional details on split
classes are available in a dedicated section.
An important side effect of the split-class mechanism is that exactly
the same number of instances of G4Class must exist in each thread
(e.g. the full set of G4Particles owned by the master is shared by
threads. If a new particle is created, this has to be shared by all
threads).

	If performance is not a concern a simpler solution is available. This
is a simplified version of the split-class mechanism that does not
copy the initial status of the thread-local data field from the
master thread. A typical example is a cache
variable that reduces CPU usage, storing in memory the value of a CPU
intensive calculation for several events. In such a case the G4Cache
utility class can be employed (see G4Cache).

Details on the split classes mechanism

We describe here the split-class mechanism, central to Geant4
multi-threading, by developing a thread-safe split-class starting from
our simplified example of G4Class. It will be clear that this technique
allows for minimal changes of the public API of the classes and thus is
very suitable for making thread-safe code without breaking backward
compatibility.

To better describe the changes we introduce a setter and getter methods
in the sequential version of our class (e.g. before migration to
multi-threading):

class G4Class
{
 private:
 G4double fValue;
 public:
 G4Class() { }
 void SetMyData(G4double aValue) { fValue = aValue; }
 G4double GetMyData() const { return fValue; }
};

Instances of this class will be shared among threads (because they are
memory-consuming objects) and we want to transform this class into a
split-class.

As a first step we add to the declaration of fValue the TLS keyword
G4ThreadLocal (in a POSIX system, this is a typedef to
__thread). Unfortunately there are several constraints on what can
be specified as TLS. In particular the data member has to be declared
static (or be a global variable):

#include "tls.hh"
class G4Class
{
 private:
 static G4ThreadLocal G4double fValue;
 public:
 G4Class() { }
 void SetMyData(G4double aValue) { fValue = aValue; }
 G4double GetMyData() const { return fValue; }
};
G4ThreadLocal G4double G4Class::fValue = -1;

The problem occurs if we need more than one instance of type G4Class
with an instance-local different value of fValue. How can this
behaviour be obtained now that the we have declared the data member as
static? The method used to solve this problem is called the split
class mechanism. The idea is to collect all thread-local data fields
into a separate new class, instances of which (one per original instance
of G4Class) are organised in an array. This array is accessed via an
index representing a unique identifier of a given class instance.

We can modify the code as follows:

class G4ClassData {
public:
 G4double fValue;
 void initialize() {
 fValue = -1;
 }
};

typedef G4Splitter>G4ClassData< G4ClassManager;
typedef G4ClassManager G4ClassSubInstanceManager;

#define G4MT_fValue ((subInstanceManager.offset[gClassInstanceId]).fValue)
class G4Class {
private:
 G4int gClassInstanceId;
 static G4ClassSubInstanceManager subInstanceManager;
public:
 G4Class()
 {
 gClassInstanceId = subInstanceManager.CreateSubInstance();
 }
 void SetMyData(G4double aValue) { G4MT_fValue = aValue; }
 G4double GetMyData() const { return G4MT_fValue; }
};

G4ClassSubInstanceManager G4Class::subInstanceManager;
template >class G4ClassData< G4ThreadLocal G4int G4Splitter>G4ClassData<::workertotalspace = 0;
template >class G4ClassData< G4ThreadLocal G4int G4Splitter>G4ClassData<::offset = 0;

As one can see, the use of the value of fValue variable is very
similar to how we use it in the original sequential mode, all the
handling of the TLS is done in the template class G4Splitter that
can be implemented as:

template <class T>
class G4Splitter
{
 private:
 G4int totalobj;
 public:
 static G4ThreadLocal G4int workertotalspace;
 static G4ThreadLocal T* offset;
 public:
 G4Splitter() : totalobj(0) {}
 G4int CreateSubInstance()
 {
 totalobj++;
 if (totalobj > workertotalspace) { NewSubInstances(); }
 return (totalobj-1);
 }
 void NewSubInstances()
 {
 if (workertotalspace >=totalobj) { return; }
 G4int originaltotalspace = workertotalspace;
 workertotalspace = totalobj + 512;
 offset = (T*) realloc(offset , workertotalspace * sizeof(T));
 if (offset == 0)
 {
 G4Exception("G4Splitter::NewSubInstances","OutOfMemory",FatalException,
 "Cannot malloc space!");
 }
 for (G4int i = originaltotalspace; i< workertotalspace ; i++)
 {
 offset[i].initialize();
 }
 }
 void FreeWorker()
 {
 if (offset == 0) { return; }
 delete offset;
 }
};

Let's consider a function that can be called concurrently by more than
one thread:

#include "G4Class.hh"
//Variables at global scope
G4Class a;
G4Class b;

void foo()
{
 a.SetMyData(0.1); //First instance
 b.SetMyData(0.2); //Second instance
 G4cout << a.GetMyData()<< " "<< b.GetMyData() << G4endl;
}

We expect that each thread will write on the screen: "0.1 0.2"

When we declare the variable a, the static object subInstanceManager
in memory has the state:

totalobj = 0
TLS workertotalspace = 0
TLS offset = NULL

The constructor of G4Class calls CreateSubInstance, and since at this
point totalobj equals 1, G4Splitter::NewSubInstances() is called.
This will create a buffer of 512 pointers of type G4ClassData, each
of which is initialised (via G4ClassData::initialize()) to the value
-1. Finally, G4Splitter::CreateSubInstance() returns 0 and
a.gClassInstanceId equals 0. When a.SetMyData(0.1) is called, the
call is equivalent to:

subInstanceManager.offset[0].fValue = 0.1;

When now we declare the instance b the procedure is repeated, except
that, since totalobj now equals 1 and workertotalspace is 512, there
is no need to call G4Splitter::NewSubInstances() and we use the next
available array position in offset. Only if we create more than 512
instances of G4Class is the memory array reallocated with more space
for the new G4ClassData instances.

Since offset and workertotalspace are marked G4ThreadLocal this
mechanism allows each thread to have its own copy of fValue. The
function foo() can be called from different threads and they will use
the thread-shared a and b to access a thread-local fValue data
field. No data-race condition occurs and there is no need for mutexes
and locks.

An additional complication is that if the initialisation of the
thread-local part is not trivial and we want to copy some values from
the corresponding values of the master thread (in our example, how is
fValue to be initialised to a value that depends on the run
condition?). The initial status of the thread-local data field must be
initialised, for each worker, in a controlled way. The run category
classes must be modified to prepare the TLS space of each thread before
any work is performed.

The following diagram shows the chain of calls in
G4ParticleDefinition when a thread needs to access a process
pointer:

[image: split classes]

Fig. 30 Simplified view of the split-class mechanism

Note

A note on content of split classes. Data fields of the split class
should have a size that is known at compile time. Thus objects like
std::vector cannot be contained in split class data, but pointers to
these object can.

List of split-classes

In Geant4 Version 10.0 the following are split-classes:

	For geometry related split classes the class G4GeomSplitter
implements the split-class mechanism. These are the geometry-related
split-classes:

	G4LogicalVolume

	G4PhysicalVolume

	G4PVReplica

	G4Region

	G4PolyconeSide

	G4PolyhedraSide

	For Physics related split-classes the classes G4PDefSplitter
and G4VUPLSplitter
implement the split-class mechanism. These are the physics-related
split-classes:

	G4ParticleDefinition

	G4VUserPhysicsList

	G4VModularPhysicsList

	G4VPhysicsConstructor

Explicit memory handling

In the following, some utility classes and functions to help memory
handling are discussed. Before going into detail it should be noted that
all of these utilities have a (small) CPU and memory performance
penalty; they should be used with caution and only if other simpler
methods are not possible. In some cases limitations are present.

The template class G4Cache

In many cases the full functionality of split-classes is not needed and
what we really want are independent thread-local and instance-local data
fields in thread-shared instances of G4Class. A concrete example would
be a class representing a cross-section that is made shared because of
its memory footprint. It requires a data field to act as a cache to
store the value of a CPU intensive calculation. Since different threads
share this instance we need to transform the code in a manner similar to
what we do for the split-class mechanism. The helper class G4Cache
can be used for this purpose (note that the complication of the initial
value of the thread-local data field is not present in this case).

G4Cache is a template class that implements a light-weight split-classes
mechanism. Being a template it allows for storing any user-defined type.
The public API of this class is very simple and it provides two methods:

T& G4Cache<T>::Get() const;
void G4Cache<T>::Put(const T& val) const;

to access a thread-local instance of the cached object. For example:

#include "G4Cache.hh"
class G4Class {
 G4Cache<G4double> fValue;
 void foo() {
 // Store a thread-local value
 G4double val = someHeavyCalc();
 fValue.Put(val);
 }
 void bar() {
 //Get a thread-local value:
 G4double local = fValue.Get();
 }
};

Since Get returns a reference to the cached object is possible to
avoid the use of Put to update the cache:

void G4Class::bar() {
 //Get a reference to the thread-local value:
 G4double &local = fValue.Get();
 // Use local as in the original sequential code, cache is updated, without the need to use Put
 local++;
}

In case the cache holds an instance of an object it is possible to
implement lazy initialisation, as in the following example:

#include "G4Cache.hh"
class G4Class {
 G4Cache<G4Something*> fValue;
 void bar() {
 //Get a thread-local value:
 G4Something* local = fValue.Get();
 if (local == 0) {
 local = new G4Something(...);
 //warning this may cause a memory leak. Use of G4AutoDelete can help, see later
 }
 }
};

Since the use of G4Cache implies some CPU penalty, it is good practice
to try to minimise its use. For example, do not use a single G4Cache for
several data fields; instead use a helper structure as the template
parameter for G4Cache:

class G4Class {
 struct {
 G4double fValue1;
 G4Something* fValue2;
 } ToBeCached_t;
 G4Cache<ToBeCached_t> fCache;
};

Two specialised versions of G4Cache exist that implement the semantics
of std::vector and std::map

	G4VectorCache<T> implements a thread-local
std::vector<T> with methods
Push_back(...), operator[], Begin(), End(),
Clear(), Size() and Pop_back()

	G4MapCache<K,V> implements a thread-local
std::map<K,V> with methods Insert(...),
Begin(), End(), Find(…), Size(), Get(…), Erase(…),
operator[] and introduces the method Has(...)

A detailed example of the use of these cache classes is discussed in the
unit test source/global/management/test/testG4Cache.cc.

G4AutoDelete namespace

During the discussion of G4Cache we have shown the example of storing a
pointer to a dynamically created object. A common problem is to
correctly delete this object at the end of its life-cycle. Since the
G4Class instance is thread-shared, it is not possible to delete the
cached object in the destructor of G4Class because it is called by the
master and the thread-local instances of the cached object will not be
deleted. In some cases, to solve this problem, it is possible to use a
helper introduced in the namespace G4AutoDelete. A simplified
garbage collection mechanism without reference counting is implemented:

#include "G4AutoDelete.hh"
void G4Class::bar() {
 //Get a thread-local value:
 G4Something* local = fValue.Get();
 if (local == 0) {
 local = new G4Something(...);
 G4AutoDelete::Register(local); //All thread instances will be delete automatically
 }
}

This technique will delete all instances of the registered objects at
the end of the program, after the main function has returned (if they
were declared static).

This method has several limitations:

	Registered objects will be deleted only at the end of the program

	The order in which objects of different type will be deleted is not
specified

	Once an object is registered it cannot be deleted anymore
explicitly by user

	The objects that are registered with this method cannot contain
data filed marked G4ThreadLocal and cannot be a split-classes

	Registered object cannot make use of
G4Allocator functionalities

	These restrictions apply to all data members for which the class
owns property

In addition, since the objects will be deleted in a non-specified order
after the main program exit, it is recommended to provide a very simple
destructor that does not depend on other objects (in particular should
not call any kernel functionality).

Thread Private singleton

In Geant4 the singleton pattern is used in several cases. The majority
of the managers are implemented via the singleton pattern, the simplest
of which is:

class G4Singleton {
public:
 G4Singleton* GetInstance() {
 static G4Singleton anInstance;
 return&anInstance;
 }
};

With multi-threading, many managers and singletons are thread-local. For
this reason they have been transformed to:

class G4Singleton {
private:
 static G4ThreadLocal* instance;
public:
 G4Singleton* GetInstance() {
 if (instance == 0) instance = new G4Singleton;
 return instance;
 }
};

This causes a memory leak: it is not possible to delete thread-local
instances of the singletons. To solve this problem the class
G4ThreadLocalSingleton has been added to the toolkit. This template
class has a single public method T* G4ThreadLocalSingleton<T>::Instance()
that returns a pointer to a
thread-local instance of T. The thread-local instances of T will be
deleted, as in the case of G4Cache, at the end of the program.

The example code can be transformed to:

#include "G4ThreadLocalSingleton.hh"
class G4Singleton {
 friend class G4ThreadLocalSingleton<G4Singleton>;
public:
 G4Singleton* GetInstance() {
 static G4ThreadLocalSingleton<G4Singleton> theInstance;
 return theInstance.Instance();
 }
};

Threading model utilities and functions

Geant4 parallelism is based on POSIX standards and in particular on the
pthreads library. However all functionalities have been wrapped
around Geant4 specific names. This allows the inclusion of the WIN32
threading model. In the following, the main functionalities available in
the global/management category are discussed.

Types and functions related to the use of threads

G4Thread defines the type for threads (POSIX pthread_t). The
types G4ThreadFunReturnType and G4ThreadFunArgType define
respectively the return value and the argument type for a function
executed in a thread. Use G4THREADCREATE and G4THREADJOIN macros
to respectively create and join a thread. G4Pid_t is the type for
the PID of a thread.

Example:

#include "G4Threading.hh"

//Define a thread-function using G4 types
G4ThreadFunReturnType myfunc(G4ThreadFunArgType val) {
 double value = *(double*)val;
 MESSAGE("value is:"<<value);
 return /*(G4ThreadFunReturnType)*/NULL;
}

//Example: spawn 10 threads that execute myfunc
int main(int,char**) {
 MESSAGE("Starting program ");
 int nthreads = 10;
 G4Thread* tid = new G4Thread[nthreads];
 double *valss = new double[nthreads];
 for (int idx = 0 ; idx < nthreads ; ++idx) {
 valss[idx] = (double)idx;
 G4THREADCREATE(&(tid[idx]) , myfunc,&(valss[idx]));
 }
 for (int idx = 0 ; idx < nthreads ; ++idx) {
 G4THREADJOIN((tid[idx]));
 }
 MESSAGE("Program ended ");
 return 0;
}

Types and functions related to the use of mutexes and conditions

G4Mutex is the type for mutexes in Geant4 (POSIX
pthread_mutex_t). The G4MUTEX_INITIALIZER and G4MUTEXINIT
macros are used to initialise a mutex. Use G4MUTEXLOCK and
G4MUTEXUNLOCK functions to lock/unlock a mutex. The G4AutoLock
class helps the locking/unlocking of a mutex and should be always be
used instead of G4MUTEXLOCK/UNLOCK.

Example:

#include "G4Threading.hh"
#include "G4AutoLock.hh"

//Create a global mutex
G4Mutex mutex = G4MUTEX_INITIALIZER;
//Alternatively, call in the main function G4MUTEXINIT(mutex);

//A shared resource (i.e. manipulated by all threads)
G4int aValue = 1;

G4ThreadFunReturnType myfunc(G4ThreadFunArgType) {
 //Explicit lock/unlock
 G4MUTEXLOCK(&mutex);
 ++aValue;
 G4MUTEXUNLOCK(&mutex);
 //The following should be used instead of the previous because it guarantees automatic
 //unlock of mutex.
 //When variable l goes out of scope, G4MUTEXUNLOCK is automatically called
 G4AutoLock l(&mutex);
 --aValue;
 //Explicit lock/unlock. Note that lock/unlock is only tried if mutex is already locked/unlock
 l.lock();
 l.lock();//No problem here
 ++aValue;
 l.unlock();
 l.lock();
 --aValue;
 return /*(G4ThreadFunReturnType)*/NULL;
}

A complete example of the usage of these functionalities is discussed in
the unit test source/global/management/test/ThreadingTest.cc.

Conditions are also available via the G4Condition type, the
G4CONDITION_INITIALIZER macro and the two functions
G4CONDITIONWAIT and G4CONDITIONBROADCAST. The use of conditions
allows the barrier mechanism (e.g. synchronisation point for threads) to
be implemented. A detailed example on the use of conditions and how to
implement correctly a barrier is discussed in G4MTRunManager code
(at the end of file source/run/src/G4MTRunManager.cc). In general
there should be no need for kernel classes (with the exception of run
category) to use conditions since threads are considered independent and
do not need to communicate between them.

Random Number Generation Seeding in MT

The seeding strategy in MT mode is based on the requirement to guarantee
full reproducibility. This means that each even has to be preassigned a
seed that allows the simulation of that particular event to be run
independently on the job configuration (e.g. number of threads).

Before worker threads are spawned, the master thread pre-generates
random number seeds that are coupled to the event number. For efficiency
reasons the seeds are generated for a block of events (the event modulo,
see UI command /run/eventModulo). In addition the user can derive from
the G4MTRunManager class and implement their own strategy
re-implementing the function, called by the master thread during run
initialisation: virtual G4bool G4MTRunManager::InitializeSeeds(G4int)
{ return false; }.

In this function the user should do:

G4bool MyRunManager::InitializeSeeds(G4int nEvents) {
 //Generate as desired seeds for the run w/ nEvents
 //...
 auto helper = G4RNGHelper::GetInstance();
 helper->Clear();//To remove any seed from previous run
 //Fill seeds one by one, use:
 helper->AddOneSeed(seed);
 //Or fill many:
 assert(size(seedsArray) == numEvents*number_seeds_per_event);
 helper->Fill(seedsArray , numEvents , numEvents , number_seeds_per_event);
 //Next line is very important, to avoid retriggers of fills from kernel with default strategy/
 //Communicate how many events are ready
 G4MTRunManager::nSeedsFilled = numEvents;
 return true;
}

It is important to note that the MIXMAX random number generator
(available since version 10.3) is the recommended engine for MT jobs
since it guarantees divergent number histories even for consecutive
random number seeds.

Additional material

In this chapter we discussed in detail what are probably the most
critical aspects of multi-threading capabilities in Geant4. Additional
material can be found in online resources. The main entry point is the
Geant4 multi-threading task-force twiki
page#3.
The Application Developers Guide contains general information
regarding multi-threading that is also relevant for Toolkit Developers.

A beginner's guide to multi-threading targeted to Geant4 developers has
been presented during the 18th Collaboration Meeting:
agenda#4

For additional information consult this
page#5
and this
page#6

Several contributions at the 18th Collaboration
Meeting#7 discuss multi-threading:

	Plenary Session 3 - Geant4 version 10 (part 1):
agenda#8

	Hadronics issues related to MT:
agenda#9

	Developments for multi-threading: work-spaces:
contribution#10

	Status of the planned developments: coding guidelines, MT migration,
g4tools migration, code review:
contribution#11

	G4MT CP on MIC Architecture:
contribution#12

Finally, a few articles and proceedings have been prepared:

	X. Dong et al., Creating and Improving Multi-Threaded Geant4, Journal
of Physics: Conference Series 396, no. 5, p. 052029.

	X. Dong et al., Multithreaded Geant4: Semi-automatic Transformation
into Scalable Thread-Parallel Software, Euro-Par 2010 - Parallel Processing
(2010), vol. 6272, pp. 287-303.

	S. Ahn et al., Geant4-MT: bringing multi-threaded Geant4 into
production, to be published in SNA&MC2013 proceeding

Footnotes

	#1

	http://en.wikipedia.org/wiki/Thread-local_storage

	#2

	https://twiki.cern.ch/twiki/bin/view/Geant4/Geant4MTTipsAndTricks#4_Why_I_cannot_simply_add_G4Thre

	#3

	https://twiki.cern.ch/twiki/bin/view/Geant4/MultiThreadingTaskForce

	#4

	https://indico.cern.ch/getFile.py/access?contribId=3&sessionId=7&resId=0&materialId=slides&confId=250021

	#5

	https://twiki.cern.ch/twiki/bin/view/Geant4/Geant4MTAdvandedTopicsForApplicationDevelopers

	#6

	https://twiki.cern.ch/twiki/bin/view/Geant4/Geant4MTTipsAndTricks

	#7

	http://congreso.us.es/geant42013/

	#8

	https://indico.cern.ch/sessionDisplay.py?sessionId=7&confId=250021#20130924

	#9

	https://indico.cern.ch/sessionDisplay.py?sessionId=22&confId=250021#20130926

	#10

	https://indico.cern.ch/contributionDisplay.py?contribId=20&confId=250021

	#11

	https://indico.cern.ch/contributionDisplay.py?contribId=128&confId=250021

	#12

	https://indico.cern.ch/contributionDisplay.py?contribId=37&confId=250021

Extending Toolkit Functionality

Contents:

	Geometry
	What can be extended ?

	Adding a new type of Solid

	Modifying the Navigator

	Electromagnetic Fields
	Creating a New Type of Field
	A new Field class

	A new Equation of Motion for the new Field

	Get a G4FieldManager to use your field

	Changes for non-electromagnetic fields

	Particles
	Properties of particles
	Properties of nuclei

	Changing particle properties

	Adding New Particles

	Nuclide properties from the Evaluated Nuclear Structure Data File
	G4NuclideTable

	Adding states

	Electromagnetic Physics
	Introduction

	General design

	Electromagnetic processes

	Electromagnetic models

	Hadronic Physics
	Introduction

	Principal Considerations

	Level 1 Framework - processes
	Requirements

	Design and interfaces

	Framework functionality

	Level 2 Framework - Cross Sections and Models
	Requirements

	Design and interfaces

	Cross-sections

	Final state production

	Isotope production

	Framework functionality

	Cross Sections

	Final state production

	Isotope production

	Level 3 Framework - Theoretical Models
	Requirements

	Design and interfaces

	Framework functionality

	Level 4 Frameworks - String Parton Models and Intra-Nuclear Cascade
	Requirements

	Design and interfaces

	Framework functionality

	Level 5 Framework - String De-excitation
	Requirements

	Design and interfaces

	Framework functionality

	Creating Your Own Hadronic Process
	Developing a new hadronic model

	Developing a new cross section set

	Developing a new hadronic process

	Changing Internal Parameters of an Existing Hadronic Model
	Advanced Interface to Change the Parameters of the Bertini Cascade Model

	Advanced Interface to Change the Parameters of the Fritiof (FTF) Model

	Changing internal parameters of an existing model: Fritiof (FTF) use-case

	Changing parameters of an existing model: Lund use-case

	Generic Event Biasing
	Introduction

	Design of Generic Biasing
	The G4VBiasingOperation Interface Class

	The G4VBiasingOperator Interface Class

	Physics Process Occurrence Biasing
	Formalism for occurrence biasing

	Implementation of Occurrence Biasing

	Visualisation
	Creating a new graphics driver
	Important Command Actions

	What happens in DrawView?

	What happens in ProcessView?

	What happens in ProcessScene?

	Dealing with transient objects

	More about scene models

	Adding a new view parameter

	Enhanced Trajectory Drawing
	Creating a new trajectory model

	Adding interactive functionality

	Trajectory Filtering
	Creating a new trajectory filter model

	Adding interactive functionality

	Other Resources

Footnotes

Geometry

What can be extended ?

Geant4 allows a user to describe a wide variety of shapes, and to
use them as solids in a detector description. In some cases, however, the user
may want or need to extend Geant4's geometry.
Solids bounded by cubic or higher order surfaces, or specialised
shapes such as tubes twisted on a helix would require a new type
of solid. Another reason could be that the user is looking to obtain a
speedup by utilising specialised knowledge about his or her geometry -
compared to types of solids and implementations which are more general.
The most evident case of this occurs when a particular and complex type of
solid is a key element for a specific detector geometry; in that case
the investment in improving its runtime performance may be worthwhile.

To extend the functionality of the Geometry in this way, a toolkit
developer must implement nine methods required for a new solid. We
list these methods below and document their specifications. Note that
the implementation of several methods are not a trivial matter:
these methods must find whether a point
is inside a solid, calculate the intersection of a line with the solid,
and estimate the minimum distance to the solid along any direction.
Once the new solid class has been created, having fulfilled all its
specifications by implements the abstract interface of the G4VSolid
base class, it can be used like any Geant4 solid,

Other additions can also potentially be achieved. For example, an
advanced user could add a new way of creating physical volumes.
However, because each type of volume has a corresponding navigator helper,
this requires creating a new type of Navigator as well. To do this the user
have to inherit from G4Navigator and modify the new Navigator to
handle this type of volumes.

Since Geant4 10.6 a new way has been provided to extend the geometry
description and G4Navigator using an external geometry modeller.
This can be used to support alternative types of physical volumes.

Adding a new type of Solid

We list below the required methods for integrating a new type of solid
in Geant4. Note that Geant4's specifications for a solid pay significant
attention to what happens at points that are within a small distance
(tolerance, kCarTolerance in the code) of the surface. So special
care must be taken to handle these cases in considering all different
possible scenarios, in order to respect the specifications and allow the
solid to be used correctly by the other components of the geometry
module.

Creating a derived class of G4VSolid

The solid must inherit from G4VSolid or one of its derived classes and
implement its virtual functions.

Mandatory member functions you must define are the following pure
virtual of G4VSolid:

EInside Inside(const G4ThreeVector& p)
G4double DistanceToIn(const G4ThreeVector& p)
G4double DistanceToIn(const G4ThreeVector& p, const G4ThreeVector& v)
G4ThreeVector SurfaceNormal(const G4ThreeVector& p)
G4double DistanceToOut(const G4ThreeVector& p)
G4double DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v,
 const G4bool calcNorm=false,
 G4bool *validNorm=0, G4ThreeVector *n)
G4bool CalculateExtent(const EAxis pAxis,
 const G4VoxelLimits& pVoxelLimit,
 const G4AffineTransform& pTransform,
 G4double& pMin,
 G4double& pMax) const
G4GeometryType GetEntityType() const
std::ostream& StreamInfo(std::ostream& os) const

They must perform the following functions

EInside Inside(const G4ThreeVector& p)

This method must return:

	kOutside if the point at offset p is outside the shape boundaries
plus Tolerance/2,

	kSurface if the point is <= Tolerance/2 from a surface, or

	kInside otherwise.

G4ThreeVector SurfaceNormal(const G4ThreeVector& p)

Return the outwards pointing unit normal of the shape for the surface
closest to the point at offset p.

G4double DistanceToIn(const G4ThreeVector& p)

Calculate distance to nearest surface of shape from an outside point p.
The distance can be an underestimate.

G4double DistanceToIn(const G4ThreeVector& p, const G4ThreeVector& v)

Return the distance along the normalised vector v to the shape, from the
point at offset p. If there is no intersection, return kInfinity. The
first intersection resulting from 'leaving' a surface/volume is
discarded. Hence, this is tolerant of points on surface of shape.

G4double DistanceToOut(const G4ThreeVector& p)

Calculate distance to nearest surface of shape from an inside point. The
distance can be an underestimate.

G4double DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v,
 const G4bool calcNorm=false,
 G4bool *validNorm=0, G4ThreeVector *n=0);

Return distance along the normalised vector v to the shape, from a point
at an offset p inside or on the surface of the shape. Intersections with
surfaces, when the point is not greater than kCarTolerance/2 from a
surface, must be ignored.

If calcNorm is true, then it must also set validNorm to either

	true, if the solid lies entirely behind or on the exiting surface.
Then it must set n to the outwards normal vector (the Magnitude of
the vector is not defined).

	false, if the solid does not lie entirely behind or on the exiting
surface.

If calcNorm is false, then validNorm and n are unused.

G4bool CalculateExtent(const EAxis pAxis,
 const G4VoxelLimits& pVoxelLimit,
 const G4AffineTransform& pTransform,
 G4double& pMin,
 G4double& pMax) const

Calculate the minimum and maximum extent of the solid, when under the
specified transform, and within the specified limits. If the solid is
not intersected by the region, return false, else return true.

G4GeometryType GetEntityType() const;

Provide identification of the class of an object (required for
persistency and STEP interface).

std::ostream& StreamInfo(std::ostream& os) const

Should dump the contents of the solid to an output stream.

The method:

G4VSolid* Clone() const

should be implemented for every solid to provide a way to clone
themselves in a new object with same specifications.

The method:

G4ThreeVector GetPointOnSurface() const

returns a random point located on the surface of the solid. Points
returned should not necessarily be uniformly distributed.

The method:

G4double GetCubicVolume()

should be implemented for every solid in order to cache the computed
value (and therefore reuse it for future calls to the method) and to
eventually implement a precise computation of the solid's volume. If the
method will not be overloaded, the default implementation from the base
class will be used (estimation through a Monte Carlo algorithm) and the
computed value will not be stored.

The method:

G4double GetSurfaceArea()

should be implemented for every solid in order to cache the computed
value (and therefore reuse it for future calls to the method) and to
eventually implement a precise computation of the solid's surface area.
If the method will not be overloaded, the default implementation from
the base class will be used (estimation through a Monte Carlo algorithm)
and the computed value will not be stored.

There are a few member functions to be defined for the purpose of
visualisation. The first method is mandatory, and the next four are not.

// Mandatory
virtual void DescribeYourselfTo (G4VGraphicsScene& scene) const = 0;

// Not mandatory
virtual G4VisExtent GetExtent() const;
virtual G4Polyhedron* CreatePolyhedron () const;
virtual G4NURBS* CreateNURBS () const;
virtual G4Polyhedron* GetPolyhedron () const;

What these methods should do and how they should be implemented is
described here.

void DescribeYourselfTo (G4VGraphicsScene& scene) const;

This method is required in order to identify the solid to the graphics
scene. It is used for the purposes of "double dispatch". All
implementations should be similar to the one for G4Box:

void G4Box::DescribeYourselfTo (G4VGraphicsScene& scene) const
{
 scene.AddSolid (*this);
}

The method:

G4VisExtent GetExtent() const;

provides extent (bounding box) as a possible hint to the graphics view.
You must create it by finding a box that encloses your solid, and
returning a VisExtent that is created from this. The G4VisExtent must
presumably be given the minus x, plus x, minus y, plus y, minus z and
plus z extents of this "box". For example a cylinder can say

G4VisExtent G4Tubs::GetExtent() const
{
 // Define the sides of the box into which the G4Tubs instance would fit.
 return G4VisExtent (-fRMax, fRMax, -fRMax, fRMax, -fDz, fDz);
}

The method:

G4Polyhedron* CreatePolyhedron () const;

is required by the visualisation system, in order to create a realistic
rendering of your solid. To create a G4Polyhedron for your solid,
consult G4Polyhedron.

While the method:

G4Polyhedron* GetPolyhedron () const;

is a "smart" access function that creates on requests a polyhedron
and stores it for future access and should be customised for every
solid.

Modifying the Navigator

For the vast majority of use-cases, it is not indeed necessary (and
definitely not advised) to extend or modify the existing classes for
navigation in the geometry. A potential use-case for which this may
apply, is for the description of a new kind of physical volume to be
integrated. We believe that our set of choices for creating physical
volumes is varied enough for nearly all needs. Future extensions of the
Geant4 toolkit will probably make easier exchanging or extending the
G4Navigator, by introducing an abstraction level simplifying the
customisation. At this time, a simple abstraction level of the navigator
is provided by allowing overloading of the relevant functionalities.

Extending the Navigator

The main responsibilities of the Navigator are:

	locate a point in the tree of the geometrical volumes;

	compute the length a particle can travel from a point in a certain
direction before encountering a volume boundary;

	estimating the minimum distance from a point to the nearest boundary,
either to the surface of the current volume or to of one of its daughter
volumes.

The Navigator utilises one helper class for each type of physical volume
that exists. You will have to reuse the helper classes provided in the
base Navigator or create new ones for the new type of physical volume.

To extend G4Navigator you will have then to inherit from it and modify
these functions in your ModifiedNavigator to request the answers for
your new physical volume type from the new helper class. The
ModifiedNavigator should delegate other cases to the Geant4's standard
Navigator.

Using External Geometry Modeller for part of a geometry

Revisions in Geant4 10.6 introduced the ability to select part of a
geometry description for navigation by an external geometry modeller.
This external modeller must define a sub-navigation which is responsible
for locating a position inside a mother logical volume, intersecting

The selected logical volumes must be filled with a new type of 'external'
physical volume, a new umbrella type of physical volume
whose classification is as type 'kExternal'.
This is used to signal that a new external subnavigation class will
undertake what the necessary intersection and volume location methods.

This subnavigation class must inherit from the new abstract class
G4VExternalNavigation.

Replacing the Navigator

Replacing the Navigator is another possible operation.
All types of physical volume that will
be allowed must be handled by it. The same functionality is required as
described in the previous section.

However the amount of work is probably potentially larger, if support
for all the current types of physical volumes is required.

The Navigator utilises one helper class for each type of physical volume
that exists. These could also potentially be replaced, allowing a
simpler way to create a new navigation system.

Footnotes

Electromagnetic Fields

Creating a New Type of Field

Geant4 currently handles magnetic and electric fields and, in future
releases, will handle combined electromagnetic fields. Fields due to
other forces, not yet included in Geant4, can be provided by describing
the new field and the force it exerts on a particle passing through it.
For the time being, all fields must be time-independent. This
restriction may be lifted in the future.

In order to accommodate a new type of field, two classes must be
created: a field type and a class that determines the force. The Geant4
system must then be informed of the new field.

A new Field class

A new type of Field class may be created by inheriting from G4Field

class NewField : public G4Field
{
 public:
 void GetFieldValue(const double Point[3],
 double *pField)=0;
}

and deciding how many components your field will have, and what each
component represents. For example, three components are required to
describe a vector field while only one component is required to describe
a scalar field.

If you want your field to be a combination of different fields, you must
choose your convention for which field goes first, which second etc. For
example, to define an electromagnetic field we follow the convention
that components 0,1 and 2 refer to the magnetic field and components 3,
4 and 5 refer to the electric field.

By leaving the GetFieldValue method pure virtual, you force those users
who want to describe their field to create a class that implements it
for their detector's instance of this field. So documenting what each
component means is required, to give them the necessary information.

For example someone can describe DetectorAbc's field by creating a class
DetectorAbcField, that derives from your NewField

class DetectorAbcField : public NewField
{
 public:
 void MyFieldGradient::GetFieldValue(const double Point[3],
 double *pField);
}

They then implement the function GetFieldValue

void MyFieldGradient::GetFieldValue(const double Point[3],
 double *pField)
{
 // We expect pField to point to pField[9];
 // This & the order of the components of pField is your own
 // convention

 // We calculate the value of pField at Point ...
}

A new Equation of Motion for the new Field

Once you have created a new type of field, you must create an Equation
of Motion for this Field. This is required in order to obtain the force
that a particle feels.

To do this you must inherit from G4Mag_EqRhs and create your own
equation of motion that understands your field. In it you must implement
the virtual function EvaluateRhsGivenB. Given the value of the field,
this function calculates the value of the generalised force. This is the
only function that a subclass must define.

virtual void EvaluateRhsGivenB(const G4double y[],
 const G4double B[3],
 G4double dydx[]) const = 0;

In particular, the derivative vector dydx is a vector with six
components. The first three are the derivative of the position with
respect to the curve length. Thus they should set equal to the
normalised velocity, which is components 3, 4 and 5 of y.

(dydx[0], dydx[1], dydx[2]) = (y[3], y[4], y[5])

The next three components are the derivatives of the velocity vector
with respect to the path length. So you should write the "force"
components for

dydx[3], dydx[4] and dydx[5]

for your field.

Get a G4FieldManager to use your field

In order to inform the Geant4 system that you want it to use your field
as the global field, you must do the following steps:

	Create a Stepper of your choice:

yourStepper = new G4ClassicalRK(yourEquationOfMotion);
 // or if your field is not smooth eg
 // new G4ImplicitEuler(yourEquationOfMotion);

	Create a chord finder that uses your Field and Stepper. You must also
give it a minimum step size, below which it does not make sense to
attempt to integrate:

yourChordFinder= new G4ChordFinder(yourField,
 yourMininumStep, // say 0.01*mm
 yourStepper);

	Next create a G4FieldManager and give it that chord finder,

yourFieldManager= new G4FieldManager();
yourFieldManager.SetChordFinder(yourChordFinder);

	Finally we tell the Geometry that this FieldManager is responsible
for creating a field for the detector.

G4TransportationManager::GetTransportationManager()
 -> SetFieldManager(yourFieldManager);

Changes for non-electromagnetic fields

If the field you are interested in simulating is not electromagnetic,
another minor modification may be required. The transportation currently
chooses whether to propagate a particle in a field or rectilinearly
based on whether the particle is charged or not. If your field affects
non-charged particles, you must inherit from the G4Transportation and
re-implement the part of GetAlongStepPhysicalInteractionLength that
decides whether the particles is affected by your force.

In particular the relevant section of code does the following:

// Does the particle have an (EM) field force exerting upon it?
//
if((particleCharge!=0.0)){
 fieldExertsForce= this->DoesGlobalFieldExist();
 // Future: will/can also check whether current volume's field is Zero or
 // set by the user (in the logical volume) to be zero.
}

and you want it to ask whether it feels your force. If, for the sake of
an example, you wanted to see the effects of gravity on a heavy
hypothetical particle, you could say

// Does the particle have my field's force exerted on it?
//
if (particle->GetName() == "VeryHeavyWIMP") {
 fieldExertsForce= this->DoesGlobalFieldExist(); // For gravity
}

After doing all these steps, you will be able to see the effects of your
force on a particle's motion.

Footnotes

Particles

Properties of particles

The G4ParticleDefinition class contains the properties which
characterize individual particles, such as name, mass, charge, spin, and
so on. Properties of particles are set during the initialization of each
particle type. The default values of these properties are described in
each particle class. In the case of heavy nuclei properties may be given
by external files. Once initialized, particle properties cannot be
changed except for those related to its decay; these are life time,
branching ratio of each decay mode and the "stable" flag. Geant4
provides a method to override these properties by using external files.

Properties of nuclei

Individual classes are provided for light nuclei (i.e. deuteron, triton,
He3, and He4) with default values of their properties. Other nuclei are
dynamically created by requests from processes (and users). G4IonTable
class handles the creation of such ions. Default properties of nuclei
are determined with help of G4NuclearProperties.

Users can register a G4IsotopeTable to the G4IonTable.
G4IsotopeTable which describes the properties used to create ions.
Excitation energy, decay modes, and life times for relatively long-lived
nuclei can be obtained by using G4RIsotopeTable and data files such as
those pointed to by the G4RADIOACTIVEDATA environment variable.
G4IsotopeMagneticMomentTable provides a table of nuclear magnetic
moments using the data file G4IsotopeMagneticMoment.table. The
environment variable G4IONMAGNETICMOMENT should be set to point to this
file.

Changing particle properties

Only in the "PreInit" phase can properties be modified with the help
of the G4ParticlePropertyTable class. Particle properties can be
overridden with the method

G4bool SetParticleProperty(const G4ParticlePropertyData& newProperty)

by setting new values in G4ParticlePropertyData. In addition, the
current particle property values can be extracted to text files by using
G4TextPPReporter. On the other hand, G4TextPPRetriever can change
particle properties according to text files.

Adding New Particles

A new particle can be added by creating a new class for it. The new
class should be derived from G4ParticleDefinition. You can find an
example under examples/extended/exoticphysics/monopole. There, the new
class for the monopole is defined as follows:

class G4Monopole : public G4ParticleDefinition
{
private:
 static G4Monopole* theMonopole;

 G4Monopole(
 const G4String& aName, G4double mass,
 G4double width, G4double charge,
 G4int iSpin, G4int iParity,
 G4int iConjugation, G4int iIsospin,
 G4int iIsospin3, G4int gParity,
 const G4String& pType, G4int lepton,
 G4int baryon, G4int encoding,
 G4bool stable, G4double lifetime,
 G4DecayTable *decaytable);

public:
 virtual ~G4Monopole();
 static G4Monopole* MonopoleDefinition();
 static G4Monopole* Monopole();
}

The static methods above must be defined and implemented so that the new
particle instance will be created in the ConstructParticles method of
your physics list. New properties may be added if necessary (G4Monopole
has a a property for magnetic charge). Values of properties need to be
given in the static method as other particle classes.

G4Monopole* G4Monopole::MonopoleDefinition(G4double mass, G4int mCharge, G4int eCharge)
{
 if(!theMonopole) {
 theMonopole = new G4Monopole(
 "monopole", mass, 0.0*MeV, 0,
 0, 0, 0,
 0, 0, 0,
 "boson", 0, 0, 0,
 true, -1.0, 0);
 }
 return theMonopole;
}

Nuclide properties from the Evaluated Nuclear Structure Data File

G4NuclideTable

G4NuclideTable was introduced in Geant4 v10 to provide properties of
nuclides. The excitation energy and decay constant of each of 25,497
states are listed in the table and the spin and dipole magnetic moments
are available for some states. The source of these data is ENSDF as of
February 2015. In Geant4 v10.02 the hard-coded list of the nuclide
states was removed and it now uses only the ENSDFSTATE.dat.
G4NuclideTable fills this array by scanning the file and selecting all
nuclides with half-lives greater than 1.0 microsecond.

The user may set the minimum half-life of states that will be selected
during the scan of ENSDFSTATE.dat. If that value is less than the
default of 1 microsecond, more states will be read into
G4NuclideTable. If it is larger, fewer states will be included. Any
nuclide thus read into G4NuclideTable will be treated as a track-able
particle, which will travel some distance as sampled from its decay
time. For each state, G4NuclideTable assigns a level number ranging
from 0 to the PDG limit of 9. All ground states are assigned the value
0. In a given nucleus, the selected state with the smallest excitation
energy is assigned to be level 1, and so on for the subsequent higher
selected excitation energy states up to level 8. Note that the ordering
of states in a given nucleus will change depending on the minimum
half-life value chosen. If more than 8 excited states are found, the
excess states are all assigned to level 9. The above action is taken at
initialization time and may be invoked in two ways:

	G4NuclideTable::SetThresholdOfHalfLife (G4double)

	/particle/manage/nuclideTable/min_halflife 0.001 ns

Note that while setting a small minimum half-life will provide a more
precise decay chain with more short-lived nuclides, the increased number
of states will reduce CPU performance and increase memory footprint.

Adding states

User may add states with user specified values of excitation energy,
decay constant, spin and dipole magnetic moment by:

AddState (G4int Z, G4int A , G4double excitation_energy, G4double lifetime, G4int ionJ=0,
 G4double ionMu=0.0)

This is done at initialization time and all values are read into the
G4NuclideTable array regardless of the minimum half-life value. These
user states are all assigned to level number 9.

In addition to the minimum half-life value, G4NuclideTable also allows
the user to set the tolerance level of the excitation energy used to
identify the state. The default value of the tolerance is 1 eV which the
user may modify in one of two ways:

	G4NuclideTable::SetLevelTolerance(G4double)

	/particle/manage/nuclideTable/level_tolerance 1 keV

This modification is also done during the initialization phase. Note
that in adding states a user must specify excited states with a
precision that matches the tolerance. Thus, if the tolerance is 1 eV,
the level in keV would be given, for example, by 2505.531, otherwise
that state will be missed. If it is not desirable to specify levels to
such a precision, the tolerance value can be increased. If, however,
there are two levels in a nucleus which are closer to one another than
the value of the tolerance, one of the levels will be missed. Currently
G4RadioactiveDecay and G4PhotoEvporation models share the state
information with G4NuclideTable. Other models are encouraged to do
likewise.

Footnotes

Electromagnetic Physics

Introduction

The Geant4 set of electromagnetic (EM) physics processes and models are
used in practically all types of simulation applications including high
energy and nuclear physics experiments, beam transport, medical physics,
cosmic ray interactions and radiation effects in space. In addition to
models for low and high energy EM physics for simulation of radiation
effects in media, a sub-library of very low energy models was developed
within the framework of the Geant4-DNA project, with the goal of
simulating radiation effects involving physics and chemistry at the
sub-cellular level.

In the early stages of Geant4, low and high energy EM processes were
developed independently, with the result that these processes could not
be used in the same run. To resolve this problem, the interfaces were
unified so that the standard, muons, highenergy, lowenergy, and dna EM
physics sub-packages now follow the same design. Migration to this
common design resulted in an improvement of overall CPU performance, and
made it possible to provide several helper classes which are useful for
a variety of user applications (for example G4EmCalculator).

General design

The electromagnetic processes of Geant4 follow the basic interfaces:

	G4VEnergyLossProcess;

	G4VEmProcess;

	G4VMultipleScattering.

The class diagram is shown in Fig. 31.

[image: ../../_images/classDgmEMproc.jpg]

Fig. 31 Design of EM physics processes.

These common interfaces for all EM sub-packages enabled the full
migration of EM classes to multi-threading without significant
modification of existing physics model codes. Initialisation of the
energy loss, stopping power and cross section tables is carried out only
once in the master thread at the beginning of simulation. These tables
are shared between threads in run time.

Electromagnetic processes

These base classes provide all management work of initialisation of
processes, creation and filling of physics tables, and generic run-time
actions. Concrete process classes are responsible for the initialisation
of parameters and defining the set of models for the process. It is
strongly recommended to use existing processes and not create a new one
for each new model. Here is a list of main EM processes:

	G4PhotoelectricEffect;

	G4ComptonScattering;

	G4GammaConversion;

	G4GammaConversion;

	G4RayleighScattering;

	G4eIonisation;

	G4eBremsstrahlung;

	G4hIonisation;

	G4MuIonisation;

	G4hIonisation;

	G4MuBremsstrahlung;

	G4eMultipleScattering;

	G4MuMultipleScattering.

More processes are provided in lowenergy, polarisation, and adjoint
sub-libraries. In some specific cases, interfaces described above are
not applicable and the high level interface G4VProcess is used.

Any concrete physics process class may need custom parameters. It is
recommended to define following parameters specific to the class in the
class constructor:

	process sub-type;

	buildTables flag;

	secondary particle type;

	min/max energy of cross section tables;

	number of bins in tables;

	flag to force zero cross section in the low edge of a table.

Any EM process should implement following methods:

	IsApplicable(const G4ParticleDefinition& p)

	ProcessDescription()

Main initialisation of a process is performed by initialisation methods:

	InitialiseEnergyLossProcess(const G4ParticleDefinition* part, const G4ParticleDefinition* basePart)

	InitialiseProcess(const G4ParticleDefinition*)

In these methods a default set of EM models and their energy intervals
of applicability may be defined. It is strongly recommended that a
process class cannot change EM parameters in G4EmParameters class or
status of the de-excitation module. EM parameters can be modified in
physics lists or via UI commands.

Electromagnetic models

Concrete physics models are implemented via EM model interfaces:

	G4VEmModel;

	G4VMscModel.

In the majority of use-cases when new EM physics is needed, it is enough
to create only a new model class and use it in the existing EM process
class. A new model may be added to an existing process using
AddEmModel(G4int, G4VEmModel*, G4Region*) method. The class diagram
is shown in Fig. 32.

[image: ../../_images/classDgmEMmod.jpg]

Fig. 32 Design of EM physics models.

The base class G4VEmModel has a lot of virtual methods mostly with
the default implementation. Pure virtual methods to be implemented in
each model class are following:

	Initialise(const G4ParticleDefinition*, const G4DataVector&);

	SampleSecondaries(std::vector<G4DynamicParticle*>*,const G4MaterialCutsCouple*,const G4DynamicParticle*,G4double tmin=0.0,G4double tmax=DBL_MAX).

Any model may have its own data structure or physics table. It is
optimal to share data between threads in multi-threaded mode. For that
at initialisation it is possible to check if initialisation is performed
in master thread using a method IsMaster(). In the master thread
data of the model should be initialised. A model initialisation may be
performed between runs. In that case, potentially materials and cuts may
be changed, so re-initialisation of model data should be foreseen. In
worker thread it is possible to access shared data implementing virtual
method
InitialiseLocal(const G4ParticleDefinition*, G4VEmModel* masterModel).
It is strongly recommended that a model class cannot change EM
parameters in G4EmParameters class or status of the de-excitation
module. EM parameters can be modified in physics lists or via UI
commands.

Footnotes

Hadronic Physics

Introduction

Optimal exploitation of hadronic final states played a key role in
successes of all recent collider experiment in HEP, and the ability to
use hadronic final states will continue to be one of the decisive issues
during the analysis phase of the LHC experiments. Monte Carlo programs
like Geant4 facilitate the use of hadronic final states, and have been
developed for many years.

We give an overview of the Object Oriented frameworks for hadronic
generators in Geant4, and illustrate the physics models underlying
hadronic shower simulation on examples, including the three basic types
of modeling; data-driven, parametrisation-driven, and theory-driven
modeling, and their possible realisations in the Object Oriented
component system of Geant4. We put particular focus on the level of
extendibility that can and has been achieved by our Russian dolls
approach to Object Oriented design, and the role and importance of the
frameworks in a component system.

Principal Considerations

The purpose of this section is to explain the implementation frameworks
used in and provided by Geant4 for hadronic shower simulation as in the
1.1 release of the program. The implementation frameworks follow the
Russian dolls approach to implementation framework design. A top-level,
very abstracting implementation framework provides the basic interface
to the other Geant4 categories, and fulfills the most general use-case
for hadronic shower simulation. It is refined for more specific
use-cases by implementing a hierarchy of implementation frameworks, each
level implementing the common logic of a particular use-case package in
a concrete implementation of the interface specification of one
framework level above, this way refining the granularity of abstraction
and delegation. This defines the Russian dolls architectural pattern.
Abstract classes are used as the delegation mechanism 1 .

All framework functional requirements were obtained through use-case
analysis. In the following we present for each framework level the
compressed use-cases, requirements, designs including the flexibility
provided, and illustrate the framework functionality with examples. All
design patterns cited are to be read as defined in
[Gamma1995] .

Level 1 Framework - processes

There are two principal use-cases of the level 1 framework. A user will
want to choose the processes used for his particular simulation run, and
a physicist will want to write code for processes of his own and use
these together with the rest of the system in a seamless manner.

Requirements

	Provide a standard interface to be used by process implementations.

	Provide registration mechanisms for processes.

Design and interfaces

Both requirements are implemented in a sub-set of the tracking-physics
interface in Geant4. The class diagram is shown in
Fig. 33.

[image: ../../_images/Level1.jpg]

Fig. 33 Level 1 implementation framework of the hadronic category of Geant4.

All processes have a common base-class G4VProcess, from which a set
of specialised classes are derived. Two of them are used as base classes
for hadronic processes at rest and in flight (G4VDiscreteProcess),
and for processes like radioactive decay where the same implementation
can represent both these extreme cases (G4VRestDiscreteProcess).

Each of these classes declares two types of methods; one for calculating
the time to interaction or the physical interaction length, allowing
tracking to request the information necessary to decide on the process
responsible for final state production, and one to compute the final
state. These are pure virtual methods, and have to be implemented in
each individual derived class, as enforced by the compiler.

Note on at-rest processes: starting with Geant4 version 9.6 - when
the Bertini and Fritiof final-state models have been extended down to
zero kinetic energy and used also for simulating the nuclear capture
at-rest - the at-rest processes derive from G4HadronicProcess, hence
from G4VDiscreteProcess, instead than from G4VRestProcess as in
the initial design of at-rest processes. This requires some adaptation a
discrete process to handle an at-rest one using top level interface
G4VProcess. A different solution, under consideration but not yet
implemented, would be instead to have G4HadronicProcess inheriting
from G4VRestDiscreteProcess: in this way, G4HadronicProcess, and
therefore any theory-driven final-state model, could be deployed for any
kind of hadronic process, including capture-at-rest processes and
radioactive decays.

Framework functionality

The functionality provided is through the use of process base-class
pointers in the tracking-physics interface, and the
G4Process-Manager. All functionality is implemented in abstract, and
registration of derived process classes with the G4Process-Manager
of an individual particle allows for arbitrary combination of both
Geant4 provided processes, and user-implemented processes. This
registration mechanism is a modification on a Chain of Responsibility.
It is outside the scope of the current paper, and its description is
available from
G4Manual#1.

Level 2 Framework - Cross Sections and Models

At the next level of abstraction, only processes that occur for
particles in flight are considered. For these, it is easily observed
that the sources of cross sections and final state production are rarely
the same. Also, different sources will come with different restrictions.
The principal use-cases of the framework are addressing these
commonalities. A user might want to combine different cross sections and
final state or isotope production models as provided by Geant4, and a
physicist might want to implement his own model for particular
situation, and add cross-section data sets that are relevant for his
particular analysis to the system in a seamless manner.

Requirements

	Flexible choice of inclusive scattering cross-sections.

	Ability to use different data-sets for different parts of the
simulation, depending on the conditions at the point of interaction.

	Ability to add user-defined data-sets in a seamless manner.

	Flexible, unconstrained choice of final state production models.

	Ability to use different final state production codes for different
parts of the simulation, depending on the conditions at the point of
interaction.

	Ability to add user-defined final state production models in a
seamless manner.

	Flexible choice of isotope production models, to run in parasitic
mode to any kind of transport models.

	Ability to use different isotope production codes for different parts
of the simulation, depending on the conditions at the point of
interaction.

	Ability to add user-defined isotope production models in a seamless
manner.

Design and interfaces

The above requirements are implemented in three framework components,
one for cross-sections, final state production, and isotope production
each. The class diagrams are shown in Fig. 34
for the cross-section aspects, Fig. 35 for the final state
production aspects, and Fig. 36 for the isotope production
aspects.

[image: ../../_images/Level2_1.jpg]

Fig. 34 Level 2 implementation framework of the hadronic category of Geant4.

[image: ../../_images/Level2_2.jpg]

Fig. 35 Level 2 implementation framework of the hadronic category of Geant4;
final state production aspect.

[image: ../../_images/Level2_3.jpg]

Fig. 36 Level 2 implementation framework of the hadronic category of Geant4;
isotope production aspect

The three parts are integrated in the G4Hadronic-Process class, that
serves as base-class for all hadronic processes of particles in flight.

Cross-sections

Each hadronic process is derived from G4Hadronic-Process, which
holds a list of "cross section data sets". The term "data set" is
representing an object that encapsulates methods and data for
calculating total cross sections for a given process in a certain range
of validity. The implementations may take any form. It can be a simple
equation as well as sophisticated parameterisations, or evaluated data.
All cross section data set classes are derived from the abstract class
G4VCrossSection-DataSet, which declares methods that allow the
process inquire, about the applicability of an individual data-set
through IsApplicable(const G4DynamicParticle*, const G4Element*),
and to delegate the calculation of the actual cross-section value
through GetCrossSection(const G4DynamicParticle*, const G4Element*).

Final state production

The G4HadronicInteraction base class is provided for final state
generation. It declares a minimal interface of only one pure virtual
method:
G4VParticleChange* ApplyYourself(const G4Track &, G4Nucleus &)}.
G4HadronicProcess provides a registry for final state production
models inheriting from G4Hadronic-Interaction. Again, final state
production model is meant in very general terms. This can be an
implementation of a quark gluon string model [QGSM], a
sampling code for ENDF/B data formats [ENDFForm], or a
parametrisation describing only neutron elastic scattering off Silicon
up to 300 MeV.

Isotope production

For isotope production, a base class (G4VIsotope-Production) is
provided. It declares a method
G4IsoResult * GetIsotope(const G4Track &, const G4Nucleus &) that
calculates and returns the isotope production information. Any concrete
isotope production model will inherit from this class, and implement the
method. Again, the modeling possibilities are not limited, and the
implementation of concrete production models is not restricted in any
way. By convention, the GetIsotope method returns NULL, if the model
is not applicable for the current projectile target combination.

Framework functionality

Cross Sections

G4HadronicProcess provides registering possibilities for data sets.
A default is provided covering all possible conditions to some
approximation. The process stores and retrieves the data sets through a
data store that acts like a FILO stack (a Chain of Responsibility with a
First In Last Out decision strategy). This allows the user to map out
the entire parameter space by overlaying cross section data sets to
optimise the overall result. Examples are the cross sections for low
energy neutron transport. If these are registered last by the user, they
will be used whenever low energy neutrons are encountered. In all other
conditions the system falls back on the default, or data sets with
earlier registration dates. The fact that the registration is done
through abstract base classes with no side-effects allows the user to
implement and use his own cross sections. Examples are special reaction
cross sections of [image: \mathrm{K}^0] nuclear interactions that might be used
for [image: \epsilon / \epsilon^\prime] analysis at LHC to control the systematic error.

Final state production

The G4HadronicProcess class provides a registration service for
classes deriving from G4Hadronic-Interaction, and delegates final
state production to the applicable model.
G4Hadronic-Interaction provides the functionality needed to define
and enforce the applicability of a particular model. Models inheriting
from G4Hadronic-Interaction can be restricted in applicability in
projectile type and energy, and can be activated/deactivated for
individual materials and elements. This allows a user to use final state
production models in arbitrary combinations, and to write his own models
for final state production. The design is a variant of a Chain of
Responsibility. An example would be the likely CMS scenario - the
combination of low energy neutron transport with a quantum molecular
dynamics [QMD], invariant phase space decay
[CHIPS], and fast parametrised models for calorimeter
materials, with user defined modeling of interactions of spallation
nucleons with the most abundant tracker and calorimeter materials.

Isotope production

The G4HadronicProcess by default calculates the isotope production
information from the final state given by the transport model. In
addition, it provides a registering mechanism for isotope production
models that run in parasitic mode to the transport models and inherit
from G4VIsotope-Production. The registering mechanism behaves like a
FILO stack, again based on Chain of Responsibility. The models will be
asked for isotope production information in inverse order of
registration. The first model that returns a non-NULL value will be
applied. In addition, the G4Hadronic-Process provides the basic
infrastructure for accessing and steering of isotope-production
information. It allows to enable and disable the calculation of isotope
production information globally, or for individual processes, and to
retrieve the isotope production information through the
G4IsoParticleChange * GetIsotopeProductionInfo() method at the end
of each step. The G4HadronicProcess is a finite state machine that
will ensure the GetIsotope-ProductionInfo returns a non-zero value
only at the first call after isotope production occurred. An example of
the use of this functionality is the study of activation of a Germanium
detector in a high precision, low background experiment.

Level 3 Framework - Theoretical Models

Geant4 provides at present one implementation framework for theory
driven models. The main use-case is that of a user wishing to use
theoretical models in general, and to use various intra-nuclear
transport or pre-compound models together with models simulating the
initial interactions at very high energies.

[image: ../../_images/Level3_1.jpg]

Fig. 37 Level 3 implementation framework of the hadronic category of Geant4;
theoretical model aspect.

Requirements

	Allow to use or adapt any string-parton or parton transport [VNI],

	Allow to adapt event generators, ex. [PYTHIA7],
state production in shower simulation.

	Allow for combination of the above with any intra-nuclear transport
(INT).

	Allow stand-alone use of intra-nuclear transport.

	Allow for combination of the above with any pre-compound model.

	Allow stand-alone use of any pre-compound model.

	Allow for use of any evaporation code.

	Allow for seamless integration of user defined components for any of
the above.

Design and interfaces

To provide the above flexibility, the following abstract base classes
have been implemented:

	G4VHighEnergyGenerator

	G4VIntranuclearTransportModel

	G4VPreCompoundModel

	G4VExcitationHandler

In addition, the class G4TheoFS-Generator is provided to orchestrate
interactions between these classes. The class diagram is shown in
the Fig. 37.

G4VHighEnergy-Generator serves as base class for parton transport or
parton string models, and for Adapters to event generators. This class
declares two methods, Scatter, and GetWoundedNucleus.

The base class for INT inherits from G4Hadronic-Interaction, making
any concrete implementation usable as a stand-alone model. In doing so,
it re-declares the ApplyYourself interface of
G4Hadronic-Interaction, and adds a second interface, Propagate,
for further propagation after high energy interactions. Propagate
takes as arguments a three-dimensional model of a wounded nucleus, and a
set of secondaries with energies and positions.

The base class for pre-equilibrium decay models,
G4VPre-CompoundModel, inherits from G4Hadronic-Interaction,
again making any concrete implementation usable as stand-alone model. It
adds a pure virtual DeExcite method for further evolution of the
system when intra-nuclear transport assumptions break down. DeExcite
takes a G4Fragment, the Geant4 representation of an excited nucleus,
as argument.

The base class for evaporation phases, G4VExcitation-Handler,
declares an abstract method, BreakItUP(), for compound decay.

Framework functionality

The G4TheoFSGenerator class inherits from
G4Hadronic-Interaction, and hence can be registered as a model for
final state production with a hadronic process. It allows a concrete
implementation of G4VIntranuclear-TransportModel and
G4VHighEnergy-Generator to be registered, and delegates initial
interactions, and intra-nuclear transport of the corresponding
secondaries to the respective classes. The design is a complex variant
of a Strategy. The most spectacular application of this pattern is the
use of parton-string models for string excitation, quark molecular
dynamics for correlated string decay, and quantum molecular dynamics for
transport, a combination which promises to result in a coherent
description of quark gluon plasma in high energy nucleus-nucleus
interactions.

The class G4VIntranuclearTransportModel provides registering
mechanisms for concrete implementations of G4VPreCompound-Model, and
provides concrete intra-nuclear transports with the possibility of
delegating pre-compound decay to these models.

G4VPreCompoundModel provides a registering mechanism for compound
decay through the G4VExcitation-Handler interface, and provides
concrete implementations with the possibility of delegating the decay of
a compound nucleus.

The concrete scenario of G4TheoFS-Generator using a dual parton
model and a classical cascade, which in turn uses an exciton
pre-compound model that delegates to an evaporation phase, would be the
following: G4TheoFS-Generator receives the conditions of the
interaction; a primary particle and a nucleus. It asks the dual parton
model to perform the initial scatterings, and return the final state,
along with the by then damaged nucleus. The nucleus records all
information on the damage sustained. G4TheoFS-Generator forwards all
information to the classical cascade, that propagates the particles in
the already damaged nucleus, keeping track of interactions, further
damage to the nucleus, etc.. Once the cascade assumptions break down,
the cascade will collect the information of the current state of the
hadronic system, like excitation energy and number of excited particles,
and interpret it as a pre-compound system. It delegates the decay of
this to the exciton model. The exciton model will take the information
provided, and calculate transitions and emissions, until the number of
excitons in the system equals the mean number of excitons expected in
equilibrium for the current excitation energy. Then it hands over to the
evaporation phase. The evaporation phase decays the residual nucleus,
and the Chain of Command rolls back to G4TheoFS-Generator,
accumulating the information produced in the various levels of
delegation.

Level 4 Frameworks - String Parton Models and Intra-Nuclear Cascade

The use-cases of this level are related to commonalities and detailed
choices in string-parton models and cascade models. They are use-cases
of an expert user wishing to alter details of a model, or a theoretical
physicist, wishing to study details of a particular model.

Requirements

	Allow to select string decay algorithm

	Allow to select string excitation.

	Allow the selection of concrete implementations of three-dimensional
models of the nucleus

	Allow the selection of concrete implementations of final state and
cross sections in intra-nuclear scattering.

Design and interfaces

To fulfill the requirements on string models, two abstract classes are
provided, the G4VParton-StringModel and the
G4VString-Fragmentation. The base class for parton string models,
G4VParton-StringModel, declares the GetStrings() pure virtual
method. G4VString-Fragmentation, the pure abstract base class for
string fragmentation, declares the interface for string fragmentation.

To fulfill the requirements on intra-nuclear transport, two abstract
classes are provided, G4V3DNucleus, and G4VScatterer. At this
point in time, the usage of these intra-nuclear transport related
classes by concrete codes is not enforced by designs, as the details of
the cascade loop are still model dependent, and more experience has to
be gathered to achieve standardisation. It is within the responsibility
of the implementers of concrete intra-nuclear transport codes to use the
abstract interfaces as defined in these classes.

The class diagram is shown in Fig. 38
for the string parton model aspects, and in
Fig. 39 for the intra-nuclear
transport.

[image: ../../_images/Level4_1.jpg]

Fig. 38 Level 4 implementation framework of the hadronic category of Geant4;
parton string aspect.

[image: ../../_images/Level4_2.jpg]

Fig. 39 Level 4 implementation framework of the hadronic category of Geant4;
intra-nuclear transport aspect.

Framework functionality

Again variants of Strategy, Bridge and Chain of Responsibility are used.
G4VParton-StringModel implements the initialisation of a
three-dimensional model of a nucleus, and the logic of scattering. It
delegates secondary production to string fragmentation through a
G4VString-Fragmentation pointer. It provides a registering service
for the concrete string fragmentation, and delegates the string
excitation to derived classes. Selection of string excitation is through
selection of derived class. Selection of string fragmentation is through
registration.

Level 5 Framework - String De-excitation

The use-case of this level is that of a user or theoretical physicist
wishing to understand the systematic effects involved in combining
various fragmentation functions with individual types of string
fragmentation. Note that this framework level is meeting the current
state of the art, making extensions and changes of interfaces in
subsequent releases likely.

Requirements

	Allow the selection of fragmentation function.

Design and interfaces

A base class for fragmentation functions,
G4VFragmentation-Function, is provided. It declares the
GetLightConeZ() interface.

Framework functionality

The design is a basic Strategy. The class diagram is shown in
Fig. 40. At this point in time, the
usage of the G4VFragmentation-Function is not enforced by design,
but made available from the G4VString-Fragmentation to an
implementer of a concrete string decay. G4VString-Fragmentation
provides a registering mechanism for the concrete fragmentation
function. It delegates the calculation of zf of the hadron to
split of the string to the concrete implementation. Standardisation in
this area is expected.

[image: ../../_images/Level5_1.jpg]

Fig. 40 Level 5 implementation framework of the hadronic category of Geant4;
string fragmentation aspect.

Creating Your Own Hadronic Process

For some applications Geant4 might not provide the most appropriate
physics implementation or, in fact, any physics implementation at all.
In such cases, it is up to the user to develop the necessary processes,
models and cross sections and integrate them into his version of the
Geant4 toolkit. The user's process, model or cross section may then be
used in a physics list to replace some of those already provided by the
toolkit. This modularity requires that user classes be derived from a
set of base classes which have been provided to aid integration with the
toolkit and to spare the user from consideration of many details not
related to the physics at hand.

Processes communicate with Geant4 tracking, telling it where or when an
interaction is supposed to occur, and what is supposed to happen at that
point. A hadronic process may be implemented directly, or through the
use of a framework of classes that modularize physics functionality,
make available several utilities and reduce unnecessary code
duplication. In the latter, recommended, approach the user must in
general develop as many as three classes: a process, a cross section and
a model. Instances of the cross section and model classes must then be
assigned to the process. In practice it is usually necessary to develop
only a model class or a cross section class, since a number of processes
are already provided by Geant4. Before writing any code, users should
check that Geant4 has not already provided the necessary models, cross
sections or processes.

Developing a new hadronic model

A hadronic model is responsible for the generation of a set of final
state four-vectors, given an initial projectile and target. New models
should derive from the G4HadronicInteraction base class and at least
two methods in this class must be implemented:

virtual G4HadFinalState*
ApplyYourself(const G4HadProjectile& aProjectile, G4Nucleus& targetNucleus)

which is responsible for generating the final state of the interaction
including the specification of all particle types and four-momenta, and

virtual G4bool IsApplicable(const G4HadProjectile& aProjectile, G4Nucleus& targetNucleus)

which is responsible for checking that the incident particle type and
energy, and the Z and A of the target nucleus, can be adequately handled
by the model. G4HadronicInteraction provides a number of utilities to
aid in the implementation of these methods.

When implementing ApplyYourself(), the Get() methods of the
G4HadProjectile and G4Nucleus classes provide all the initial state
information necessary for the generation of the final state. For
G4HadProjectile, GetDefinition() provides the particle type, and
Get4Momentum() provides the total energy and momentum. For G4Nucleus,
GetZ_asInt(), GetN_asInt() and GetA_asInt() provide Z, N and A,
while AtomicMass() provides the mass. Additional utility methods are
available for both G4HadProjectile and G4Nucleus .

Coordinate systems

The inputs to the model assume that the incident particle
(G4HadProjectile) travels along the z axis and interacts with the
target (G4Nucleus) which is at rest in the lab frame. Before invoking
the ApplyYourself() method, the process rotates the direction of the
projectile to be along the z axis and then performs the inverse rotation
on the final state particles produced by the model.

The model must perform two additional transformations: into the CM
frame, and back out of it after the interaction is complete.

Writing the ApplyYourself() method

It is thus the model developer's responsibility to:

	boost the projectile and target into the CM frame using the necessary
Lorentz transformations,

	perform all calculations required to generate the final state set of
particles,

	boost the final state particles back to the lab frame with the
inverse transformation, and

	send the final state particles to the process by filling
G4HadFinalState
and setting its status.

Step 4) is accomplished by using the various Get() and Set() methods
provided by the class G4HadFinalState. The developer must also decide
whether the original projectile survives the interaction, disappears or
is suspended. This is done with the SetStatusChange() method. If the
projectile survives, the change in its energy and momentum must be set
with the provided methods and it must be flagged as "isAlive". If the
particle disappears it must be flagged as "stopAndKill".

Geant4 provides a large number of Lorentz transformation tools which may
be used to complete steps 1) and 3).

How step 2) is accomplished is entirely up to the developer. This could
be as simple as a look-up table which assigns a final state to an
initial state, or as complex as a theoretical high energy generator.
Typically, the user will have to provide methods of sampling final state
multiplicities, energies and angles using random number generators
provided by Geant4. For example, the cosine of the polar angle of an
isotropic angular distribution could be sampled as follows:

G4double cosTheta = 2.*G4UniformRandom() - 1.;

The developer must also see to it that the model conserves energy and
momentum. Currently the hadronic framework checks that final states do
not exceed reasonably small limits of non-conservation.

Using the hadronic framework

For complex models it is recommended that the user become familiar with
the Geant4 hadronic framework. This is covered in detail in the chapter
on Extended Functionality in this manual. The framework uses the
object-oriented principles of abstraction and re-use to provide a number
of services to the developer. The part of the framework used will depend
on the type of model. For example, high energy models can take advantage
of already-developed string excitation and decay functions and medium
energy models can use the intra-nuclear propagation base class and the
nuclear de-excitation handler.

Writing the IsApplicable() method

The is a straightforward, but important, method. Most models are quite
specific in their range of use and the developer must codify this. It is
recommended that this method test for ranges of projectile energy,
particle type and target atomic number and weight, and return false when
these ranges are exceeded.

Developing a new cross section set

New cross section sets should derive from G4VCrossSectionDataSet .
This class serves as a container of cross section data and provides a
number of access methods that must be implemented by the developer. The
essential methods are:

G4double GetElementCrossSection(const G4DynamicParticle*, G4int Z)

which retrieves element-based cross sections,

G4double GetIsoCrossSection(const G4DynamicParticle*, G4int Z, G4int A)

which retrieves isotope-based cross sections,

G4bool IsElementApplicable(const G4DynamicParticle*, G4int Z)

which sets the Z range of the element-based data set,

G4bool IsIsoApplicable(const G4DynamicParticle*, G4int, G4int A)

which sets the Z and A range of the isotope-based data set, and

SetMinKinEnergy(G4double)
SetMaxKinEnergy(G4double)
GetMinKinEnergy()
and GetMaxKinEnergy()

for defining the applicable energy range of the data set.

Developing a new hadronic process

As mentioned above, it is preferable to add new physics in terms of a
model, and assign the model to an existing process, rather than develop
a new, specific process. Under certain circumstances though, a directly
implemented process may be necessary. In that case it must derive from
G4HadronicProcess and three methods of that class must be implemented:

virtual G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&) ,
virtual G4bool IsApplicable(const G4ParticleDefinition&) , and
G4double GetMeanFreePath(const G4Track& aTrack, G4double, G4ForceCondition*).

PostStepDoIt() is responsible for generating the final state of an
interaction given the track and step information. It must update the
state of the track, flagging it as "Alive", "StopButAlive",
"StopAndKill", "KillTrackAndSecondaries", "Suspend", or
"PostponeToNextEvent". It is roughly analogous to the ApplyYourself()
method in models.

IsApplicable() serves the same purpose in processes as it does in
models.

GetMeanFreePath() gets the cross section as a function of particle
type, energy, and target material, and converts it to a mean free path,
which is in turn passed on to the tracking. This method can be quite
simple:

G4double particle = aTrack.GetDynamicParticle();
G4double material = aTrack.GetMaterial();
return factor/theCrossSectionDataStore->GetCrossSection(particle, material);

provided an appropriate cross section data set is already available in
the data store.

The above discussion refers to in-flight processes. At-rest hadronic
processes do not currently derive from G4HadronicProcess, but from
G4VRestProcess or G4VRestDiscreteProcess. As such they do not employ
the full hadronic framework and must be implemented directly without
models. The methods to be implemented are similar to those in the
in-flight case:

virtual G4VParticleChange* AtRestDoIt(const G4Track&, const G4Step&) , and
G4bool IsApplicable(const G4ParticleDefinition&) .

Changing Internal Parameters of an Existing Hadronic Model

For the advanced user, it is possible to change the internal parameters of a hadronic
model. This may be useful to understand the systematic contribution of individual settings
with respect to macroscopic outcomes. Although offering insight it is strongly advised
to maintain the default settings for the provided models. These values were obtained
through theoretical insight from the model developers as well as extensive validation
against thin target data. The user is reminded of the following warning should changes
be introduced to these essentially internal parameters:

Warning

Changing these parameters without the guidance of the model developers may significantly alter
or even degrade the model's physics performance. Any publication based on varied parameters must
explicitly state what those values are, along with the physics list used and the Geant4 version.

As an example of how to modify modelling at an internal microscopic level we describe here
the available interfaces to the Bertini cascade model (Advanced Interface to Change the Parameters of the Bertini Cascade Model) and the
FTF model (Advanced Interface to Change the Parameters of the Fritiof (FTF) Model).
For illustration, we include the actual blocks of code and the physical objects they represent
where applibable (Changing internal parameters of an existing model: Fritiof (FTF) use-case and Changing parameters of an existing model: Lund use-case).

Advanced Interface to Change the Parameters of the Bertini Cascade Model

This section provides a list of the configurable parameters and switches currently used
in the Geant4 Bertini cacade model, along with explanations of their meaning.
Guidelines are provided for changing these parameters in order to study the sensitivity
of the model's predictions.
The interface, in its current format, is available since release
series 10.1.

Parameters which can be changed

Parameters have already been determined to produce the best overall description of the validation
data sets used by Geant4. These are referred to as "default" parameters and are listed below.

Currently the Bertini cascade model does not have a traditional C++ configuration interface.
Instead its configuration interface is implemented in a form of Geant4 UI commands.
Such commands may be used in a configuration macrofile on input to a Geant4 application.

With regards to this, one should bear in mind the following:

	Changes of Bertini Cascade parameters must be made before a physics list is instantiated
since the parameters are taken into account when Bertini Cascade constructor is called.

	However, there is currently no guaranteed way to uniformly specify
the Bertini cascade parameters and switches, the physics list, and a variety of other G4UI
options in a single job configuration macro, or to ensure a particular order of their execution.
This will be the subject of further development and is outside the scope of this document.
At present it is better to collect all desired Bertini cascade configuration cards in a dedicated
job configuration macro and to ensure that such macro is processed very early in the workflow.

Alternatively, the Bertini cascade configuration commands can be used in the Geant4 application
C++ code, via the ApplyCommand function of the G4UImanager singleton which belongs to
the geant4/source/intercoms domain.

As mentioned above, the changes to Bertini cascade parameters should be made very early in the job,
in order to custom settings to propagate.

The application should be in the G4State_PreInit state; otherwise changes to Bertini cascade
model parameters will not propagate, and there is no guarantee of a warning message to this effect
(it is also possible to use Idle state but PreInit is the recommended one).

The following UI commands (case sensitive) represent the most "sensitive" parameters and switches:

	/process/had/cascade/crossSectionScale <value> - multiplicative factor applied to the
internal cross sections used in Bertini model of the nucleus;
DEFAULT=1; Limits: 0.05-2.0
Here "internal" means the cross section that an insident particicle sees as it travels through
the target nucleus; it is not the free space cross section. Typical changes in output spectra
over the allowed range can be as large as a factor of 2-3, and the shapes of the spectra may
change as well.

	/process/had/cascade/nuclearRadiusScale <value> - multiplicative factor applied to the
nuclear radius;
DEFAULT=2.82; Limits: 1.0-2.82
Currently the nuclear radius used in Bertini is 2.82 times the radius measured from electron
scattering. Increasing (decreasing) this parameter will increase (decrease) the nuclear volume
and thus decrease (increase) the nuclear density. Over the allowed range a factor of 2 change
in the output spectra is possible.

	/process/had/cascade/fermiScale <value> - adjusts Fermi momentun of bound nucleons by
multiplying it by the above factor;
DEFAULT=0.685; Limits: 0.5-1.0
Increasing (decreasing) this value will change the depth of the nuclear potential seen by protons
and neutrons in the nucleus. This in turn would increase (decrease) the energy of target nucleons
in the nucleus and similarly alter the energy of produced nucleon secondaries. Though not as sensitive
as the cross section and radius parameters, variations of the parameter over this range will produce
noticeable changes in the mean energy of outgoing nucleons.

	/process/had/cascade/shadowingRadius <value> - the so called trailing effect takes into
account the local depletion of nuclear density following an intra-nuclear collision;
DEFAULT=0.; Limits: 0.-2.0
Increasing (decreasing) this value decreases (increases) the likelihood of secondaries being produced.
A value of 0 completely neglects the effect, and a value between 0.7 and 1.0 coresponds to the
effective size of a nucleon.

	/process/had/cascade/usePreCompound 0/1 - switches between Bertini cascade's native deexcitation
model and the Geant4 PreCompound model;
DEFAULT=0 (false)
In some cases switching to PreCompound model may give more accurate results. However, some CPU penatly
is not excluded.

	/process/had/cascade/doCoalescence 0/1 - single nucleons that escape the nucleus after the intra-nuclear
cascade are groupped together into deuterons, 3He, tritons, or alphas;
DEFAULT=1 (true)
This is done to make up a deficit of these particles at energy scales above the evaporation spectra.

	/process/had/cascade/usePhaseSpace 0/1 - switch between Bartini cascade's native phase-space generator
and Kopylov phase-space generator;
DEFAULT=0 (false)

	/process/had/cascade/gammaQuasiDeutScale <value> - miltiplicative factor applied to the
cross section of the process of an intra-nuclear pion absorption on a pair of nucleons that momentarily
come close together;
DEFAULT=1.0; Limits: 0.5-2.0
This is relevant only to modeling gamma-nuclear interactions.
When embedded in a nucleus this cross section is not well-known, but a parameter value of 1.0 corresponds
to its free-space value. The effect of such variations could be significant, but not many studies have
been done.

Additional parameters and switches are the following:

	/process/had/cascade/piNAbsorption <value> - pion absorption on nucleon below certain energy E([image: GeV]);
DEFAULT=0. [image: GeV]

	/process/had/cascade/use3BodyMom 0/1 - use 3-body momentum parametrizations;
DEFAULT=0 (false)

	/process/had/cascade/useTwoParamNuclearRadius 0/1 - calculate nuclear radius as [image: R = C_{1}*A^{1/3} + C_{2}/A^{1/3}];
DEFAULT=0 (false)

	/process/had/cascade/smallNucleusRadius <value> - fixed radius for light ions (A<4);
DEFAULT=8.0

	/process/had/cascade/alphaRadiusScale <value> - fraction of light-ion radius for alphas;
DEFAULT=0.7

	/process/had/cascade/cluster2DPmax <value> - momentum cut in [image: GeV] for [image: pn \rightarrow D];
DEFAULT=0.09 [image: GeV]

	/process/had/cascade/cluster3DPmax <value> - momentum cut in [image: GeV] for [image: pnn \rightarrow T],
DEFAULT=0.108 [image: GeV]

	/process/had/cascade/cluster4DPmax <value> - momentum cut in [image: GeV] for [image: ppnn \rightarrow alpha];
DEFAULT=0.115 [image: GeV]

While Bertini cascade configuration interface does not allow to change model's parameters
in the programmatic C++ way, there is still a possibility to print out desired settings,
e.g. to compare the value of a given parameter before and after the modification.
This can be done with the use of the G4CascadeParameters singleton that belongs to the
geant4/source/processes/hadronic/models/cascade/cascade.

Example usage in a C++ application code:

#include "G4UImanager.hh"
#include "G4StateManager.hh"
#include "G4CascadeParameters.hh"
G4CascadeParameters* bpars = G4CascadeParameters::Instance();
G4cout << " Bertini default: RadiusScale = " << bpars->radiusScale() << G4endl;
G4cout << " Bertini default: UsePreCo = " << bpars->usePreCompound() << G4endl;
G4ApplicationState currentstate = G4StateManager::GetStateManager()->GetCurrentState();
bool ok = G4StateManager::GetStateManager()->SetNewState(G4State_PreInit);
if (ok)
{
 G4UImanager* UIM = G4UImanager::GetUIpointer();
 uim->ApplyCommand("/process/had/cascade/nuclearRadiusScale 1.5");
 uim->ApplyCommand("/process/had/cascade/usePreCompound 1");
 G4cout << " After changes: RadiusScale = " << bpars->radiusScale() << G4endl;
 G4cout << " After changes: UsePreCo = " << bpars->usePreCompound() << G4endl;
}
else
{
 G4cout << " G4StateManager PROBLEM: can NOT change state to G4State_PreInit !" << G4endl;
 G4cout <<
 " Bertini cascade parameters can not be changed unless in the G4State_PreInit state !"
 << G4endl;
}
ok = G4StateManager::GetStateManager()->SetNewState(currentstate);

Last but not least, please pay attention to the order of calls in the above example.
Due to implementation details, it is important to anyhow call G4CascadeParameters::Instance()
before applying any changes; otherwise all changes will be overriden by the default settings
of the Bertini cascade model.

Advanced Interface to Change the Parameters of the Fritiof (FTF) Model

This section provides a list of the configurable parameters and switches currently used
in the Geant4 Fritiof model (FTF), along with explanations of their meaning and effect
on the final state hadron production of the model.
The interface was first introduced in release 10.4, however the functionality, as described in
this document, is only available starting with the release series 10.6.
Guidelines are provided for changing these parameters in order to study the sensitivity of the
model's predictions. More detailed information about the roles that these parameters play in
the model is also provided later in this document, see Changing internal parameters of an existing model: Fritiof (FTF) use-case.

Parameters which can be changed

Parameters have already been determined to produce the best overall description of the validation
data sets used by Geant4. These are referred to as "default" parameters and are listed below.

At present, only a group of parameters and switches involved in modeling interactions of baryons
or pions with nuclei has been made configurable. Other use-cases may follow in the future.
For this reason most of the names of the parameters contains either "BARYON" or "PION" notation.
However, some of the parameters are common for different types of meson projectile (not only pions);
those parameters contain "MESON" in their names.

Parameters can be varied with the use of G4HadronicDeveloperParameters singleton which belongs
to the /geant4/source/processes/hadronic/util domain of the Geant4 source code.
Example usage:

#include "G4HadronicDeveloperParameters.hh"
G4HadronicDeveloperParameters& HDP = G4HadronicDeveloperParameters::GetInstance();

Please bear in mind that when a parameter is modified, a warning message is produced stating that
the value has changed from the default one.

Parameters to control projectile or target diffraction dissociation

In general, the results of hadron-hadron interaction modeled by FTF are hadrons in the excited state.
If one of the final hadrons is in the ground state, the reaction is called "single diffraction dissociation".
If none of the final hadrons is in the ground state (i.e. all are excited), it is called "non-diffractive"
interaction.
The excited hadrons are treated as QCD strings that further decay through the fragmentation mechanism.

The following parameters are involved in modeling excitation of the participating hadron as a QCD string:

	FTF_BARYON_DELTA_PROB_QEXCHG - for baryon projectile, the probability of one or two final particles
to be in the Delta-resonance state due to the quark exchange without excitation of the participating hadrons;
DEFAULT=0.

	FTF_PION_DELTA_PROB_QEXCHG - similar to the above, for pion projectile;
DEFAULT=0.56

	FTF_BARYON_PROB_SAME_QEXCHG - the probability of the same quark exchange between interacting hadrons;
DEFAULT=0.0

	FTF_BARYON_DIFF_M_PROJ - for baryon projectile, threshold for the excited string mass sampling for
the projectile hadron in the diffractive interactions;
DEFAULT=1.16 [image: GeV];
Limits: 1.16 - 3.0 [image: GeV]

	FTF_PION_DIFF_M_PROJ - similar to the above, for pion projectile;
DEFAULT=1. [image: GeV];
Limits: 0.5 - 3.0 [image: GeV]

	FTF_BARYON_NONDIFF_M_PROJ - for baryon projectile, threshold for the excited string mass sampling for
the projectile hadron in the non-diffractive interactions;
DEFAULT=1.16 [image: GeV];
Limits: 1.16 - 3.0 [image: GeV]

	FTF_PION_NONDIFF_M_PROJ - similar to the above, for pion projectile;
DEFAULT=1. [image: GeV];
Limits: 0.5 - 3.0 [image: GeV]

	FTF_BARYON_DIFF_M_TGT - for baryon projectile, threshold for the excited string mass sampling for
the target hadron in the diffractive interactions;
DEFAULT=1.16 [image: GeV];
Limits: 1.16 - 3.0 [image: GeV]

	FTF_PION_DIFF_M_TGT - similar to the above, for pion projectile;
DEFAULT=1.16 [image: GeV];
Limits: 1.16 - 3.0 [image: GeV]

	FTF_BARYON_NONDIFF_M_TGT - for baryon projectile, threshold for the excited string mass sampling for
the target hadron in the non-diffractive interactions;
DEFAULT=1.16 [image: GeV];
Limits: 1.16 - 3.0 [image: GeV]

	FTF_PION_NONDIFF_M_TGT - similar to the above, for pion projectile;
DEFAULT=1.16 [image: GeV];
Limits: 1.16 - 3.0 [image: GeV]

	FTF_BARYON_AVRG_PT2 - for baryon projectile, average transverse momentum squared in the excitation process;
DEFAULT=0.3 [image: (GeV/c)^2];
Limits: 0.08 - 1.0 [image: (GeV/c)^2]

	FTF_PION_AVRG_PT2 - similar to the above, for pion projectile;
DEFAULT=0.3 [image: (GeV/c)^2];
Limits: 0.08 - 1.0 [image: (GeV/c)^2]

Example usage:

G4HadronicDeveloperParameters& HDP = G4HadronicDeveloperParameters::GetInstance();
HDP.Set("FTF_BARYON_NONDIFF_M_PROJ", 2.5);
HDP.Set("FTF_BARYON_AVRG_PT2", 0.75);
HDP.Set("FTF_PION_NONDIFF_M_PROJ", 0.75);
HDP.Set("FTF_BARYON_AVRG_PT2", 0.6);

By default, diffraction is switched OFF for both projectile or target.
This can be changed with the use of the following Boolean switches, e.g.:

HDP.Set("FTF_BARYON_DIFF_DISSO_PROJ", true);
HDP.Set("FTF_BARYON_DIFF_DISSO_TGT", true);
HDP.Set("FTF_PION_DIFF_DISSO_PROJ", true);
HDP.Set("FTF_PION_DIFF_DISSO_TGT", true);

Additionally, as described in greater details later in this document,
FTF implementatuon includes modeling of such processes as quark exchange
with or whithout excitation of participant.
Probability of each such processes is calculated according to the following formula:

[image: P_p=A_1\ e^{-B_1\ y}\ + \ A_2\ e^{-B_2\ y}\ + A_3,]

where [image: y] is the projectile rapidity in the target rest frame, and A's and B's
are numeric parameters that can be configured at run time.
Please be careful here, and bear in mind that these parameters are likely to be correlated.
Work in currently in progress to better determine correlations among parameters and their
validity ranges.
Additional information on this matter will be offered as soon as it becomes available.

Internally within FTF these processes are numbered as process zero, one, etc.,
thus parameters involved in the calculations have in their names notations such
as "PROC0" or similar.
Calculating probability for quark exchange with excitation of participant also involes
an additional multiplier that is also calculated by the above mentioned formula; internally
it is numbered as process number four, thus corresponding parameters have "PROC4" in their names.

The list of these configurable parameters is the following:

	FTF_BARYON_PROC0_A1 - for baryon projectile, the A1 in the probability
formula for quark exchange without excitation; DEFAULT=13.71

	FTF_PION_PROC0_A1 - similar to the above for pion projectile; DEFAULT=150.0

	FTF_BARYON_PROC0_B1 - for baryon projectile, B1 in the probability
formula for quark exchange without excitation; DEFAULT=1.75

	FTF_PION_PROC0_B1 - similar to the above for pion projectile; DEFAULT=1.8

	FTF_BARYON_PROC0_A2 - for baryon projectile, the A2 in the probability
formula for quark exchange without excitation; DEFAULT=-30.69

	FTF_PION_PROC0_A2 - similar to the above for pion projectile; DEFAULT=-247.3

	FTF_BARYON_PROC0_B2 - for baryon projectile, the B2 in the probability
formula for quark exchange without excitation; DEFAULT=3.0

	FTF_PION_PROC0_B2 - similar to the above for pion projectile; DEFAULT=2.3

	FTF_BARYON_PROC0_A3 - for baryon projectile, the A3 in the probability
formula for quark exchange without excitation; DEFAULT=0.0

	FTF_PION_PROC0_A3 - similar to the above for pion projectile; DEFAULT=0.0

	FTF_BARYON_PROC0_ATOP - for baryon projectile, probability of quark exchange without excitation
in case projectile rapidity is less than YMIN (see below); DEFAULT=1.0

	FTF_PION_PROC0_ATOP - similar to the above for pion projectile; DEFAULT=1.0

	FTF_BARYON_PROC0_YMIN - for baryon projectile, if the projectile rapidity is below this threshold,
probability of quark exchange without excitation is set to ATOP (see above);
DEFAULT=0.93

	FTF_PION_PROC0_YMIN - similar to the above for pion projectile; DEFAULT=2.3

	FTF_BARYON_PROC1_A1 - for baryon projectile, the A1 in the probability
formula for quark exchange with excitation; DEFAULT=25.0

	FTF_PION_PROC1_A1 - similar to the above for pion projectile; DEFAULT=5.77

	FTF_BARYON_PROC1_B1 - for baryon projectile, the B1 in the probability
formula for quark exchange with excitation; DEFAULT=1.0

	FTF_PION_PROC1_B1 - similar to the above for pion projectile; DEFAULT=0.6

	FTF_BARYON_PROC1_A2 - for baryon projectile, the A2 in the probability
formula for quark exchange with excitation; DEFAULT=-50.34

	FTF_PION_PROC1_A2 - similar to the above for pion projectile; DEFAULT=-5.77

	FTF_BARYON_PROC1_B2 - for baryon projectile, the B2 in the probability
formula for quark exchange with excitation; DEFAULT=1.5

	FTF_PION_PROC1_B2 - similar to the above for pion projectile; DEFAULT=0.8

	FTF_BARYON_PROC1_A3 - for baryon projectile, the A3 in the probability
formula for quark exchange with excitation; DEFAULT=0.0

	FTF_PION_PROC1_A3 - similar to the above for pion projectile; DEFAULT=0.0

	FTF_BARYON_PROC1_ATOP - for baryon projectile, probability of quark exchange with excitation in case
projectile rapidity is less than YMIN (see below); DEFAULT=0.0

	FTF_PION_PROC1_ATOP - similar to the above for pion projectile; DEFAULT=0.0

	FTF_BARYON_PROC1_YMIN - for baryon projectile, if the projectile rapidity is below this threshold,
probability of quark exchange with excitation is set to ATOP (see above); DEFAULT=1.4

	FTF_PION_PROC1_YMIN - similar to the above for pion projectile; DEFAULT=0.0

	FTF_BARYON_PROC4_A1 - for baryon projectile, the A1 in the probability
formula that determines additional multiplier for quark exchange with excitation; DEFAULT=0.6

	FTF_PION_PROC4_A1 - similar to the above for pion projectile; DEFAULT=1.0

	FTF_BARYON_PROC4_B1 - for baryon projectile, the B1 in the probability
formula that determines additional multiplier for quark exchange with excitation; DEFAULT=0.0

	FTF_PION_PROC4_B1 - similar to the above for pion projectile; DEFAULT=0.0

	FTF_BARYON_PROC4_A2 - for baryon projectile, the A2 in the probability
formula that determines additional multiplier for quark exchange with excitation; DEFAULT=-1.2

	FTF_PION_PROC4_A2 - similar to the above for pion projectile; DEFAULT=-11.02

	FTF_BARYON_PROC4_B2 - for baryon projectile, the B2 in the probability
formula that determines additional multiplier for quark exchange with excitation; DEFAULT=0.5

	FTF_PION_PROC4_B2 - similar to the above for pion projectile; DEFAULT=1.0

	FTF_BARYON_PROC4_A3 - for baryon projectile, the A3 in the probability
formula that determines additional multiplier for quark exchange with excitation; DEFAULT=0.0

	FTF_PION_PROC4_A3 - similar to the above for pion projectile; DEFAULT=0.0

	FTF_BARYON_PROC4_ATOP - for baryon projectile, additional multiplier in the probability
of quark exchange with excitation in case projectile rapidity is less than YMIN (see below);
DEFAULT=0.0

	FTF_PION_PROC4_ATOP - similar to the above for pion projectile; DEFAULT=0.0

	FTF_BARYON_PROC4_YMIN - for baryon projectile, if the projectile rapidity is below this threshold,
additional multiplier in the probability of quark exchange with excitation is set
to ATOP (see above); DEFAULT=1.4

	FTF_PION_PROC4_YMIN - similar to the above for pion projectile; DEFAULT=2.4

Parameters to control nuclear destruction

The Geant4 FTF model uses reggeon cascade in the impact parameter space to simulate production of fast nucleons
in the hadron-nucleus interactions.
After the projectile particle interacts with one of the nucleons in the target nucleus, this "wounded" nucleon
may involve another nucleon in the cascade with the probability that is given as follows:

[image: P(|\vec s_i-\vec s_j|)=C_{nd}\ exp{[-(\vec s_i-\vec s_j)^2/R_c^2]}]

In this formula [image: \vec{s}_i] and [image: \vec{s}_j]
are projections of the radii of i-th and j-th
nucleons on the impact parameter plane, [image: R_c^2=1.5 (fm)^2], and the coefficient [image: C_{nd}]
is defined as follows:

[image: C_{nd}= P_1\ e^{ P_2\ (y-P_3) }/[1 + e^{ P_2\ (y-P_3) }]]

where [image: y] is the projectile rapidity.
The parameter [image: P_1] in the above formula can be a fixed value (DEFAULT), or it can be expressed as a function of

	baryon number of the projectile in the case of the projectile destruction

	number of nucleons in the target nucleus in case of the target destruction

Modeling of momentum distributions of the nucleons involved in the cascade is described in greater details
later in this document; however, one of the characteristics we would like to mention here is the average
transverse momentum squared which can be expressed in a parametric way:

[image: \langle P_T^2 \rangle = C_1 + C_2 \frac{e^{ C_3 \ (y_lab-C_4)}}{ 1. + e^{ C_3\ (y_lab-C_4)}} \ \ \ [(GeV/c)^2]]

The following parameters involved in modeling nuclear destruction in FTF can be varied to study sensitivity of the predictions:

	FTF_BARYON_NUCDESTR_P1_PROJ - for baryon projectile, [image: P_1] in the [image: C_{nd}] definition for the projectile;
DEFAULT=1.0; Limits: 0.0 - 1.0

	FTF_BARYON_NUCDESTR_P1_NBRN_PROJ - for baryon projectile, switch that activates the dependency of the [image: P_1]
for the projectile on the baryon number of the projectile;
DEFAULT=false

	FTF_BARYON_NUCDESTR_P1_TGT - for baryon projectile, [image: P_1] in the [image: C_{nd}] definition for the target;
DEFAULT=1.0; Limits: 0.0 - 1.0

	FTF_MESON_NUCDESTR_P1_TGT - similar to the above, for meson projectile (pion, kaon, etc.);
DEFAULT=0.000481; Limits: 0.0 - 1.0

	FTF_BARYON_NUCDESTR_P1_ADEP_TGT - for baryon projectile, switch that activates the dependency of the "math:P_1
on the number of nucleons in the target;
DEFAULT=false

	FTF_MESON_NUCDESTR_P1_ADEP_TGT - similar to the above, for meson projectile;
DEFAULT=true

	FTF_BARYON_NUCDESTR_P2_TGT - for baryon projectile, [image: P_2] in the [image: C_{nd}] definition for the target;
DEFAULT=4.0; Limits: 2.0 - 16.0

	FTF_MESON_NUCDESTR_P2_TGT - similar to the above, for meson projectile;
DEFAULT=4.0; Limits: 2.0 - 16.0

	FTF_BARYON_NUCDESTR_P3_TGT - for baryon projectile, [image: P_3] in the [image: C_{nd}] definition for the target;
DEFAULT=2.1; Limits: 0.0 - 4.0

	FTF_MESON_NUCDESTR_P3_TGT - similar to the above, for meson projectile;
DEFAULT=2.1; Limits: 0.0 - 4.0

NOTE: Similar parameters [image: P_2] and [image: P_3] for the projectile are not configurable at the time being.

	FTF_BARYON_PT2_NUCDESTR_P1 - for baryon projectile, [image: C_1] in the [image: \langle P_T^2 \rangle] formula;
DEFAULT=0.035; Limits: 0.0 - 0.25

	FTF_MESON_PT2_NUCDESTR_P1 - similar to the above, for meson projectile;
DEFAULT=0.035; Limits: 0.0 - 0.25

	FTF_BARYON_PT2_NUCDESTR_P2 - for baryon projectile, [image: C_2] in the [image: \langle P_T^2 \rangle] formula;
DEFAULT=0.04; Limits: 0.0 - 0.25

	FTF_MESON_PT2_NUCDESTR_P2 - similar to the above, for meson projectile;
DEFAULT=0.04; Limits: 0.0 - 0.25

	FTF_BARYON_PT2_NUCDESTR_P3 - for baryon projectile, [image: C_3] in the [image: \langle P_T^2 \rangle] formula;
DEFAULT=4.0; Limits: 2.0 - 16.0

	FTF_MESON_PT2_NUCDESTR_P3 - similar to the above, for meson projectile;
DEFAULT=4.0; Limits: 2.0 - 16.0

	FTF_BARYON_PT2_NUCDESTR_P4 - for baryon projectile, [image: C_4] in the [image: \langle P_T^2 \rangle] formula;
DEFAULT=2.5; Limits: 0.0 - 4.0

	FTF_MESON_PT2_NUCDESTR_P4 - similar to the above, for meson projectile;
DEFAULT=2.5; Limits: 0.0 - 4.0

	FTF_BARYON_NUCDESTR_R2 - for baryon projectile, [image: R_c^2] in the probability [image: P(|\vec s_i-\vec s_j|)] formula;
DEFAULT=1.5 [image: (fm)^2]; Limits: 0.5 - 2.0 [image: (fm)^2]

	FTF_MESON_NUCDESTR_R2 - similar to the above, for meson projectile;
DEFAULT=1.5 [image: (fm)^2]; Limits: 0.5 - 2.0 [image: (fm)^2]

	FTF_BARYON_EXCI_E_PER_WNDNUCLN - for baryon projectile, excitation energy per wounded nucleon;
DEFAULT=40.0 [image: MeV]; Limits: 0.0 - 100.0 [image: MeV]

	FTF_MESON_EXCI_E_PER_WNDNUCLN - similar to the above, for meson projectile;
DEFAULT=40.0 [image: MeV]; Limits: 0.0 - 100.0 [image: MeV]

	FTF_BARYON_NUCDESTR_DISP - for baryon projectile, dispersion parameter (spread) of the momentum distribution
of the nucleons in the cascade;
DEFAULT=0.3; Limits: 0.1 - 0.4

	FTF_MESON_NUCDESTR_DISP - similar to the above, for meson projectile;
DEFAULT=0.3; Limits: 0.1 - 0.4

Example usage:

G4HadronicDeveloperParameters& HDP = G4HadronicDeveloperParameters::GetInstance();
HDP.Set("FTF_BARYON_NUCDESTR_P1_TGT", 0.05);
HDP.Set("FTF_BARYON_NUCDESTR_P1_ADEP_TGT", true);

Introducing the concept of tunes

Although this is largely a work-in-progress, we introduce here the
possibility to collectively set a group of selected parameters,
also known as "tunes", that are different from the default settings
(the concept is similar to the one used in some Monte Carlo event
generators, e.g. Pythia8).

As of right now, the feature is mainly intended for internal testing and
further study and development. In the future, with more maturity and thorough testing,
such tunes may be offered to users for specific studies and use cases.

Parameter values in a tune are collectively obtained via a global fitting
technique, i.e. via fits of a substantial collection of simulated
distributions to the corresponding experimental thin target data.
Please bear in mind that there are correlations among parameters,
thus the settings within a tune must be used as offered.
Any attempt to change individual parameters within a tune from
the proposed value will most likely lead to a degradation in the
simulated results in an uncontrolled manner.

We currently offer only three such tunes (in addition to the default tune/settings)
but the collection is expected to reasonably grow as more progress is made.
Each tune is identified by either its name or its number (identificator).
The name and/or content of each tune may change from time to time,
as part of the development process.

Tune 0 is the default tune, and is activated as such; nothing special is needed.

Tune 1 is called "baryon-tune-2022-v0" and includes the following:

	FTF_BARYON_EXCI_E_PER_WNDNUCLN = 26.1

	FTF_BARYON_NUCDESTR_P1_TGT = 0.00173

	FTF_BARYON_NUCDESTR_P1_ADEP_TGT = true

	FTF_BARYON_PROC1_A1 = 23.6

	FTF_BARYON_PROC1_A2 = -99.3

	FTF_BARYON_PROC1_B1 = 0.815

	FTF_BARYON_PROC1_B2 = 1.98

This tune has been determined from a set of thin-target data with
proton projectile, and applies to the parameters related to
baryon projectiles; the parameters related to meson projectiles
are kept to their default values.

Tune 2 is called "pion-tune-2022-v0" and includes the following:

	FTF_MESON_EXCI_E_PER_WNDNUCLN = 58.1

	FTF_MESON_NUCDESTR_P1_TGT = 0.001026

	FTF_MESON_NUCDESTR_P1_ADEP_TGT = true

	FTF_PION_PROC1_A1 = 5.84

	FTF_PION_PROC1_B1 = 0.337

	FTF_PION_PROC1_A2 = -7.57

	FTF_PION_PROC1_B2 = 0.44

This tune has been determined from a set of thin-target data with
charged pion projectiles, and applies to the parameters related to
meson projectiles; the parameters related to baryon projectiles
are kept to their default values.

Tune 3 is called "combined-tune-2022-v0" and includes the settings
of both tune 1 (for baryon projectiles) and tune 2 (for pion projectiles).
Please note that, with the current infrastructure, only one tune at a time
can be selected.

If multiple tunes are selected, the first one will be activated,
and the rest will be ignored. This may change in the future as
infrastructure is further developed.

Tune may be activated via either C++ API or UI commands.
Please bear in mind that, in order for the changes to be properly propagated,
the application must be in the G4State_PreInit state.

Example application code, using the C++ API, is as follows:

#include "G4StateManager.hh"
#include "G4FTFTunings.hh"
G4ApplicationState currentstate = G4StateManager::GetStateManager()->GetCurrentState();
bool ok = G4StateManager::GetStateManager()->SetNewState(G4State_PreInit);
// index state
G4FTFTunings::Instance()->SetTuneApplicabilityState(3, 1);
ok = G4StateManager::GetStateManager()->SetNewState(currentstate);

which activates (state "1", second argument of SetTuneApplicationState)
the tune 3 (index "3", first argument of SetTuneApplicationState).

Alternatively, one can get the same result by using one of the following
two UI commands (before "/run/initialize"):

/process/had/models/ftf/selectTuneByIndex 3
/process/had/models/ftf/selectTuneByName combined-tune-2022-v0

Changing internal parameters of an existing model: Fritiof (FTF) use-case

The following sections describe how to change the internal parameters of a hadronic model using the Fritiof
(FTF) nuclear interaction model as an example. As described previously (Advanced Interface to Change the Parameters of the Fritiof (FTF) Model) this
functionality is very much for advanced users and the default settings are the best values according to the
code developers after extensive verifcation and validation.

Warning

Changing these parameters without the guidance of the model developers may significantly alter
or even degrade the model's physics performance. Any publication based on varied parameters must
explicitly state what those values are, along with the physics list used and the Geant4 version.

Total, elastic, inelastic and annihilation cross sections

Parameters of the FTF model are concentrated in G4FTFParameters.cc
located in
geant4/source/processes/hadronic/models/parton_string/diffraction/src

Input parameters of the code are: type of the projectile particle, mass
number and charge of the target nucleus, and the projectile momentum for
elementary projectiles, or momentum per nucleon in the case of a
projectile nucleus (MeV/c).

A simplified Glauber model is used in the code for calculation of the
multiplicity of intra-nuclear collisions. Thus, it is needed to estimate
the average total, elastic and inelastic cross sections for
interactions of a projectile with target protons and neutrons. In the
case of nucleus-nucleus interactions it is needed to know average NN
cross sections (averaged over PP, PN, and NN collisions). According to
the Glauber approximation, changes of the cross sections during a
collision are not considered.

Chips cross sections of elementary interactions is used in the code. A
pointer to the cross sections (FTFxsManager) is determined in the
lines 178 — 183.

The average cross sections of a projectile interactions with protons and
neutrons are determined in the lines 192 — 475. A special
calculations for projectile anti-baryons are presented in the
lines 236 — 357.

According to a developed approach for antibaryon-nucleon interactions
the list of processes shown in the Fig. 41 is
considered.

[image: ../../_images/FTF_Fig1.png]

Fig. 41 Quark flow diagrams of [image: \bar pp]-interactions.

As usual, quarks and anti-quarks are shown by solid lines. Dashed lines
present so-called string junctions. It is assumed that the gluon field
in baryons has a non-trivial topology. This heterogeneity is called a
"string junction". Quark-gluon strings produced in the reaction are
shown by wavy lines.

The diagram of Fig. 41(a)
represents a process with a string junction annihilation and the
creation of three strings. Diagram Fig. 41(b)
describes quark-antiquark annihilation and string creation between the
di-quark and anti-di-quark. Quark-anti-quark and string junction
annihilation is shown in Fig. 41(c).
Finally, one string is created in the process of
Fig. 41(e). Hadrons appear at the fragmentation of
the strings in the same way
that they appear in [image: e^+e^-]-annihilation. One can assume that excited
strings with complicated gluonic field configurations are created in
processes Fig. 41(d) and Fig. 41(f).
If the collision energy is sufficiently small, glueballs can be
formed in the process Fig. 41(f).
Mesons with constituent gluons or with hidden baryon number can be
created in process Fig. 41(f).
Of course the standard FTF processes shown in the bottom of the
figure are also allowed.

In the simplest approach it is assumed that the
energy dependence of the cross sections of these processes vary
inversely with a power of [image: s] as depicted in
Fig. 41. Here [image: s]
is the center-of-mass energy squared. This is dictated by the reggeon
phenomenology. Calculating the cross sections of binary reactions is a
rather complicated procedure (see [Kaidalov_Bin])
because there can be interactions in the initial and final states.
These interactions reflect also on cross sections of other reactions [Uzhinsky_GaloyanPbarP].

The annihilation cross section is given as:

[image: \sigma_{ann}=\sigma_a\ +\ B\ X_b\ +\ C\ X_c\ +\ D\ X_d,]

where [image: X_i] are yields of the diagrams of Fig. 41.
All cross sections are given in mb.

[image: \sigma_a=25\ \sqrt{s}/\lambda^{1/2}(s,m^2_p,m^2_N),\ \ \ \lambda(s,m^2_p,m^2_N)=s^2+m_p^4+m_N^4-2sm_p^2-2sm_N^2-2m_p^2m_N^2,]

[image: X_b=3.13\ +\ 140\ (s_{th}-s)^{2.5}, \ \ \ s\ <\ s_{th},\ \ \ s_{th}=(m_p+m_N+2m_\pi+\delta)^2]

[image: X_b=6.8/\sqrt{s}, \ \ \ \ \ \ \ \ \ \ \ \ s\ >\ s_{th},]

[image: X_c=2\ \frac{\sqrt{s}}{\lambda^{1/2}(s,m^2_p,m^2_N)}\frac{(m_p+m_N)^2}{s},]

[image: X_d=23.3/s.]

Table 1 Table of the coefficients B, C and D.

	
	[image: \bar pp]

	[image: \bar pn]

	[image: \bar np]

	[image: \bar nn]

	[image: \bar \Lambda p]

	[image: \bar \Lambda n]

	[image: \bar \Sigma^-p]

	[image: \bar \Sigma^-n]

	[image: \bar \Sigma^0p]

	[image: \bar \Sigma^0n]

	[image: \bar \Sigma^+p]

	[image: \bar \Sigma^+n]

	B

	5

	4

	4

	5

	3

	3

	2

	4

	3

	3

	4

	2

	C

	5

	4

	4

	5

	3

	3

	2

	4

	3

	3

	4

	2

	D

	6

	4

	4

	6

	3

	3

	2

	2

	2

	2

	2

	0

Table 2 Table of the coefficients B, C and D.

	
	[image: \bar \Xi^-p]

	[image: \bar \Xi^-n]

	[image: \bar \Xi^0p]

	[image: \bar \Xi^0n]

	[image: \bar \Omega^-p]

	[image: \bar \Omega^-n]

	B

	1

	2

	2

	1

	0

	0

	C

	1

	2

	2

	1

	0

	0

	D

	0

	0

	0

	0

	0

	0

The coefficients B, C and D
are pure combinatorial coefficients calculated on the assumption that
the same conditions apply to all quarks and anti-quarks. For example, in
[image: \bar pp]
interactions there are five possibilities to annihilate a quark and an
anti-quark, and six possibilities to annihilate two quarks and two
anti-quarks. Thus, [image: B=C=5] and [image: D=6].
Note that final state particles in the process of
Fig. 41(b) can coincide with initial state particles.
Thus the true elastic cross
section is not given by the experimental cross section.

At [image: P_{lab} < 40 \mathrm{MeV/c}] anti-proton-nucleon cross sections are:

[image: \sigma^{tot}=1512.9,\ \ \sigma^{el}=473.2,\ \ \sigma_{a}=625.1,\ \ \sigma_{b}=9.78,\ \ \sigma_{c}=49.99,\ \ \sigma_{d}=6.61.]

All cross sections are given in [mb].

At [image: P_{lab} < 40] MeV/c, [image: \sigma_b] must be equal 0 for
[image: \bar pp]-interactions because the process
[image: \bar pp \rightarrow \bar nn] is impossible at these energies.
It is not so for [image: \bar nn] interactions because the process
[image: \bar nn \rightarrow \bar pp] can take place. In the case
[image: \bar np] interactions, the process "b" will lead to elastic
scattering which is not considered. The parameterizations are presented in the
lines 236 — 357. Their changes influence on
[image: \bar pp] channel cross sections. Thus, the changes must be done with caution.

To complete the cross section calculations, [image: \sigma_{FTF}]
responsible for processes presented in bottom row of Fig. 41
is determined (line 346) as:

[image: \sigma_{FTF}= 36\ (1-s_{th}/s), \ \ \ [mb],]

where [image: s_{th}] is the threshold energy of meson production
[image: \left(m_{pr} + m_{tr} + m_\pi + 80 \right)^2] [MeV].

After that, after line 478, needed quantities are stored in G4FTFParameters class:

SetTotalCrossSection(Xtotal);
SetElastisCrossSection(Xelastic);
SetInelasticCrossSection(Xtotal - Xelastic);

SetProbabilityOfElasticScatt(Xtotal, Xelastic);
SetRadiusOfHNinteractions2(Xtotal/pi/10.0);

SetProbabilityOfAnnihilation(Xannihilation / (Xtotal - Xelastic));

SetSlope(Xtotal*Xtotal/16.0/pi/Xelastic/0.3894);
SetGamma0(GetSlope()*Xtotal/10.0/2.0/pi);

// Parameters of elastic scattering
// Gaussian parametrization of elastic scattering amplitude assumed
SetAvaragePt2ofElasticScattering(1.0/(Xtotal*Xtotal/16.0/pi/Xelastic/0.3894)

G4double Xinel = Xtotal - Xelastic;

Cross sections of elementary processes

The Fritiof model [Fritiof1], [Fritiof2] assumes that all hadron-hadron
interactions are binary reactions,
[image: h_1 + h_2 \rightarrow h_1^\prime + h_2^\prime] where
[image: h_1^\prime] and [image: h_2^\prime] are excited states of the hadrons with
discrete or continuous mass spectra (see
Fig. 42). If one of the final hadrons is in its
ground state ([image: h_1 +h_2 \rightarrow h_1 + h_2^\prime])
the reaction is called "single diffraction dissociation",
and if neither hadron is in its ground state it is called
a "non-diffractive" interaction.

[image: ../../_images/FTF_Fig2.png]

Fig. 42 Non-diffractive and diffractive interactions considered in the
Fritiof model.

The excited hadrons are considered as QCD-strings, and the corresponding
LUND-string fragmentation model is applied in order to simulate their
decays.

The key ingredient of the Fritiof model is the sampling of the
string masses. In general, the set of final states for the interactions
can be represented by Fig. 43,
where samples of possible string masses are shown. There is a point
corresponding to elastic scattering, a group of points which represents
final states of binary hadron-hadron interactions, lines corresponding
to the diffractive interactions, and various intermediate regions. The
region populated with the red points is responsible for the
non-diffractive interactions. In the model, the mass sampling threshold
is set equal to the ground state hadron masses, but in principle the
threshold can be lower than these masses. The string masses are sampled
in the triangular region restricted by the diagonal line corresponding
to the kinematical limit [image: M_1 + M_2 = E_{cms}]
where [image: M_1] and [image: M_2]
are the masses of the
[image: h_1^\prime] and [image: h_ 2^\prime]
hadrons, and also of the threshold lines. If a point is below the string
mass threshold, it is shifted to the nearest diffraction line.

[image: ../../_images/FTF_Fig3.png]

Fig. 43 Diagram of the final states of hadron-hadron interactions.

Unlike the original Fritiof model, the final state diagram of the
current model is complicated, which leads to a non-straightforward mass
sampling algorithm. This will be considered below. The original model
had no points corresponding to elastic scattering or to the binary final
states. As it was known at the time, the mass of an object produced by
diffraction dissociation, [image: M_x], for example from the reaction
[image: p+p \rightarrow p + X], is distributed as
[image: dM_x / M_x \propto dM_x^2 / M_x^2], so it was natural to assume that
the object mass distributions in all
inelastic interactions obey the same law. This can be re-written using
the light-cone momentum variables, [image: P^+] or [image: P^-],

[image: P^+=E+p_z,\ \ \ P^-=E-p_z,]

where [image: E] is the energy of a particle, and
[image: p_z] is its longitudinal momentum along the collision axis. At large energy
and positive [image: p_z] ,
[image: P^- \simeq (M^2 + P_T^2) / 2p_z]. At negative [image: p_z],
[image: P^+ \simeq (M^2 + P_T^2) / 2|p_z|].
Usually, the transferred transverse momentum, [image: P_T],
is small and can be neglected. Thus, it was assumed that
[image: P^-] and [image: P^+]
of a projectile and target associated hadron, respectively, are distributed as

[image: dP^-/P^-,\ \ \ dP^+/P^+.]

A gaussian distribution was used to sample [image: P_T].

In the case of hadron-nucleus or nucleus-nucleus interactions it was
assumed that the created objects can interact further with other nuclear
nucleons and create new objects. Assuming equal masses of the objects,
the multiplicity of particles produced in these interactions will be
proportional to the number of participating nuclear nucleons, or to the
multiplicity of intra-nuclear collisions. Due to this, the multiplicity
of particles produced in hadron-nucleus or nucleus-nucleus interactions
is larger than that in hadron-hadron ones. The probabilities of multiple
intra-nuclear collisions were sampled with the help of a simplified
Glauber model. Cascading of secondary particles was not considered.

Because the Fermi motion of nuclear nucleons was simulated in a simple
manner, the original Fritiof model could not work at
[image: P_{lab} <] 10 -- 20 GeV/c.

It was assumed in the model that the created objects are quark-gluon
strings with constituent quarks at their ends originating from the
primary colliding hadrons. Thus, the LUND-string fragmentation model was
applied for a simulation of the object decays. It was assumed also that
the strings with sufficiently large masses have "kinks" -- additional
radiated gluons. This is very important for a correct reproduction of
particle multiplicities in the interactions.

All of the above assumptions were reconsidered in the implementation of the Geant4
Fritiof model, and new features were added. These will be presented below.

[image: ../../_images/FTF_Fig4.png]

Fig. 44 Quark flow diagrams of [image: \pi N] interactions.

The original Fritiof model contains only the pomeron exchange process
shown in Fig. 44(d).
It would be useful to extend the model by adding the exchange
processes shown in Fig. 44(b) and
Fig. 44(c), and the annihilation process of
Fig. 44(a). This could probably be done by introducing a
restricted set of
mesonic and baryonic resonances and a corresponding set of parameters.
This procedure was employed in the binary cascade model of Geant4 (BIC) [BIC]
and in the Ultra-Relativistic-Quantum-Molecular-Dynamic model (UrQMD) [UrQMD1], [UrQMD2].
However, it is complicated to use this solution for the simulation of
hadron-nucleus and nucleus-nucleus interactions. The problem is that one
has to consider resonance propagation in the nuclear medium and take
into account their possible decays which enormously increases computing
time. Thus, in the current version of the FTF model only quark exchange
processes have been added to account for meson and baryon interactions
with nucleons, without considering resonance propagation and decay. This
is a reasonable hypothesis at sufficiently high energies.

For each projectile hadrons the following probabilities are set up:

	Probability of quark exchange process without excitation of
participants (Fig. 44(b)); (Proc# 0)

	Probability of quark exchange process with excitation of participants
(Fig. 44(c)); (Proc# 1)

	Probability of projectile diffraction dissociation; (Proc# 2)

	Probability of target diffraction dissociation. (Proc# 3)

All these probabilities have the same functional form:

[image: P_p=A_1\ e^{-B_1\ y}\ + \ A_2\ e^{-B_2\ y}\ + A_3,]

where [image: y] is the projectile rapidity in the target rest frame.

For each projectile hadron and for each possible process,
SetParams method is called for setting up the parameters
[image: A_1] , [image: B_1] , [image: A_2] , [image: B_2], [image: A_3] .
For projectile baryons, this is implemented in
lines 524 — 542 .

// Proc# A1 B1 A2 B2 A3 Atop Ymin
SetParams(0, 13.71, 1.75, -214.5, 4.25, 0.0, 0.5 , 1.1);
SetParams(1, 25.0 , 1.0 , -50.34, 1.5 , 0.0, 0.0 , 1.4);
if (Xinel > 0.0) {
 SetParams(2, 6.0/Xinel, 0.0 ,-6.0/Xinel*16.28, 3.0 , 0.0, 0.0 , 0.93);
 SetParams(3, 6.0/Xinel, 0.0 ,-6.0/Xinel*16.28, 3.0 , 0.0, 0.0 , 0.93);
 SetParams(4, 1.0 , 0.0 , -2.01, 0.5 , 0.0, 0.0 , 1.4);
} else {
 SetParams(2, 0.0, 0.0 , 0.0 , 0.0 , 0.0, 0.0 , 0.0);
 SetParams(3, 0.0, 0.0 , 0.0 , 0.0 , 0.0, 0.0 , 0.0);
 SetParams(4, 0.0, 0.0 , 0.0 , 0.0 , 0.0, 0.0 , 0.0);
}
if (AbsProjectileBaryonNumber > 1 || NumberOfTargetNucleons > 1) {
 SetParams(2, 0.0, 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0);
 //SetParams(3, 0.0, 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0);
}

Proc# are the quark exchange without participant excitation (0), the quark
exchange with participant excitation (1), projectile diffraction (2),
target diffraction (3). The probability of the quark exchange with
participant excitation has an additional multiplier (Proc#=4).
Probability of non-diffractive interactions is
[image: P_{nd} =1-P_0 -P_1 *P_4 - P_2 -P_3].

If the target is a nucleus, [image: P_2] is set to zero, because it is not clear
up to now how to deal with projectile diffraction on nuclei. This is implemented in
lines 537 — 542.

Due to quark exchange without participant excitation one or two final
particles can be in [image: \Delta] resonance state. The probability of this is
set up in the line 543: SetDeltaProbAtQuarkExchange(0.0);.

Next lines: 544 — 548, set up a probability of the same quark's exchange
between interacting hadrons.

if (NumberOfTargetNucleons > 26) {
 SetProbOfSameQuarkExchange(1.0);
} else {
 SetProbOfSameQuarkExchange(0.0);
}

An exchange with the same quark in baryon-baryon interactions is
expected to be suppressed at low energies. It cannot be so at high
energies. The energy dependence of the parameter and its influence on
final results is not yet well studied.

Using the probability of the same
quark's exchange, one can obtain the yield to the elastic scattering
cross section. Thus, self-consistent change of the parametrization of
the elastic cross section can be needed.

Parameters of participating hadron excitations

In the lines 549 — 555 the parameters of the excitations are set up.:

SetProjMinDiffMass(1.16); // GeV
SetProjMinNonDiffMass(1.16); // GeV
SetTarMinDiffMass(1.16); // GeV
SetTarMinNonDiffMass(1.16); // GeV
SetAveragePt2(0.15); // GeV^2
SetProbLogDistrPrD(0.3);
SetProbLogDistr(0.3);

The first line determines the string mass sampling threshold (see Fig. 43)
in diffractive processes. For baryons, it is
[image: 1160=m_N +m_\pi + 80 [\mathrm{MeV}]].
The second line is the analogous threshold for non-diffractive
processes. The third and fourth lines set up analogous values for the
target nucleon. A change of the parameters will lead to a change of the
threshold behaviour of mass distribution in the reaction
[image: p+p \rightarrow p+X].

An average transverse momentum in the excitation is set up in the
fifth line. Its change will change behaviour of particle distributions
at large [image: x_F]. For pure diffractive processes the average is determined in
G4ElasticHNScattering as for the elastic scattering. It is known that the slope of
[image: p_T] distribution in diffraction processes ([image: p+p \rightarrow p+X],
for example) depends on the produced mass of system [image: X]. Here an improvement
can be introduced.

Parameters set up in lines sixth and seventh are very important for a correct description of
produced particles multiplicity in non-diffractive interactions. It is
assumed in the code that mass distribution of strings produced in
non-diffractive interactions has the form:

[image: dW/dP^-=\alpha \ \frac{ln(M_{max}/M_{min})}{M^2} \ + \ (1-\alpha)/(M_{max}-M_{min}).]

[image: \alpha] can be different for projectile and target hadrons. The sixth line
sets up the parameter for a projectile hadron, and the seventh line for
a target hadron. A variation of the parameters can have an essential
influence on multiplicity of produced particles.

The analogous lines are presented for each type of projectile hadron.

Nuclear destruction parameters

The nuclear destruction parameters are set up in the
lines 672 — 717 . For a meson projectile they are:

if (ProjectileabsPDGcode < 1000) { // Meson projectile
 SetMaxNumberOfCollisions(Plab, 2.0);
 SetCofNuclearDestruction(1.0*
 G4Exp(4.0*(Ylab - 2.1))/(1.0 + G4Exp(4.0*(Ylab - 2.1))));
 SetR2ofNuclearDestruction(1.5*fermi*fermi);
 SetDofNuclearDestruction(0.3);
 SetPt2ofNuclearDestruction((0.035 + 0.04*G4Exp(4.0*(Ylab - 2.5))/
 (1.0 + G4Exp(4.0*(Ylab - 2.5))))*GeV*GeV);
 SetMaxPt2ofNuclearDestruction(1.0*GeV*GeV);
 SetExcitationEnergyPerWoundedNucleon(40.0*MeV);
}

The second line introduces the maximum number of intra-nuclear
collisions used as a correction of the Abramovski-Gribov-Kancheli (AGK)
cutting rules (see Geant4 Physics Reference Manual).

The FTF model uses
the reggeon cascading for simulation of fast nucleon production in
hadron-nucleus interactions. As known, the Glauber approximation used in
the Fritiof model and in the other string models does not provide enough
amount of intra-nuclear collisions for a correct description of nuclear
destruction. Additional cascading in nuclei is therefore needed. The
usage of standard cascade for secondary particle interactions would lead
to a too large multiplicity of produced particles. Thus, in Ref. [RTIM1] and [RTIM2]
it was proposed to use reggeon cascading in the impact parameter space.
For its description it is needed to determine the probability to involve
a nuclear nucleons into the "cascade". It is obvious that the
probability depends on the difference of impact coordinates of new and
previous involved nucleons. Looking at the yield of reggeon enhanced
diagrams, the functional form of the probability was chosen as:

[image: P(|\vec s_i-\vec s_j|)=C_{nd}\ exp{[-(\vec s_i-\vec s_j)^2/R_c^2]},]

where [image: \vec{s}_i] and [image: \vec{s}_j]
are projections of the radii of i-th and j-th
nucleons on the impact parameter plane.

The "cascade" is initiated by primary involved nucleons. These
nucleons are determined with the help
of the Glauber approach. All involved nucleons are ejected from nuclei.
The cascade looks like that: a projectile particle interacts with some
intra-nuclear nucleons. These nucleons are called "wounded" or
"participating" nucleons. The nucleons initiate the cascade. A wounded
nucleon can involve a spectator nucleon into the cascade with the
probability [image: P].
The latter one can involve another nucleon. The second nucleon can
involve a third one and so on. This algorithm is implemented in the FTF
model.

We have tuned [image: C_nd] using the HARP-CDP data on proton production in the
[image: p+Cu] interactions [HARP_CDP]. According to our estimations,

[image: C_{nd}= a \ A\ e^{4\ (y-2.1)}/[1 + e^{4\ (y-2.1)}],\ \ \ R_c^2=1.5 \ \ (fm)^2.]

where [image: y] is the projectile rapidity. The value 2.1, standing in the exponents,
corresponds to [image: P_{lab} \sim 4 \mathrm{GeV/c}], which is the middle
of the transition region between low
and high energies.

The formula is implemented in the third and fourth
lines. Its parameters, of course, can be changed to improve description
of the fast nucleon production in the target fragmentation region.

The parameters [image: C_nd] and [image: R_c] are strongly correlated.
To avoid this, [image: R_c] was fixed (fifth line).

Momentum distribution of wounded and involved
nucleons of a nucleus is sampled according to the distribution:

[image: dW \propto \prod^{M_N}_{i=1}\ exp(-(x-1/A)^2/(d/A)^2)\ exp(-\vec P_T^2/\langle P_T^2 \rangle)\ dx\ d^2P_T,]

where [image: M_N] is the multiplicity of involved nucleons,
[image: x] is the light-cone momentum fraction carried by the nucleon relative to
light-cone momentum of the nucleus, [image: d] is the dispersion parameter
responsible for a spread of the momentum distribution,
[image: \vec{P}_T] is the transverse momentum, [image: \langle P_T^2 \rangle]
is the average [image: P_T] squared. [image: d]
is setting up in the sixth line. Possible value of [image: d] can be 0.1 — 0.4.

[image: \langle P_T^2 \rangle] is determined in the lines 7, 8. Again, an expression
giving asymptotically constant value is used:

[image: \langle P_T^2 \rangle = 0.035+0.04 \frac{e^{4\ (y_lab-2.5)}}{1+e^{4\ (y_lab-2.5)}}, \ \ \ [(GeV/c)^2].]

[image: \langle P_T^2 \rangle] must be small at low energies, and grows up as energy increase. All
coefficients in the expression can be tuned. Their preliminary values
were determined from the HARP-CDP experimental data.

The last, tenth line sets up the yield of an involved nucleon to the
excitation energy of a nuclear residual in MeV. The commented
lines 719 — 752 are needed for testing purposes, for easily setting up of the
parameters.

Changing parameters of an existing model: Lund use-case

The main parameters of the Geant4 LUND string fragmentation model are in
the file G4LundStringFragmentation.cc located in
geant4/source/processes/hadronic/models/parton_string/hadronization/src.

The main method of the class is FragmentString
which is called by the class G4ExcitedStringDecay.
The input parameter of the method is an object type G4ExcitedString.
At the beginning of this method it is checked that the string can
fragment (line 537, !IsFragmentable(&aString)).
If the mass of the string does not allow a two particles decay, then
the string is considered as a single hadron out of mass-shell. The
minimal mass of the string that can decay is determined in the method
SetMinimalStringMass (line 413).

If the string can fragment, the main routine starts to work --
Loop_toFragmentString
. The loop is working until it is decided to stop fragmentation of the
string in the method StopFragmenting (lines 643 — 655).
There are two important parameters in the method:

G4bool G4LundStringFragmentation::StopFragmenting(const G4FragmentingString * const string)
{
 SetMinimalStringMass(string);
 if (string->FourQuarkString())
 {
 return G4UniformRand() < G4Exp(-0.0005*(string->Mass() - MinimalStringMass));
 } else {
 return G4UniformRand() < G4Exp(-0.66e-6*(string->Mass()*string->Mass() -
 MinimalStringMass*MinimalStringMass));
 }
}

"0.0005" and "0.66e-6". The first one is responsible for the energy
dependence of cross sections of the processes:
[image: \bar p + p \rightarrow \bar q \bar q + qq \rightarrow h_1 + h_2].
The second one determines the energy dependence of cross sections for
hadronic interactions at low energies.

If the fragmentation is not stopped, the code is trying to create a
hadron splitting the string (line 1033,
G4KineticTrack * Hadron=Splitup(currentString,newString)).
The method G4VLongitudinalStringDecay::Splitup
samples a side of the string decay: left or right string ends. Depending
on type of a quark on the decaying end, a quark splitting, or a di-quark
splitting is called. After them, a produced hadron momentum is
determined in the method SplitEandP.

The method QuarkSplitup is implemented in G4VLongitudinalStringDecay
class. There can be two possibilities:
[image: q \rightarrow h(q \bar q^\prime) + q^\prime] and
[image: q \rightarrow B(q\ (qq)^\prime) + (\bar q \bar q)^\prime].
A quark-antiquark pair is produced from the vacuum in the first case,
and a meson [image: h] appears. A di-quark-anti-diquark pair is produced
from the vacuum in the second case, and a baryon [image: B]
appears. The probability of the second case is given by the parameter
DiquarkSuppress inherited from the parent class
G4VLongitudinalStringDecay. It is reset in G4LundStringFragmentation.cc
(line 69, SetDiquarkSuppression(0.05)). The probability of the first case is
[image: 1-DiquarkSuppress].
The pairs created in the first case can consist of light quarks
([image: u\bar u] , [image: d\bar d]), or strange quarks ([image: s\bar s]).
The probability of the last possibility is
[image: StrangeSuppress/(2+StrangeSuppress)]. The parameter StrangeSuppress
is set up in G4LundStringFragmentation.cc
(line 395, SetStrangenessSuppression(0.46)).
By increasing this parameter the strange meson production increases.

At creation of the diquark-anti-diquark pair, the flavors of both quarks
are sampled independently. Thus, the probability to produce a strange
baryon in central region is roughly proportional to StrangeSuppress.

The created meson can be a pseudo-scalar, or pseudo-vector one. The
probability of a pseudo-scalar meson creation (pspin_meson)
is set up in the parent class - G4VLongitudinalStringDecay (see
line 82 in G4VLongitudinalStringDecay.cc). The probability of a
pseudo-vector meson creation is 1-pspin_meson.

The created baryon can belong to triplet or octet multiplets. The
probability of the triplet state is given by the parameter
pspin_barion determined in the parent class G4VLongitudinalStringDecay
(line 85 of G4VLongitudinalStringDecay.cc). It is foreseen the
possibility to change pspin_barion in the
G4LundStringFragmentation.cc (line 176, //pspin_barion=0.75;).

Warning

It is not recommended to change pspin_meson and pspin_barion!

In the method G4LundStringFragmentation::DiQuarkSplitup two
possibilities are considered:
[image: q_1q_2 \rightarrow h(q_1 \bar q^\prime) + q^\prime q_2]
and
[image: q_1q_2 \rightarrow B(q_1q_2 \ q^\prime) + \bar q^\prime].
The probability of the first process is
regulated by the parameter DiquarkBreakProb. It is set up in
G4LundStringFragmentation.cc (line 67,
SetDiquarkBreakProbability(0.05)). This parameter is responsible for
the meson production in hadronic interactions at large values
[image: |x_F|] .

The StrangeSuppress parameter is changed for the second process (see
line 1487, StrangeSuppress=0.43).

After the creation of a hadron its momentum is determined in the method
SplitEandP which has as input the type of the produced hadron and
the string, and as input-output the residual string left after the
hadron momentum sampling. At the beginning, only the quark content of
the residual string is known. If the hadron mass plus a minimal mass of
the residual string is larger than the mass of the initial string, then
the sampling of the hadron is repeated as described above. If it is not
so, an attempt to determine the hadron momentum is undertaken.

First of all, the transverse momentum of the hadron is sampled. The
transverse momentum distribution is given by the formula:

[image: dW \propto e^{-p_T^2/<p_T^2>}\ d^2p_T.]

If the sum of the transverse mass of the hadron and the transverse mass
of the residual string is larger than the initial string mass, then the
attempt is repeated. If it is not so, the longitudinal momentum of the
hadron is sampled with the help of the GetLightConeZ method
(lines 928 — 981).

The LUND string fragmentation functions is implemented in
GetLightConeZ. The method gives light-cone-momentum fraction of the
initial string carried away by the hadron.

[image: F(z) \propto \frac{1-z}{z}\ e^{-a\ M^2_T/z}.]

[image: a=0.7 [\mathrm{GeV}^{-2}]] for quark fragmentation,
and for a production of a meson by a di-quark (line 941).
The di-quark fragmentation function is assumed to be a flat distribution between
[image: z_{min}] and [image: z_{max}] (line 978).

When the fragmentation of a string is stopped, SplitLast
method (lines 658 — 753) is called. Depending of the quark content of the string,
Diquark_AntiDiquark_belowThreshold_lastSplitting, or
Diquark_AntiDiquark_aboveThreshold_lastSplitting, or
Quark_AntiQuark_lastSplitting, or
Quark_Diquark_lastSplitting
is called. The methods determine the types of the two last produced
particles. After that, 4-momentum of the particles are calculated
(Sample4Momentum , line 744). If at least one of the two final
hadrons is a baryon, an isotropic decay is simulated with a probability
ProbIsotropy (line 764),

[image: ProbIsotropy= (M_N/M_{string})^4, \ M_N=938\ [MeV].]

The power 4 and functional form of the dependence can be tuned. It can
reflect on angular distributions of baryons in annihilation processes,
or in low energy interactions.

If anisotropic decay happens, then the [image: p_T]
of final hadrons is simulated as before.

For the sampling of the two final hadrons special arrays are introduced in the
lines 81 — 375.

	1

	The same can be achieved with template specialisations with slightly
improved CPU performance but at the cost of significantly more
complex designs and, with present compilers, significantly reduced
portability.

	#1

	https://geant4.web.cern.ch/docs/

Generic Event Biasing

Introduction

This section presents the generic biasing classes which have been
introduced since release 10.0. Theses classes are meant to virtually
allow any type of process-level based biasing.

In 10.0 and 10.1, only PostStep biasing actions are possible, which
allows:

	Physics process biasing of:

	occurrence law, i.e. biasing acting on the process
PostStepGetPhysicalInteractionLength(...)
level;

	final state production, i.e. biasing acting on the process
PostStepDoIt(...)

	Biasing of non-physics type:

	Where by that we mean biasing actions which act on particles, but
are not modifying a physics process behaviour

	Splitting and killing are the important example of such cases

Design of Generic Biasing

We have decided to split the actual biasing actions (change
probability occurrence of a process, change its final state generation,
split, kill, etc...) from the decisions about these actions to be
taken. The reason for this is that several biasing actions are often
needed to build one biasing technique, these actions having to be
selected along some specific logic of the technique.

For example, a technique like the "force collision" of MCNP involves a
splitting, a force interaction of one copy in the volume and a force
free flight (under zero weight) of the other copy in the volume.

The classes which provides the interfaces for these biasing actions and
decisions are respectively:

	G4VBiasingOperation

	G4VBiasingOperator

A third class, G4BiasingProcessInterface
provides the interface between these classes and the stepping.

The G4VBiasingOperation Interface Class

G4VBiasingOperation defines two types of methods:

	methods for physics-based biasing:

	virtual const G4VBiasingInteractionLaw* ProvideOccurenceBiasingInteractionLaw(const G4BiasingProcessInterface* /* callingProcess */, G4ForceCondition& /* proposeForceCondition */) = 0;

	which is discussed in more details below (Physics Process Occurrence Biasing)

	virtual G4VParticleChange* ApplyFinalStateBiasing(const G4BiasingProcessInterface* /* callingProcess */, const G4Track* /* track */, const G4Step* /* step */, G4bool& /* forceBiasedFinalState */) = 0;

	which is meant for final state biasing.

	the biasing operation gets called (by the
G4BiasingProcessInterface callingProcess)
and has to return a biased particle change. This one should
take care of providing the proper weight values for the biasing
applied.

	methods for non-physics biasing:

	virtual G4double DistanceToApplyOperation(const G4Track* /* track */, G4double /* previousStepSize */, G4ForceCondition* /* condition */) = 0;

	which returns the distance at which the operation must be
applied, and returns also the force condition for this.

	the returned values (distance, force condition) are returned to
the stepping manager by the the
G4BiasingProcessInterface callingProcess
to make the biasing operation to compete for limiting the step.

	virtual G4VParticleChange* GenerateBiasingFinalState(const G4Track* /* track */, const G4Step* /* step */) = 0;

	called if the operation has limited the step.

	must return the final state generated by the operation.

The G4VBiasingOperator Interface Class

The G4VBiasingOperator class is meant to define the interface to
pilot biasing operations. It selects biasing operations or sequences of
biasing operations to build up the logic of a specific biasing
technique. It is messaged by each
G4BiasingProcessInterface callingProcess instance, which pass their
"identity" through their own pointer values. The operator has hence all
the necessary information for taking decisions.

In addition, since 10.1, the
G4BiasingProcessInterface callingProcess instances do "anticipated"
calls to their underneath wrapped physics process (if any) : the first
of the G4BiasingProcessInterface callingProcess instance, trigger
calls to all PostStepGetPhysicalInteractionLength(...) methods of
biased processes. In this way, all process cross-sections have been
updated before the first call to the biasing operator. This one has
hence all ready-to-use physics information the first it is messaged in
the step by the first G4BiasingProcessInterface callingProcess
instance.

The G4VBiasingOperator class defines the following interface:

	virtual G4VBiasingOperation* ProposeNonPhysicsBiasingOperation(const G4Track* track, const G4BiasingProcessInterface* callingProcess) = 0;

	This method is called by each
G4BiasingProcessInterface
instance which does not hold/wrap a physics process.

	The G4VBiasingOperation
returned will have its
DistanceToApplyOperation(...) and
GenerateBiasingFinalState(...)
methods called at proper times (post step GPIL and post step DoIt
times, respectively) by the
G4BiasingProcessInterface callingProcess .

	virtual G4VBiasingOperation* ProposeOccurenceBiasingOperation(const G4Track* track, const G4BiasingProcessInterface* callingProcess) = 0;

	The G4VBiasingOperation returned will have its
ProvideOccurenceBiasingInteractionLaw(...)
called to get the biased interaction law to be used.

	This method is called at the
PostStepGetPhysicalInteractionLength(...) level.

	virtual G4VBiasingOperation* ProposeFinalStateBiasingOperation(const G4Track* track, const G4BiasingProcessInterface* callingProcess) = 0;

	The G4VBiasingOperation returned will have its
ApplyFinalStateBiasing(...)
called to generated the physics-based biased final state.

	This method is called at the PostStepDoIt(...) level.

Physics Process Occurrence Biasing

The occurrence biasing is the biasing which affects the probability for a
physics process to occur. For now, we discuss only the case of neutral
particles, i.e., having no continuous energy loss along a step. The case
of charged particles is expected to be treated in later releases.

The process occurrence is driven by the exponential law, which parameter
in Geant4 is the process mean free path [image: \lambda], which is also the inverse
of the cross-section [image: \sigma]. The (analog or natural) probability density
function (pdf) of interactions is given by
[image: p_\mathrm{a}(l) = \sigma_\mathrm{a} \exp(-\sigma_\mathrm{a}l)],
where [image: l] is
the distance at which the interaction occurs, and where we have
relabelled [image: \sigma] as [image: \sigma_\mathrm{a}]. In Geant4, volumes are made of a single
material, meaning that [image: \sigma_\mathrm{a}] does not depend on [image: l] : at some
position, starting point of a step, the track "sees" the same
cross-section at all positions [image: l] in the volume.

The occurrence biasing consists in substituting [image: p_\mathrm{a}(l)] by
some arbitrary biased interaction law [image: p_\mathrm{b}(l)].

Formalism for occurrence biasing

More details about the formalism will be provided in the physics
reference manual biasing related part (to come).

An arbitrary interaction law [image: p_\mathrm{b}(l)] can be recasted in term
of an "effective" cross-section [image: \sigma_\mathrm{b}(l)], which depends on
[image: l] in general, as

	[image: p_\mathrm{b}(l) = \sigma_b(l) \exp(-\int \sigma_\mathrm{b}(s)ds] ,
where the integration runs over [image: [0,l]],

	where [image: \sigma_\mathrm{b}(l)] is given by [image: \sigma_\mathrm{b}(l) = p_\mathrm{b}(l) / P_\mathrm{NI,b}(l)]

	where [image: P_\mathrm{NI,b}(l)]
is the probability for non-interaction along segment [image: [0,l]]
and is given by
[image: P_\mathrm{NI,b}(L)l= 1-l p_\mathrm{b}(s)ds = \exp(-\int \sigma_\mathrm{b}(s) \mathrm{d}s)]
where the integration runs over [image: [0,l]].

which is the formalism that corresponds to non-constant cross-sections.

When applying this formalism to the analog pdf [image: p_\mathrm{a}(l)], we
simply have [image: \sigma_\mathrm{b}(l) = \sigma_\mathrm{a}] and
[image: P_\mathrm{NI,b}(l) = \exp (-\sigma_\mathrm{a}l)] ,
as this must.

In contrast with the analog case, the "effective" cross-section may
depend on [image: l], even in a volume made of single material. An example of
this is the forced interaction: if it is decided that the interaction of
a process, with analog cross-section [image: \sigma_\mathrm{a}] , will be forced and
will happen somewhere on the segment [image: [0,L]], then we have

	Forced interaction over segment [image: [0,L]] case:

	[image: p_\mathrm{b}(l) = \sigma_\mathrm{a} \exp (-\sigma_\mathrm{a} l / (1- \exp(-\sigma_\mathrm{a}L))] ,

	[image: P_\mathrm{NI,b}(l) = 1 - (1-\exp(-\sigma_\mathrm{a} l))/(1-\exp(-\sigma_\mathrm{a} L))] ,

	[image: \sigma_\mathrm{b}(l) = \sigma_\mathrm{a} / (1-\exp(- \sigma_\mathrm{a} (L-l))] .

In the occurrence biasing, two weights have to be taken into account:

	When the track travels from 0 to [image: l] without interaction, it has a
different probability to do so in the biased and analog schemes,
meaning that a weight for non-interaction has to be applied, this
weight being:

[image: w_\mathrm{NI} = P_\mathrm{NI,a}(l) / P_\mathrm{NI,b}(l)] .

If several processes are biased, each with a dedicated law, then, as
the total probability for non-interaction is the product of
individual probabilities, the total non-interaction weight is simply
the product of the individual weights. This non-interaction weight
has hence to be applied for all biased processes.

	If the track then makes an interaction in the next segment [image: dl] the
analog process would have a probability [image: \sigma_\mathrm{a} dl]
to do so, while this probability is [image: \sigma_\mathrm{b}(l) dl]
for the biased process. A weight for interaction has hence
to applied and is

[image: w_\mathrm{I} = \sigma_\mathrm{a} / \sigma_\mathrm{b}(l)] ,

where the analog and biased cross-sections are for
the process which is taking place.

Implementation of Occurrence Biasing

Previous section shows that weights for non-interaction probability and
effective cross-section are needed to compute the related
non-interaction and interaction weights. The class
G4VBiasingInteractionLaw
is the interface for implementing "interaction laws", it defines the
pure virtual methods

	virtual G4double ComputeNonInteractionProbabilityAt(G4double length) const = 0;

	virtual G4double ComputeEffectiveCrossSectionAt(G4double length) const = 0;

that are used in these weights calculations. It defines also the pure
virtual method:

	virtual G4double SampleInteractionLength() = 0;

In the case of the occurrence biasing, the dedicated
virtual const G4VBiasingOperation::ProvideOccurenceBiasingInteractionLaw(const G4BiasingProcessInterface* callingProcess, G4ForceCondition& proposeForceCondition) = 0;
is meant to return the biased law. The G4BiasingProcessInterface will
not change the state of the law. It will collect the sampled interaction
length (that the biasing operation must have asked to law to sample) and
will used the non-interaction probability method in its
AlongStepDoIt(...) to compute the weight for non-interaction, these
weight being multiplied among biased processes, and it will use the
effective cross-section of process "i", if process "i" wins the
interaction length race, in its PostStepDoIt(...) to compute the
weight for interaction.

To compute these weights, the G4BiasingProcessInterface holds a
private interaction law, to which it sets the analog process
cross-section that it collects at the beginning of the step.

As occurrence biasing and final state biasing are independent operations,
the weight correction for interaction due to the occurrence biasing is
applied on top of the final state generated by the process (this final
state being biased or not).

Footnotes

Visualisation

This Chapter is intended to be read after
Design of Visualisation Category under the object oriented design description in
Part II. Many of the concepts used here are defined there, and it
strongly recommended that a writer of a new visualisation driver or
trajectory drawer reads Design of Visualisation Category first. The
class structure described there is summarised in
Fig. 45 :

[image: ../../_images/visClassDiagram.jpg]

Fig. 45 Geant4 visualisation system class diagram.

Creating a new graphics driver

To create a new graphics driver for Geant4, it is necessary to implement
a new set of three classes derived from the three base classes,
G4VGraphicsSystem, G4VSceneHandler and G4VViewer.

Important Command Actions

To help understand how the Geant4 Visualization System works, here are a
few important function invocation sequences that follow user commands.
For an explanation of the commands themselves, see command guidance or
the Control section of the Application Developers Guide. For a fuller
explanation of the functions, see appropriate base class head files or
Software Reference Manual.

	/vis/viewer/clear

viewer->ClearView(); // Clears buffer or rewinds file.
viewer->FinishView(); // Swaps buffer (double buffer systems).

	/vis/viewer/flush

/vis/viewer/refresh
/vis/viewer/update

	/vis/viewer/rebuild

viewer->SetNeedKernelVisit(true);

	/vis/viewer/refresh
If the view is "auto-refresh", this command is also invoked after
/vis/viewer/create, /vis/viewer/rebuild or a change of view
parameters (/vis/viewer/set/..., etc.).

viewer->SetView(); // Sets camera position, etc.
viewer->ClearView(); // Clears buffer or rewinds file.
viewer->DrawView(); // Draws to screen or writes to
 // file/socket.

	/vis/viewer/update

viewer->ShowView(); // Activates interactive windows or
 // closes file and/or triggers
 // post-processing.

	/vis/scene/notifyHandlers
For each viewer of the current scene, the equivalent of

/vis/viewer/refresh

If "flush" is specified on the command line, the equivalent of:

/vis/viewer/update

/vis/scene/notifyHandlers is also invoked after a change of scene
(/vis/scene/add/..., etc.).

What happens in DrawView?

This depends on the viewer. Those with their own graphical database, for
example, OpenGL's display lists or Open Inventor's scene graph, do not
need to re-traverse the scene unless there has been a significant change
of view parameters. For example, a mere change of viewpoint requires
only a change of model-view matrix whilst a change of rendering mode
from wireframe to surface might require a rebuild of the graphical
database. A rebuild of the run-duration (persistent) objects in the
scene is called a "kernel visit"; the viewer prints "Traversing
scene data...".

Note that end-of-event (transient) objects are only rebuilt at the end
of an event or run, under control of the visualisation manager. Smart
scene handlers keep them in separate display lists so that they can be
rebuilt separately from the run-duration objects - see
Dealing with transient objects

Integrated viewers with no graphical database

For example, G4OpenGLImmediateXViewer::DrawView().:

NeedKernelVisit(); // Always need to visit G4 kernel.
ProcessView();
FinishView();

Integrated viewers with graphical database

For example, G4OpenGLStoredXViewer::DrawView().

KernelVisitDecision(); // Private function containing...
 if significant change of view parameters...
 NeedKernelVisit();
ProcessView();
FinishView();

File-writing viewers

For example, G4DAWNFILEViewer::DrawView().

NeedKernelVisit();
ProcessView();

Note that viewers needing to invoke FinishView must do it in
DrawView.

What happens in ProcessView?

ProcessView is inherited from G4VViewer:

void G4VViewer::ProcessView() {
 // If ClearStore has been requested, e.g., if the scene has changed,
 // of if the concrete viewer has decided that it necessary to visit
 // the kernel, perhaps because the view parameters have changed
 // drastically (this should be done in the concrete viewer's
 // DrawView)...
 if (fNeedKernelVisit) {
 fSceneHandler.ProcessScene(*this);
 fNeedKernelVisit = false;
 }
}

What happens in ProcessScene?

ProcessScene is inherited from G4VSceneHandler. It causes a
traversal of the run-duration models in the scene. For drivers with
graphical databases, it causes a rebuild (ClearStore). Then for the
run-duration models:

fReadyForTransients = false;
BeginModeling();
for each run-duration model...
 pModel -> DescribeYourselfTo(*this);
EndModeling();
fReadyForTransients = true;

(A second pass is made on request -- see
G4VSceneHandler::ProcessScene.) The use of fReadyForTransients
is described in Dealing with transient objects.

What happens then depends on the type of model:

	G4AxesModel G4AxesModel::DescribeYourselfTo simply calls
sceneHandler.AddPrimitive methods directly.

sceneHandler.BeginPrimitives();
sceneHandler.AddPrimitive(x_axis); // etc.
sceneHandler.EndPrimitives();

Most other models are like this, except for the following...

	G4PhysicalVolumeModel The geometry is descended recursively,
culling policy is enacted, and for each accepted (and possibly,
clipped) solid:

sceneHandler.PreAddSolid(theAT, *pVisAttribs);
pSol->DescribeYourselfTo(sceneHandler);
// For example, if pSol points to a G4Box...
|-->G4Box::DescribeYourselfTo(G4VGraphicsScene& scene){
 scene.AddSolid(*this);
 }
sceneHandler.PostAddSolid();

The scene handler may implement the virtual function { AddSolid(const
G4Box&)}, or inherit:

void G4VSceneHandler::AddSolid(const G4Box& box) {
 RequestPrimitives(box);
}

RequestPrimitives converts the solid into primitives
(G4Polyhedron) and invokes AddPrimitive:

BeginPrimitives(*fpObjectTransformation);
pPolyhedron = solid.GetPolyhedron();
AddPrimitive(*pPolyhedron);
EndPrimitives();

The resulting default sequence for a G4PhysicalVolumeModel is
shown here:

DrawView();
|-->ProcessView();
 |-->ProcessScene();
 |-->BeginModeling();
 |-->pModel -> DescribeYourselfTo(*this);
 | |-->sceneHandler.PreAddSolid(theAT, *pVisAttribs);
 | |-->pSol->DescribeYourselfTo(sceneHandler);
 | | |-->sceneHandler.AddSolid(*this);
 | | |-->RequestPrimitives(solid);
 | | |-->BeginPrimitives (*fpObjectTransformation);
 | | |-->pPolyhedron = solid.GetPolyhedron();
 | | |-->AddPrimitive(*pPolyhedron);
 | | |-->EndPrimitives();
 | |-->sceneHandler.PostAddSolid();
 |-->EndModeling();

Note the sequence of calls at the core:

sceneHandler.PreAddSolid(theAT, *pVisAttribs);
pSol->DescribeYourselfTo(sceneHandler);
|-->sceneHandler.AddSolid(*this);
 |-->RequestPrimitives(solid);
 |-->BeginPrimitives (*fpObjectTransformation);
 |-->pPolyhedron = solid.GetPolyhedron();
 |-->AddPrimitive(*pPolyhedron);
 |-->EndPrimitives();
sceneHandler.PostAddSolid();

is reduced to

sceneHandler.PreAddSolid(theAT, *pVisAttribs);
pSol->DescribeYourselfTo(sceneHandler);
|-->sceneHandler.AddSolid(*this);
sceneHandler.PostAddSolid();

if the scene handler implements its own AddSolid. Moreover, the
sequence

BeginPrimitives (*fpObjectTransformation);
AddPrimitive(*pPolyhedron);
EndPrimitives();

can be invoked without a prior PreAddSolid, etc. The flag
fProcessingSolid will be false for the last case. The possibility
of any or all of these three scenarios occurring, for both permanent
and transient objects, affects the implementation of a scene handler
if there is any attempt to build a graphical database. Transients are
discussed in Dealing with transient objects.

	G4TrajectoriesModel At end of event, the trajectory container is
unpacked and, for each trajectory, sceneHandler.AddCompound
called. The scene handler may implement this virtual function or
inherit:

void G4VSceneHandler::AddCompound (const G4VTrajectory& traj) {
 traj.DrawTrajectory(((G4TrajectoriesModel*)fpModel)->GetDrawingMode());
}

Similarly, the user may implement DrawTrajectory or inherit:

void G4VTrajectory::DrawTrajectory(G4int i_mode) const {
 G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();
 if (0 != pVVisManager) {
 pVVisManager->DispatchToModel(*this, i_mode);
 }
}

Thence, the Draw method of the current trajectory model is
invoked (see
Adding a new view parameter for details on trajectory models),
which in turn, invokes Draw methods of the visualisation manager.
The resulting default sequence for a G4TrajectoriesModel is shown
here:

DrawView();
|-->ProcessView();
 |-->ProcessScene();
 |-->BeginModeling();
 |-->pModel -> DescribeYourselfTo(*this);
 | |-->AddCompound(trajectory);
 | |-->trajectory.DrawTrajectory(...);
 | |-->DispatchToModel(...);
 | |-->model->Draw(...);
 | |-->G4VisManager::Draw(...);
 | |-->BeginPrimitives(objectTransform);
 | |-->AddPrimitive(...);
 | |-->EndPrimitives();
 |-->EndModeling();

Dealing with transient objects

Any visualisable object not defined in the run-duration part of a scene
is treated as "transient". This includes trajectories, hits or
anything drawn by the user through the G4VVisManager user-level
interface (unless as part of a run-duration model implementation). A
flag, fReadyForTransients}, is maintained by the scene handler. In
fact, its normal state is true, and only temporarily, during
handling of the run-duration part of the scene, is it set to false
-- see description of ProcessScene, What happens in ProcessScene?.

If the driver supports a graphical database, it is smart to distinguish
transient and permanent objects. In this case, every Add method of
the scene handler must be transient-aware. In some cases, it is enough
to open a graphical data base component in BeginPrimitives, fill it
in AddPrimitive and close it appropriately in EndPrimitives. In
others, initialisation is done in BeginModeling and consolidation in
EndModeling -- see G4OpenGLStoredSceneHandler. If any
AddSolid method is implemented, then the graphical data base
component should be opened in PreAddSolid.

The reason for this distinction is that at end of run the user typically
wants to display trajectories on a view of the detector, then, at the
end of the next event 1 , erase the old and see new trajectories.
The visualisation manager messages the scene handler with
ClearTransientStore just before drawing the trajectories to achieve
this.

If the driver does not have a graphical database or does not distinguish
between transient and persistent objects, it must emulate
ClearTransientStore. Typically, it must erase everything, including
the detector, and re-draw the detector and other run-duration objects,
ready for the transients to be added. File-writing drivers must rewind
the output file. Typically:

void G4HepRepFileSceneHandler::ClearTransientStore() {
 G4VSceneHandler::ClearTransientStore();
 // This is typically called after an update and before drawing hits
 // of the next event. To simulate the clearing of "transients"
 // (hits, etc.) the detector is redrawn...
 if (fpViewer) {
 fpViewer -> SetView();
 fpViewer -> ClearView();
 fpViewer -> DrawView();
 }
}

ClearView rewinds the output file and DrawView re-draws the
detector, etc. (For smart drivers, DrawView is smart enough to know
not to redraw the detector, etc., unless the view parameters have
changed significantly -- see What happens in DrawView?.)

More about scene models

Scene models conform to the G4VModel abstract interface. Available
models are listed and described there in varying detail.
What happens in ProcessScene? describes their use in
some common command actions.

In the design of a new model, care should be taken to handle the
possibility that the G4ModelingParameters pointer is zero. Currently
the only use of the modelling parameters is to communicate the culling
policy. Most models, therefore, have no need for modelling parameters.

Adding a new view parameter

There are quite a few steps involved in adding a new view parameter.

	G4ViewParameters.hh:

	add new data member.

	add new access function declarations (Get or Is and Set).

	G4ViewParameters.icc:

	add new access function implementations.

	G4ViewParameters.cc:

	initialise parameter in constructor.

	add code for writing view with /vis/viewer/save, e.g., in G4ViewParameters::SceneModifyingCommands or similar function.

	augment the following functions appropriately:

	G4ViewParameters::PrintDifferences

	std::ostream& operator << (std::ostream& os, const G4ViewParameters& v)

	G4ViewParameters::operator!=

	If the parameter needs to be copied to modelling parameters:

	Add the same parameter to G4ModelingParameters. Follow the same instructions as above.

	Implement the actual copying in G4VSceneHandler::CreateModelingParameters.

	When the view parameters change in any way, it may be necessary to “re-visit the kernel”, i.e., consult the geometry, trajectories, etc. For a parameter that is used in modelling, a kernel re-visit is obviously necessary. For graphics systems that have their own database, it’s not always necessary. For example, for “stored” OpenGL (OGLSX), a change of viewpoint or zoom factor does not require a kernel visit but a change from wireframe to surface rendering does. These sort of decisions are made in the following functions:

	G4OpenGLStoredViewer::CompareForKernelVisit

	G4OpenGLStoredQtViewer::CompareForKernelVisit

	G4OpenInventorViewer::CompareForKernelVisit

	Next you can implement a command to set the parameter. This will usually be in G4VisCommandsViewer.cc or G4VisCommandsViewerSet.cc. Please preserve alphabetical order of commands.

	If this requires a new messenger class, this will have to be instantiated in G4VisManager::RegisterMessengers.

	Then you can actually implement code that uses the parameter.

Enhanced Trajectory Drawing

Creating a new trajectory model

New trajectory models must inherit from G4VTrajectoryModel and implement
these pure virtual functions:

virtual void Draw(const G4VTrajectory&, G4int i_mode = 0,
 const G4bool& visible = true) const = 0;
virtual void Print(std::ostream& ostr) const = 0;

To use the new model directly in compiled code, simply register it with
the G4VisManager, eg.

G4VisManager* visManager = new G4VisExecutive;
visManager->Initialise();

// Create custom model
MyCustomTrajectoryModel* myModel =
 new MyCustomTrajectoryModel("custom");

// Configure it if necessary then register with G4VisManager
...
visManager->RegisterModel(myModel);

Adding interactive functionality

Additional classes need to be written if the new model is to be created
and configured interactively:

	Messenger classes
	Messengers to configure the model should inherit from
G4VModelCommand. The concrete trajectory model type should be used
for the template parameter, e.g.

class G4MyCustomModelCommand
 : public G4VModelCommand<G4TrajectoryDrawByParticleID> {
...
};

A number of general use templated commands are available in
G4ModelCommandsT.hh.

	Factory class
	A factory class responsible for the model and associated messenger
creation must also be written. The factory should inherit from
G4VModelFactory. The abstract model type should be used for the
template parameter, eg.

class G4TrajectoryDrawByChargeFactory
 : public G4VModelFactory<G4VTrajectoryModel> {
 ...
};

The model and associated messengers should be constructed in the
Create method. Optionally, a context object can also be created, with
its own associated messengers. For example:

ModelAndMessengers
G4TrajectoryDrawByParticleIDFactory::
 Create(const G4String& placement, const G4String& name)
{
 // Create default context and model
 G4VisTrajContext* context = new G4VisTrajContext("default");
 G4TrajectoryDrawByParticleID* model =
 new G4TrajectoryDrawByParticleID(name, context);

 // Create messengers for default context configuration
 AddContextMsgrs(context, messengers, placement+"/"+name);

 // Create messengers for drawer
 messengers.push_back(new
 G4ModelCmdSetStringColour<G4TrajectoryDrawByParticleID>
 (model, placement));
 messengers.push_back(new
 G4ModelCmdSetDefaultColour<G4TrajectoryDrawByParticleID>
 (model, placement));
 messengers.push_back(new
 G4ModelCmdVerbose<G4TrajectoryDrawByParticleID>
 (model, placement));

 return ModelAndMessengers(model, messengers);
}

The new factory must then be registered with the visualisation manager.
This should be done by overriding the G4VisManager::RegisterModelFactory
method in a subclass. See, for example, the G4VisManager implementation:

G4VisExecutive::RegisterModelFactories()
{
 ...
 RegisterModelFactory(new G4TrajectoryDrawByParticleIDFactory());
}

Trajectory Filtering

Creating a new trajectory filter model

New trajectory filters must inherit at least from G4VFilter. The models
supplied with the Geant4 distribution inherit from G4SmartFilter, which
implements some specialisations on top of G4VFilter. The models
implement these pure virtual functions:

// Evaluate method implemented in subclass
virtual G4bool Evaluate(const T&) = 0;

// Print subclass configuration
virtual void Print(std::ostream& ostr) const = 0;

To use the new filter model directly in compiled code, simply register
it with the G4VisManager, e.g.

G4VisManager* visManager = new G4VisExecutive;
visManager->Initialise();

// Create custom model
MyCustomTrajectoryFilterModel* myModel =
 new MyCustomTrajectoryFilterModel("custom");

// Configure it if necessary then register with G4VisManager
...
visManager->RegisterModel(myModel);

Adding interactive functionality

Additional classes need to be written if the new model is to be created
and configured interactively. The mechanism is exactly the same as that
used to create enhanced trajectory drawing models and associated
messengers. See the filter factories in G4TrajectoryFilterFactories for
example implementations.

Other Resources

The following sections contain various information for extending other
class functionalities of Geant4 visualisation:

	User's Guide for Application Developers, Chapter 8 - Visualization

	User's Guide for Toolkit Developers, Object-oriented Analysis and
Design of Geant4 Classes,
.

	1

	There is an option to accumulate trajectories across events and runs
-- see commands /vis/scene/endOfEventAction and
/vis/scene/endOfRunAction.

Bibliography

	Gamma1995

	E. Gamma Addison-Wesley Professional Computing Series 1996.

	QGSM

	Kaidalov A. B., Ter-Martirosyan B117 (1982) 247.

	ENDFForm

	National Nuclear Data Center, Brookhaven National Laboratory,
Upton, NY, USA.

	QMD

	H. Stocker et al. A538, 53c-64c (1992).

	CHIPS

	P.V. Degtyarenko, M.V. Kossov, H.P. Wellisch A 8, 217-222 (2000).

	VNI

	Klaus Geiger 104, 70-160 (1997) BNL-63762.

	PYTHIA7

	M. Bertini, L. Lonnblad, T. Sjorstrand LU-TP 00-23,
hep-ph/0006152 May 2000.

	Kaidalov_Bin

	A.B. Kaidalov P.E. Volkovitsky C63, 517 (1994).

	Uzhinsky_GaloyanPbarP

	V.V. Uzhinsky A.S. Galoyan hep-ph/0212369 (2002).

	Fritiof1

	B. Andersson el al. B281 289 (1987).

	Fritiof2

	B. Nilsson-Almquist E. Stenlund 43 387 (1987).

	BIC

	G. Folger V.N. Ivanchenko J.P. Wellisch A21 407 (2004).

	UrQMD1

	S.A. Bass el al. 41 225 (1998).

	UrQMD2

	M. Bleicher el al. G25 1859 (1999).

	RTIM1

	Kh. Abdel-Waged V.V. Uzhinsky 60 828 (1997); 60 925 (1997).

	RTIM2

	Kh. Abdel-Waged V.V. Uzhinsky G24 1723 (1997).

	HARP_CDP

	A. Bolshakova et al. C64 181 (2009).

Footnotes

Index

 Status of this Document

Guide for developers of the Geant4 toolkit.

	Rev 1.0: First Sphinx version implemented for Geant4 Release 10.4, 8th Dec 2017

	Rev 2.0: Updates and fixes in documentatio for Geant4 Release 10.4, 15th May 2018

	Rev 3.0: Geant4 Release 10.5, 11th December 2018

	Rev 3.1: Geant4 Updates and fixes - especially to search functionality, 5th March 2019

	Rev 4.0: Geant4 Release 10.6, 6th December 2019

	Rev 5.0: Geant4 Release 10.7, 4th December 2020

	Rev 6.0: Geant4 Release 11.0, 10th December 2021

	Rev 7.0: Geant4 Release 11.1, 9th December 2022

	Rev 7.1: Geant4 Fixes to http links, 15th July 2023

	Rev 8.0: Geant4 Release 11.2, 8th December 2023

Footnotes

 _images/classDgmDecay.jpg

_images/classDgmEMmod.jpg
GaMUBEeeBIGeHMbdelT munity Edition ||

GARIGHNTSHIACompton

G4MuBremsstrahlungModel

G4HeatedKleinNishinaCompton

G4MuPairProductionModel

G4KleinNishinaModel

G4BetheBlochModel

G4ICRU49NuclearStoppingModel

G4BetheHeitlerModel

G41CRU73QOModel

All models
inherit directly
from
G4VEmModel

G4WwentzelVIRelModel

G4WentzelVIModel

G4BragglonModel

G4lonCoulombScatteringModel

G4VEmModel

G4VMscModel

G4GoudsmitSaundersonMscModel

G4BraggModel

GahCoulombscatteringModel

G4eBremParametrizedModel

G4MollerBhabhaModel

GacBremsstrahiungRelModel

G4PAIModel

GaeSingleCoulombScatteringModel

G4PAIPhotModel

G4eeToTwoGammaModel

G4PAIPhotonModel

G4eCoulombScatteringModel

G4PairProductionRelModel

GAPEEffectFluoModel

GaxrayRayleighModel

G4UrbanMscModel

_images/SplitClasses-MemHandling_001.jpg
thread-shared data field thread-local data field

C

instance-local probably nothing to do

data field

_images/SplitClasses-MemHandling_002.jpg
thread-shared

lass i o thread-shared data field thread-local data field

E

instance-shared static
data field -safe only if const-

G

instance-local nothing to do
data field -safe only if const-

_images/classDgmEMproc1.jpg
Visual Paradigm for UML Community Edition [not for commercial usel

GaGammaConversion

'
'
'
'
'

G4Mulonisation

Gaalphalonisation

<xuse>>
creates

GaeplusAnnhiliation

GaPhotoElectricEffect

GaColumbScattering

G4VProcess
Gaionionisation
G4VDiscreteProcess
G4VContinousDiscreteProcess
GaMuBremsstrahiung GdeBremsstrahlung
G4VEmProcess
Ao +PostStepGetPhysicallnteractionLength)
+PoststepDolt)
~GetCurrentLambda()
GaVEnergylossProcess
GahBremsstrahiung " AlongStepDolt)
[~ P]+PostStepGetphysicalinteractionLength)
GaComptonScattering
GahPairProduction GaVMultipleScattering
+AlongStepDolt()

+AlongStepGetPhysicalinteractionLength()

Gahlonisation)
\
; % GaMuMultipleScattering GdeMultipleScattering
i |
Gaelonisation 5 <<usé>>
i i]
| ¥ <<used> GahMultipleScattering
i ; ! !
! <guse>> i
\ <<usp>> freates \
<luse>> creates \

créates | ' '
P | '
| ' '
I v
] T
Vo L

N VARV, y
GauniversalFluctuation GavEmFluctuationModel GapAIModel
+SampleFluctuations() >
GdlonFluctuations
GaBohrFluctuations

_images/classDgmEvent.jpg
Partiles

GaPrimaryVertex

GaVUserEventinformation

+Print)

it & Digs

GaHCorThisEvent

GaEvent
Feventip - int
[-theprimaryvertex
|-numberofPrimaryVertex : int

GaDCofThisEvent

GasbManager

\

I-eventAborted - boolean 0.1
-keepTheEvent : boolean
-grips : int

GaPrimaryTransformer

GaEvManMessenger

currentEvent

Globar

<<sngleton>>.
GastateManager

<<singleton>>
GaEventManager
[+ProcessOneEvent(evt - GaEvent)

GaUserEventAction

+BeginOfEventAction(event - G4Event)
+EnfOfeventactionevent : G4Event *)

GavPrimaryGenerator

+GeneratePrimaryVertex(evt : G4Event -

GaparticieGun

[+SetParticieDefinition(pd : GaParticleDefition)
[+SetparticieEnergy(ene : double)
[+set..0

1

GaParticleGunMessenger

GaGeneralParticleSource

1

[+rocessonetvento
[+operation)

Tracking
GdTrajectoryContainer
[+push_backr GavTrajectory) CavTrajeciory
|+operator{jidx - int - GaVTrajectory *
o

GdTrackingManager

GaStackingMessenger

CastackManager

| +PopNextTrack(newTraj : GaVTrajectory **)

|@>————|+PrepareNewEvent() : int

[+ReClassify(

[+PushOneTrackinewTrack - G4Track *, newTra) - G&VTrajectory
GaTrack *

) int

waiting poffponed.(urgent]
(ufoent]

CasmantTrackStack

CaTrackStack

GaUsersackingAction

+ClassifyNewTrack(parameter : G4Track) : G4ClassificationOfNewTrack
+Newstage)
+PrepareNewEvent)

GaClassificationOfNewTrack

<<enumeration>>.

GaAdjoinSTackingAction

GaspSPosDiswibuTion

T GasPSRandomGenerator

GaSingleParticleSource

CasPSAngDY

stribution

GaGeneralParticleSourceData

GaspSEneDT

stribution

GaHEPEviinterface

GaHEPEvParticle

[GastackedTrack |

>

<T->GasuE
\mkﬂ 5

_images/classDgmEMmod1.jpg
GaMUBEeeBIGeHMbdelT munity Edition ||

GARIGHNTSHIACompton

G4MuBremsstrahlungModel

G4HeatedKleinNishinaCompton

G4MuPairProductionModel

G4KleinNishinaModel

G4BetheBlochModel

G4ICRU49NuclearStoppingModel

G4BetheHeitlerModel

G41CRU73QOModel

All models
inherit directly
from
G4VEmModel

G4WwentzelVIRelModel

G4WentzelVIModel

G4BragglonModel

G4lonCoulombScatteringModel

G4VEmModel

G4VMscModel

G4GoudsmitSaundersonMscModel

G4BraggModel

GahCoulombscatteringModel

G4eBremParametrizedModel

G4MollerBhabhaModel

GacBremsstrahiungRelModel

G4PAIModel

GaeSingleCoulombScatteringModel

G4PAIPhotModel

G4eeToTwoGammaModel

G4PAIPhotonModel

G4eCoulombScatteringModel

G4PairProductionRelModel

GAPEEffectFluoModel

GaxrayRayleighModel

G4UrbanMscModel

_images/classDgmEMproc.jpg
Visual Paradigm for UML Community Edition [not for commercial usel

GaGammaConversion

'
'
'
'
'

G4Mulonisation

Gaalphalonisation

<xuse>>
creates

GaeplusAnnhiliation

GaPhotoElectricEffect

GaColumbScattering

G4VProcess
Gaionionisation
G4VDiscreteProcess
G4VContinousDiscreteProcess
GaMuBremsstrahiung GdeBremsstrahlung
G4VEmProcess
Ao +PostStepGetPhysicallnteractionLength)
+PoststepDolt)
~GetCurrentLambda()
GaVEnergylossProcess
GahBremsstrahiung " AlongStepDolt)
[~ P]+PostStepGetphysicalinteractionLength)
GaComptonScattering
GahPairProduction GaVMultipleScattering
+AlongStepDolt()

+AlongStepGetPhysicalinteractionLength()

Gahlonisation)
\
; % GaMuMultipleScattering GdeMultipleScattering
i |
Gaelonisation 5 <<usé>>
i i]
| ¥ <<used> GahMultipleScattering
i ; ! !
! <guse>> i
\ <<usp>> freates \
<luse>> creates \

créates | ' '
P | '
| ' '
I v
] T
Vo L

N VARV, y
GauniversalFluctuation GavEmFluctuationModel GapAIModel
+SampleFluctuations() >
GdlonFluctuations
GaBohrFluctuations

_images/classDgmHitMain.jpg
GavReatoutGeometry

GavsDFler

[+CheckROVolume(st - GaStep *, th : GdTouchableHistory * - boolean

+Acceptistep - Gastep) - boolean

N

<<nierfaces>
GavsensitiveDetector

[FsdName : string
|-collectionName std:vector<string>

+Initialize(hc - GAHCofThisEvent -
+£Endofeventihe - GaHCofThisevent *)

[+Hit(st : Gastep *) - boolean

+ProcessHit(st : Gatep *, th - G4TouchableHistory *) - boolean

o

Gasbstructure

g

<<sngleton>>,

GasDManager [@p—————————————

1

GasbMessenger

GaHCorThisEvent

[+GetHCldx - int - GévhitsCollection =
[+GetNumberofCollections0 - int

GaviisCollection

collectionName : string
|-sDname - string

+DranAllHits)
0.5 |Printallits)

1

nerfaces>
Gavhit

+Drawg)
+print)

+Getritid - size_t) : GaVHit
+Gersize - size_t

GaHitsCollection

=

GaTHitsCollection

[theCollection - std-vector<T+>
-allocator : GaAllocator

_images/classDgmIonTable.jpg
GaParticleTable

G4visotopeTable

+ GetParticleTable(: G4PartcleTable
+ GetlonTable(: GdlonTable

GaNucideTable
Jorravie
- G4NuclideTable()
+ Getinstance()
GdlonList (SIEIEED f———> + GethuclideTable()
+WorkerG4lonTable() + GenerateNuclide()
1 + PreloadNuclide() + SetThresholdOfHalfLife(t)
+ Getlon(Z, A, W) +AddState(p_71, p_72, p_73, p_74, p_75, p_76)
| *CenuckusasszA LM * GelsolopeBySoLHZ. &)
GtTiveadlocal Galontist Jkx| + Getsomertiass(z A) 3
* GatleTime(o.49
+Inseriparicte GasotopeList
GitlrFBrneiey GANucleiPropertiesTheoreticalTable
+ GethuclearMass(A, Z)
+IsInStableTable(A, Z)
R GaNuCIePropertesTabloAMED3

_images/classDgmProcessMain.jpg
- currentParticle

‘GaParticleDefinition

- theParticlgType

GaProcessTableMessenger

>
o —

GaProcessTable

G4ProcessManagerMessenger

GaProcessManager

+ GetAIRestProcessVector)
[+ GetalongStepProcessVector)

+ GetPostStepProcessVector()
+AddProcess(

+ GetProcessOrdering(

+ GetParticleType(

GaProcessAttrVector |<

- Getatibute

!

GaProcTableVector

GaProcessVector

GavProcess

_images/classDgmProcessProcesses.jpg
G4ProcessManagerMessenger

- theManager
[chelanassr J
A

- Processhanagerilessenger

GaProcessManager

- aProcessManager

GavParticleChange

+ UpdateStepForatRest)

+ UpdatsStepForAlongStep(

+ UpdateStepForPoststep)

+ Intialze()

+ PropossLocalEnergyDeposit)

- currentPracess

GaProcessAttribute | s]

GaProcThiElement | s

GaProcessType
- thePracessType

- pRegProcess

GaParticleChange

G4ParticleChangeFor Transport

x + ProposzNonlonizingEnergyDeposit)
-pParteleChange | + proposeTrackStatus GdParticleChangeForLoss.
Gavprocess || +ProposesteppingControlg
+ AddSzcondany)
+ GetProcessName()
+ GetProcessType0
+ GetProcessSubType()
+PostStepDot) T
+ AlongStzpDolt) e
s BATrack + GetPreStepPoint()
+ AlongStepGatPhysicallnteractionLengih(b
+ ARestCetPhysicallntractionLength(+ GetPostStepPaint)
+ PostStepGatPhysicalntractionLengthg 4oeeslrl 0L
+IsApplicable) + GetTotalEneroyDzpost
S b
+ BuildPhysicsTable) TS
+ PraparePhysicsTabla(PE—— + UpdateTrac
+ GetCurreniinteractionLength) " + GetSecondan)

+ GetNumberOfinteractionL engthLft)

+ ResethumberofinteractionL sngthL=fi)
+ StarfTracking()

+ EndTracking()

I

- fpProcessDefinedstep

GastepPoint

G4WrapperProcess

GaVRestContinuousDiscreteProcess

GaVRestProcess

GavContinuousProcess.

GavDiscreteProcess.

GavContinuousDiscreteProcess

GaVRestContinuousProcess.

GaVRestDiscreteProcess.

_images/classDgmParticleTable.jpg
GaParticleDefinition

- currentParticle

~theParticleTahle

GaParticleMessenger

f——— GaParticleTable

<<+ WorkerGaParticleTable)
+ GetPartcle(

GalonTable

+ FindParticle(
+ Getlerator(

+WorkerGdlonTable(
+ PraloadNiuclide(

+ Getlon)

+ Gethucleushlass(
+ Getisomerlass(

+ GetLifeTime(
+Inser)

+ GetParticleTable)

- CheckReadiness)

< | +GetionTableq
+Inser)

G4PThiDictionary.

[<————>{ capTbinictterator

ﬂ ‘GaThreadLocal G4PTbiDictionary.

H G4PThlEncodingDictionary

_images/classDgmParticlesMain.jpg
GaPDefManager

- sublnstanceManager

GaParticleTable
< theParticleTable
s aidleTable
GaParticeDefinition
L
- g4PartcleDefinition - a4PartcleDefiniijn
GaProcessManager
———— x| - genericlon
- theProcesshianagershadol |
< theDecayTabi
GADarie s - theParticleDefiniion GaDecouTols
|, ePaticleDeintion |
- parent
GaGeantino 1 GavsnortLiveaparticie
GaGamma Galons
GaElectron GaPionMinus
G4pticalPhoton GasigmaPlus

_images/classDgmUserInterface.jpg
_7N
G4Ulxvt

G4Ulsession
‘getCommand()
rompt

sessionStart()
sessionTerminate()

G4UImanager visManager
/ addNewCommand() 1
apply and() o
otGRanSoUREYAle() =
/ ‘getCurrentintValue() _——
getCurrentStringValue() ——UlManager
{ ‘getCurrentValues()
o getUlpoinier()
GaUltel I Ulmanager -G4UImanager *
iI"sessionOpen : int
'EXIT’ and other
B & control
o | . commands

classA

NP
G4Ulcontrol
Messenger /

session %

\

G4UlcommandTree
~addNewCommand()
findPath()
lst()

listCurrent(
I tree : G4UlcommandTree |

G4UImessenger .

getCurrentValue()
sefNewValue()
\ { I addUicommand()

\ These two classes are shown just for
illustrating how classes in other
categories use the messenger.

R . i ‘messengerA’ should know all of
G4Ulterminal | nessesary set/get methods of
/ ‘classA’ and should be wriiten by the
| | auther of ‘classA™.
" command f i
\ e guidance \
N < \
\ \
N \
\oj o.n = "
-5 .

G4Ulparameter
checkNewValue()
Il gefautvalue - GdString

G4Ulcommand

getCuligniaive()

st = iI”omittable : Gabor
Il commandGuidance GASInng.H* ——parameter— I parameterGuidance G4Smng
II'commandName : GdSt parameterName : GaString |

|| oA - GaStig "Il parameterRange : GdString |

Il parameterType : char

_images/field-prop.jpg
G4TransportationManager
(from navigation)

¥<<const>> GetFieldManager ()
. %¥<<const>> GetNavigatorFo.

G4Transportation _ _———"— ¥<<const>> GetPropagatorI.
(from processes) ¥<<static>> GetTransporta... | 1
1 2y
J 1 -fNavigatorForTracking
: N 0
-fFieldManager ~4 G4Navigator
, ; (from navigation)
L0
G4FieldManager !
-fPropagatorInFiell
YcreateChordFinder () . 0..7
¥DoesFieldExist() -fDetectorFieldMgr
9GetDetectorField() 5 N -fNavigator
“*° _fCurrentFieldMgr 0..) .
1\ :

-fChordFinder

0... G4ChordFinder

9advanceChordLimited ()
9GetDeltaChord()
¥GetIntegrationDriver ()
9¥setDeltaChord()
9¥SetIntegrationDriver ()

_images/classDgmRandom.jpg
/ RandEngine)

{0.n}

T e flat() . .
.~ DRand48Engine flatArray() / RanluxEngine
“ flat() /i setSeed() . v/\:;u)
0 flatArray() { setSeeds() . latArray()
setSeed() \ {0.n} . setSeed()
setSeeds() 1 e setSeeds|() ¢
g -) on) ’ {0.n}
HepJamesRandom | | 2 . s
flat() & / .
flatArray() . HepRandomEngine J RanecuEngine
setSeed() \ Y flat() 4 flat()
setSeeds() / flatArray() 's':“é::g‘(;
\ = getBeed() setSeeds()
. - N getSeeds() i o
E ~ setSeed() \ ‘ b
setSeeds() B
{1.n}
LW
7
theEngine
HepRandom
! flat()
. flatArray()
z getTheEngine()
getTheGenerator()
getTheSeed()
getTheSeeds()
getTheTableSeeds()
setTheEngine()
setTheSeed()
setTheSeeds()
b [0}
RandFlat y TS
fire() .
fireArray() i RandPoisson
ﬂ:‘eln:‘(; T fro(‘,)
shoot | shoot(
h shootArray() | shootArray()
shootint() - fireArray()
{0.ny /] i - \ {o.n}
AT s RandGauss : P S 4 £
/ 4;);RandE:< onertial, s',l:fu(‘(') /' RandBreitWigner
f:'e“’ shootArray() 3 fire()
hGStAr () fireArray() { shoot() i
shootArray() {0.n} . shootArray() |
fireArray() oo fireArray()

{0.n}

_images/classDgmTrack_V10-3.jpg
G4Track

1

+GetDynamicParticle() : G4DynamicParticle*
+GetTrackStatus() : G4TrackStatus
+GetTrackiD() : Gaint

+GetPosition() : GAThreeVector&
+GetGlobalTime() : G4double

+GetMomentum () : G4ThreeVector
+GetVolume() : G4VPhysicalVolume*
+GetTouchableHandle() : G4TouchableHandle&

GA4Step

+GetPoststeoPoint()

“Gertracd) s GaTrack®

P(eSt;:oPging
ostStepPoint

GA4StepPoint

G4TrackStatus

< G4DynamicParticle

kot 0

G4ParticleDefinition

TDuchablz,ﬁglmm
Touchable@origin
G4TouchableHandle
Gorigh G4LogicalVolume

@origin | G4VProcess

caused

+GetPosition() : G4ThreeVector&

current

+GetGlobalTime() : Gdouble

+GetMomentum() : G4ThreeVector
+GetPhvsicalVolume() : GaVPhysicalVolume*

+GetTouchableHandle() : G4TouchableHandle& 2

Touchable / NextTouchable

_images/materials_matDescriptionClasses.png
G4SandiaTable G4lonisParamMat
- fSandiaTable[981][5] : G4double - ComputeMeanParameters() : void
- ComputeMatSandiaMatrix() : void 1 G4Materia| 1 - ComputeDensityEffect() : void
- ComputeMatSandiaMatrixPAI() : void r - - ComputeFluctModel() : void
+ GetSandiaCofPerAtom() : void - theMaterialTable : std::vector<G4Material*> - ComputelonParameters() : void
+ GetSandiaCofWater() : void \‘ - fSendiaTable : G4SandlaTable* + GetMeanExcitationEnergy() : G4double
+ ggng?aggmat;ria:g; : ggoug:e* - flonisation : G4lonisParamMat* + SetMeanExcitationEnergy() : void —— 1
+ ndia aterial() : louble’ N - ey Ut + FindMeanExcitationEnergy(const G4Material*) : void
+ GetSandiaMatTablePAI() : G4double R ComputeDerl_v quuantltles(). : v_0|d + GetDensityEffectData() : G4DensityEffectData* I
+ GetSandiaCofForMaterialPAI() : G4double* ComputeRadiationLength() : void + SetBirksConstant() : void |
- ComputeNuclearInterLength() : void - + GetBirksConstant() : G4double |
+ GetMaterialTable() : std::vector<G4Material*>* | ~ + SetMeanEnergyPerlonPair() : void |
+ AddElement() SN - + GetMeanEnergyPerIonPair() : G4double |
+ AddMaterial() S~ |
+ GetRadlen() : G4double ~< |
+ GetNuclearInterLength() : G4double >~ - |
+ GetSandiaTable() : G4SandiaTable* S~ |
+ Getlonisation() : G4IonisParamMat* ~- |
~—_ vV
% G4NistManager |
7~
- // ;;I\
1..% g - |
e _ - P pd I
b 7
. G4Element -7 e '
G4At°|m'§h?”§in - theElementTable : std::vector<G4Element*> e - g - I
- fNumberOfShells[101] : G4int
- fNumberOfElectrons[1540] : Gdint - thelsotopeVector : std::vector<G4lsotope*> P i l
| - fBindingEnergies[1540] : G4double | < - flonisation : G4IonisParamEIm* e Pd :
+ GetNumberOfShells() : G4int =~] - ComputeDerivedQuantities() : void P G4lonisParamElm
:Get”s E.”"‘.'J"OfEE lectrons() ; Gdint - gomputtzfotg_c;mp;aétor(()) :quj /// - zeuqealthgow:G«oubI:d) :
+ GetTotalBindingEnergy() : G4double - LomputeLradisaliactor|) : vol - MMeanExcitationEnergy : Gddouble
+ GetElementTable() : std::vector<G4Element*>* ‘\ : :\s/:"c?r.mgfnvﬁmr - GAdouble® :
+ AddIsotope() : void , &Fagt":r p G4dzl::b|: |
+ GetlsotopeTable() : std::vector<G4Isotope*>* 1 I+ GetMeanExcitationEnergy() : G4double
+ Getlonisation() : G4lonisParamEIm* + GetFermiVelocity() : G4double :
+ GetNbOfAtomicShells() : G4int D < e G4double™ |
+ GetAtomicShell(G4int index) : G4double A ellCorectionVector() : Gadouble |
+ GetNbOfShellElectrons(G4int index) : G4int |
|
|
|
|
|
|
|
|
|
|
|
|

1.*%

G4Isotope
- fName : G4String
- fZ : G4int
- fN : G4int
- fA : G4double
-fm:G4pt 0000000 O Op—-_—-_—_-_—- - ———————— = — = — =
+ N < *>*

+ GetName() : G4String&
+ GetZ() : G4int

+ GetN() : G4int

+ GetA() : G4double

+ Getm() : G4int

_images/classDgmParticleDecay.jpg
G4DynamicParticle

GaParticleDefinition

]

G4DecayTable

+ SelectADecayChannel)
+ GetDecayChannel(index : G4int)

ChammETS
X

G4DecayProducts

G4vDecayChannelVector

J

—

G4DecayProductVector

G4PhaseSpaceDecayChannel

_images/visClassDiagram.jpg
G4VVismanager

Graphics Interface

G4VGraphicsScene

G4vVisManager G4VGraphicsSystem G4VSceneHandler G4VViewer
G4VisExecutive G4XXX G4XXXSceneHandler G4XXXViewer
Geant4 Visualisation System G4Scene G4ViewParameters

_images/overall.jpg
G4SolidStore

Q<<static>> DeRegister()
Q<<static>> GetInstance()
Q<<static>> Register()

G4GeometryManager

dCloseGeometry ()

90penGeometry ()
esuildoptimisations()

Q<<static>> GetInstance()

G4PhysicalVolumeStore

GdLogicalvolumeStore

Q<<static>> De...

G4vsolid Q<<static>> Ge...
&pshapeName : G4string <<static>> Re... /
/
Q<<virtual>> Calculatek... \ | -tpaughters

$<<virtual>> DistanceTo.
&<<virtual>> DistanceTo... |1
Q<<virtual>> Inside()

Q<<virtual>> SurfaceNor.

Splid

G4csGSolid

(from solids)
E 1

-fvoxel \
0..1/

G4SmartVoxelHeader

G4AssemblyVolume

G4Box
(from solids)

¥G4Box()

G4Tubs
(from solids) 4addplacedvolume ()
9G4AssemblyVolume ()
$G4Tubs () @MakeImprint ()

Y<<static>> DeRegister()

Q<<static>> GetInstance()
Q<<static>> Register()

G4PhysicalVolumeList \
(from G4LogicalVolume)

10
(F——
promm—, | '~
|

vector

(from STL/stdl)

single touchable

G4Navigator
(from navigation)

Q<<virtual>> ComputeStep()
@¥<<const>> GetCurrentLocal...
9<<const>> GetGlobalToLoca.
@<<const>> GetLocalToGloba. ..
Q<<const>> GetWorldvolume ()
<virtual>> ResetHierarch...
9setGeometricallyLimitedSt. ..
@setWorldvolume ()

G4PVPlacement

¥G4PVPlace.

71

G4VTouchable

-fTopPhysical

many tnuchabl%i

G4PVReplica

9G4PVRep. . .

_images/smart_voxels.jpg
| G4SmartVoxelProxy

¥G4SmartVoxelProxy ()

dGetHeader ()

YGetNode ()

dIsHeader()

GdSmartvoxelNode 0. $1sNode ()
&fcontents : G4Sliceve... 1
a
4GetMaxEquivalentSlice. . . i..n
dGetMinEquivalentSlice. .. / -tﬂéader
9GetNoContained() i \ it
QGetvolume () / \0--
®Insert()
' 1
—fcontents

N — e —
G4SliceVector
|, ——
i A
N
// Y
/ N
/ P / P \
\) G4VoxelLimits \
Gdint % L \
[(£zom giobal) ST i | $adduimit() G4Drawvoxels
e :CclipToLimits()
vector etMaxExtent () i
(from STL/std) ®GetMinExtent () 4createPlacedPolyhedra()
[~ | %Inside() dDrawvoxels ()
SoutCode () 9setVoxelsVisAttributes()

_images/materials_matExtensionClasses.png
G4Material
+ IsExtended() : G4bool

JAN

G4ExtendedMaterial

- fExtensionMap : G4MaterialExtensionMap

+ IsExtended() : G4bool
+ RegisterExtension() : void
+ RetrieveExtension() : G4VMaterialExtension*

1.%

G4VMaterialExtension
+ GetHash() : size_t&
+ Print() = 0 : void

_images/navigator.jpg
G4NavigationHistory

¥BackLevel ()
¥<<const>> GetDepth()
9<<const>> GetTopReplica..-fHisto:
¥<<const>> GetTopTransfo...
¥<<const>> GetTopVolume()
¥<<const>> GetTopVolumeT. ..
ONewLevel ()

| LfvoxelNav
1
| 1 N
1) S
G4NormalNavigation N -freplicaNav
(from navigation) W 1 e
S 1 N
~ G4voxelNavigation

Scomputesate. .. G4ReplicaNavigation

Scomputestep() (from navigation)
dLevelLocate()

(from navigation)

%<<const>> BackLocate() $<<virtual>> Comp
®computesafety () ¥<<virtual>> Comp
¥computestep () ¥<<virtual>> Leve
9<<const>> ComputeTrans. .. ¥voxelLocate()

¥<<const>> DistanceToOut ()
Y<<const>> Inside()
QLevellocate()

The navigator makes use of four "utility"
navigation classes tightly coupled to

G4NavigationHistory, which maintains the
"stack” of compounded transformations and

volume/replication-number information

G4TransportationManager
(from navigation)

k428 :

const>> GetFieldManager()

1| ¥<<const>> GetNavigatorFo...

9<<const>> GetPropagatorI...

Q<<static>> GetTransporta...
K

~—fNavigator -fPropagatorInField

o ..
~. G4PropagatorInField

1 (from navigation)

9ComputeStep ()
~fparamNay §<<const>> GetChordFi...
3 ¥<<const>> GetDeltaln...

|G4ParameterisedNavigation
(from navigation)

~= — YcomputeSafety ()
YcomputeStep()

YLevelLocate()
¥ParamVoxelLocate()

_static/g4-logo.png
G4

_static/plus.png

_static/minus.png

_static/g4-logo-small.png
G4

_static/file.png

nav.xhtml

 Table of Contents

 		
 User's Guide for Toolkit Developers

 		
 Introduction

 		
 How to use this manual

 		
 User Requirements Document

 		
 Design and Function of Geant4 Categories

 		
 Introduction

 		
 Run

 		
 Event

 		
 Tracking

 		
 Physics Processes

 		
 Hits and Digitisation

 		
 Geometry

 		
 Electromagnetic Fields

 		
 Particles

 		
 Materials

 		
 Global Usage

 		
 Design of Visualisation Category

 		
 Intercoms

 		
 Parallelism in Geant4: multi-threading capabilities

 		
 Extending Toolkit Functionality

 		
 Geometry

 		
 Electromagnetic Fields

 		
 Particles

 		
 Electromagnetic Physics

 		
 Hadronic Physics

 		
 Generic Event Biasing

 		
 Visualisation

 		
 Bibliography

_images/ClassDiagram.png
User Initializations

G4VUserPhysicsList G4VUserDetectorConstruction G4VUserActionlnitialization

\

¢

G4MTRunManager G4WorkerRunManager

L

G4UserWorkerlnitialization

v

]

G4VUserPrimaryGeneratorAction G4UserRunAction

User Actions

G4UserSteppingAction

G4UserTrackingAction G4UserStackingAction

_images/FTF_Fig1.png

_images/FTF_Fig4.png
a9

a9

a9

a9

_images/G4V10GeneralSchema.jpg
Geometry and
Physics
configuration

Per-event seeds pre-
prepared in a “queue”

Threads compete for next
event to be processes (new
in ref-08)

Run__ __Run LIRS Command line scoring and
o Gé4tools automatically merge
2L results from threads

_images/FTF_Fig2.png

_images/FTF_Fig3.png
String mass threshold M1+M2 <= Ecms
Target diffraction

Binary channels

ir s (NN',N'N".)
£
(2]
e
=
3 =1 M1+M2=Eum5
£
g
E Projectile diffraction
2 2
& tring mass threshold
o
£
1+ @
Stnng mass $amplmg threshold
0
0 1 2 3 4

Elaslic scattering M 1

_images/Level11.jpg
<<Purely Abstract>>
G4VProcess

¥PostStepDolt()

@AtRestDolt()

¥PostStepGetPhysicallnteractionLength()

@AlongStepGetPhysicallnteractionLength()
“AlongStepDolt()
QAtRestGetPhysicallnteractionLength()

<<Abstract>>
G4VDiscreteProcess

¥PostStepGetPhysicallnteractionLength()
¥PostStepDolt()

&

<<Abstract>>
G4HadronicProcess

<<virtual>> GetMicroscopicCrossSection()
Q<<virtual>> PostStepDolt()
dRegisterMe()

hooseHadronicinteraction()
dGeneralPostStepDolt()
¥ <static>> GetlsotopeProductioninfo()
RegisterlsotopeProductionModel()
Q<<static>> EnablelsotopeProductionGlobally()
< <static>> DisablelsotopeProductionGlobally()
SEnablelsotopeCounting()
¥DisablelsotopeCounting ()

<<Abstract>>
G4VRestProcess

YAtRestGetPhysicallnteractionLength()
QAtRestDolt()

_images/Level2_1.jpg
<<Abstract>>
G4HadronicProcess

Q<cvirtual>> GetMicroscopicCrossSection()
Qccvirtual>> PostStepDolt()
QRegisterMe()

hooseHadroniclnteraction()
QGeneralPostStepDolt()
Q<cstatic>> GetlsotopeProductionlnfo()
QRegisterlsotopeProductionModel()
Q<cstatic>> EnablelsotopeProductionGlobally()
@<cstatic>> DisablelsotopeProductionGlobally()
$EnablelsotopeCounting()
QDisablelsotopeCounting()

<<Concrete>> <<Concrete>> <<Concrete>> <<Concrete>>
G4HadronFissionProcess| G4HadronlnelasticProcess G4HadronElasticProcess | G4HadronCaptureProcess
i i
[j

= 7

<<Concrete>> e

G4CrossSectionDataStore

@AddDataSet()
QGetCrossSection()

<<Concrete>>

0. ADataSet

<<Purely Abstract>>

G4VCrossSectionDataSet

SisApplicable()
¥GetCrossSection() <<Concrete>>

BDataSet

_images/G4V10MasterWorker-ClassDiag.jpg
Tser inalizations Tser Actions

1

il

_images/Level1.jpg
<<Purely Abstract>>
G4VProcess

¥PostStepDolt()

@AtRestDolt()

¥PostStepGetPhysicallnteractionLength()

@AlongStepGetPhysicallnteractionLength()
“AlongStepDolt()
QAtRestGetPhysicallnteractionLength()

<<Abstract>>
G4VDiscreteProcess

¥PostStepGetPhysicallnteractionLength()
¥PostStepDolt()

&

<<Abstract>>
G4HadronicProcess

<<virtual>> GetMicroscopicCrossSection()
Q<<virtual>> PostStepDolt()
dRegisterMe()

hooseHadronicinteraction()
dGeneralPostStepDolt()
¥ <static>> GetlsotopeProductioninfo()
RegisterlsotopeProductionModel()
Q<<static>> EnablelsotopeProductionGlobally()
< <static>> DisablelsotopeProductionGlobally()
SEnablelsotopeCounting()
¥DisablelsotopeCounting ()

<<Abstract>>
G4VRestProcess

YAtRestGetPhysicallnteractionLength()
QAtRestDolt()

_images/Level2_2.jpg
<<Concrete>>

G4EnergyRangeManager

QGetHadronicl nteraction()

<<Abstract>>
G4HadronicProcess

Q<cvirtual>> GetM icroscopicCrossSection()
Q<<virtual>> PostStepDolt()
‘F{eg isterMe()
hooseHadronicInteraction()
‘GeneralPos(StepDol(()
Socstatic>> Getl sotopeProductioninfo()
‘RegisterlsotopeProductionModel()
Vccstatic>> EnablelsotopeProductionGlobally()
Q<cstatic>> Disablel IsotopeProductionGlobally()
SEnablel sotopeCounting()
DisablelsotopeCounting()

<<Concrete>>

ConcreteModel

| —

0..1

<<Abstract>>

1.G4Hadronicinteraction

‘ApplyYourself()
‘Se(MinEnergy()

¥SetMaxl Energy()
¥DeActivatel For()

0.*

0..x G4Element

~ G4Material

—

_images/Level2_21.jpg
<<Concrete>>

G4EnergyRangeManager

QGetHadronicl nteraction()

<<Abstract>>
G4HadronicProcess

Q<cvirtual>> GetM icroscopicCrossSection()
Q<<virtual>> PostStepDolt()
‘F{eg isterMe()
hooseHadronicInteraction()
‘GeneralPos(StepDol(()
Socstatic>> Getl sotopeProductioninfo()
‘RegisterlsotopeProductionModel()
Vccstatic>> EnablelsotopeProductionGlobally()
Q<cstatic>> Disablel IsotopeProductionGlobally()
SEnablel sotopeCounting()
DisablelsotopeCounting()

<<Concrete>>

ConcreteModel

| —

0..1

<<Abstract>>

1.G4Hadronicinteraction

‘ApplyYourself()
‘Se(MinEnergy()

¥SetMaxl Energy()
¥DeActivatel For()

0.*

0..x G4Element

~ G4Material

—

_images/Level2_11.jpg
<<Abstract>>
G4HadronicProcess

Q<cvirtual>> GetMicroscopicCrossSection()
Qccvirtual>> PostStepDolt()
QRegisterMe()

hooseHadroniclnteraction()
QGeneralPostStepDolt()
Q<cstatic>> GetlsotopeProductionlnfo()
QRegisterlsotopeProductionModel()
Q<cstatic>> EnablelsotopeProductionGlobally()
@<cstatic>> DisablelsotopeProductionGlobally()
$EnablelsotopeCounting()
QDisablelsotopeCounting()

<<Concrete>> <<Concrete>> <<Concrete>> <<Concrete>>
G4HadronFissionProcess| G4HadronlnelasticProcess G4HadronElasticProcess | G4HadronCaptureProcess
i i
[j

= 7

<<Concrete>> e

G4CrossSectionDataStore

@AddDataSet()
QGetCrossSection()

<<Concrete>>

0. ADataSet

<<Purely Abstract>>

G4VCrossSectionDataSet

SisApplicable()
¥GetCrossSection() <<Concrete>>

BDataSet

_images/Level4_1.jpg
<<Abstract>>
GAVPartonStringModel

<<Purely Abstract>>
G4VStringFragmentation =~

@FragmentString()

] Pnit))

$scatter()
$GetWoundedNucleus()

<virtual>> GetStrings()
PCorrectHadronMomenta()
PSetThisPointer()

<<Concrete>>
G4PythiaFragmentationinterface

<<Concrete>>
GA4FTFModel

<<Concrete>>
GdLongitudinalStringDecay

$GetWoundedNucleus()
QGetStrings()
nit()
xciteParticipants()
uildStrings()
tring()
aussianPt()
hooseX()

\

G4ExcitedString

N
<<Concrete>>

G4QuarkGluonStringModel

QGetStrings()
etWoundedNucieus()

reateDiffractiveString()
reateHardString()
reateSoftString()

_images/Level4_2.jpg
<<Purely Abstract>>
G4VintraNuclearTransportModel

:ApplyVourse"() G4VKineticNucleon
Propagate() SDecay()
¥GetaMomentum()
SGetDefinition()

¥GetPosition()
G4V3DNucleus
Sinit() T
<<Concrete>> ’.g*‘c'“ﬂ"?eﬂ
ethassNumber
G4HadronKineticModel Sy 0 ‘ggyyc:?n ;
i $SetTimesStey $GetOuterRadius() etParticleType(
féVPar\lcleScaMerer . Smpnmemm“ X SGetNuciea Radiis " :SeiPamcleType()
[. etTimeTolnteraction() heckPauliPrinciple() <>——>{ $GetNuclearRadius(g
FindFragments() “¥DoLorentzBoost() "AreYouHit()
UpdateKineticTrack() Dol orentzBoost()
DoTimeStep() ®DoLorentzContraction()
¥DoLorentzContraction()
SR S— T $DoTranslation()
G4ParticleScatterer FoStartLoop()
| G4VFieldPropagation PGetNextNucieon()
o, @MirrorNucleons()
ransport(
¥GetExcitationEnergy()
init() - T

G4Fancy3DNucleus

_images/Level2_3.jpg
<<Concrete>>

GélsoParticleChange

<<Abstract>>
G4HadronicProcess

Q<virtual>> GetMicroscopicCrossSection()
Q<<virtual>> PostStepDolt()
QRegisterMe()

hooseHadroniclnteraction()
QGeneralPostStepDolt()

<static>> GetlsotopeProductioninfo()
“QRegisterlsotopeProductionModel()

<static>> EnablelsotopeProductionGlobally()
“<cstatic>> DisablelsotopeProductionGiobally()
“@EnablelsotopeCounting()
“QDisablelsotopeCounting()

<<Concrete>>
G4NeutronlsotopeProduction

<<Purely Abstract>>

G4VlsotopeProduction

QGetlsotope()

_images/Level3_1.jpg
prem—

prc—

G4PythiaAhinterface

GA4TheoFSGenerator|

<cAbstract>>

GA4Hadronicinteraction

G4PartonTransportModel

[

pT—

G4NhModel

G4VHighEnergyGenerator

perai—

SopiyYoursali)
SeainEneray)
SeaaxEnerayl)
Socacivaterar)

GaVPreCompoundModel
ol
Eciatorsandar)

SivereCompoundhodel)
ghcevPreCompouniodel)

<<Puraly Aostracts>

GAVintraNuclearTransportModel

Secatter)
SGatbioundedhucusl)

A

P

prem—

GA4PythiaNhinterface

GAVPartonStringModel

SopyYoursalty

G4VExcitationHandler

7

SGattioundadhiucieus()

)
R tvats> Getsirings()

pes——

orectragroniomenta()

r—

G4HadronKineticModel | G4QMDModel
i

prc—
G4HadronicCascade'

_images/SplitClassSimple.jpg
<shared> <static singleton> <thread local>

G4ParticleDefinition GA4PartDefSplitter TLS pointer G4ProcessManager
- G4double mass - Array of TLS - Proc man* - Process A*
- G4double charge pointers of " "
- G4double life time G4ProcessManager Erocman Erocess B
- Decay table O - Proc man* - Process C*
LS poi - Proc man - Process D*
- G4int particleindex alloipolntey o
" - Proc man
- TLS pointer
TLS pointer
- TLS pointer

- TLS pointer

_images/Level5_1.jpg
<<Concrete>>

G4QGSMFragmentation
@GetLightConez()

<<Purely Abstract>>
G4VStringFragmentation
QFragmentString()

7

<<Concrete>>
G4ExcitedStringDecay

<<Purely Abstract>>
G4VFragmentationFunction

SGetLightConeZ()

G4ExcitedString

QGetPosition()

etPosition()
SGetPartonList()

etaMomentum()
@nsertParton()
@TransformToCenterOfMass()
QAlignAlongZ()
“WsExcited()
SGetHadron()

<<Concrete>>
GALundStringFragmentation

<<Concrete>>
G4FeynmanFragmentation

@ GetLightConeZ()

(@ GetLightConeZ()

_images/SimplifiedLifeCycle.png
Application

1: G4MTRunManager

<__

2.1: SetupGeometryAndPhysics

2.2: G4WorkerRunManager
I
2.3: BeamOn :
2.3.2: PrepareNextEvent 2.3.1: SimulateEvent

2.3.3: EndOfRun

3: Terminate

3.1:

