
RDataFrame
easy parallel ROOT analysis at 100 threads

Enrico Guiraud for the ROOT team
CHEP 2018, Sofia, Bulgaria

2

ROOT: a foundation library

E. Guiraud, “RDataFrame”, CHEP 2018

2x luminosity

7x luminosity

source: http://acceleratingnews.web.cern.ch/content/recent-progress-hilumi-project-0

➔ The amount of data produced by HEP experiments is going to increase drastically

◆ e.g. at CERN: HL-LHC, FCC, …

➔ ROOT’s mission does not change:
bring physicists from collision to publication as effectively as possible

http://acceleratingnews.web.cern.ch/content/recent-progress-hilumi-project-0

3

A recipe for efficient HEP analyses

➔ strive for a simple programming model

➔ expose modern, elegant interfaces that are

easy to use correctly and hard to use incorrectly

➔ allow to transparently benefit from parallelism

E. Guiraud, “RDataFrame”, CHEP 2018

4

➔ strive for a simple programming model

➔ expose modern, elegant interfaces that are

easy to use correctly and hard to use incorrectly

➔ allow to transparently benefit from parallelism

HEP is not alone in these challenges:
we can learn from the data science industry

and bring back what physicists need, in the form they need it

E. Guiraud, “RDataFrame”, CHEP 2018

A recipe for efficient HEP analyses

5

➔ strive for a simple programming model

➔ expose modern, elegant interfaces that are

easy to use correctly and hard to use incorrectly

➔ allow to transparently benefit from parallelism

HEP is not alone in these challenges:
we can learn from the data science industry

and bring back what physicists need, in the form they need it

RDataFrame, officially part of ROOT since v6.14, tries to incarnate
these ideas in the context of HEP analyses and HEP data manipulation

E. Guiraud, “RDataFrame”, CHEP 2018 RDF user guide, cheat-sheet

A recipe for efficient HEP analyses

https://doi.org/10.5281/zenodo.260230
https://root.cern/doc/master/classROOT_1_1RDataFrame.html

RDataFrame design goals

6

pt_x pt_y p_z eta myvar

Range
Filter

Define

ROOT
CSV

Apache Arrow
[ATLAS’ xAOD]
[LHCb’s MDF]

histograms, profiles

data reductions
(mean, sum,..)

new ROOT files

any user-defined
operation

➔ being the fastest way to manipulate HEP data
➔ being the go-to ROOT analysis interface from 1 to 100 cores, laptop to cluster
➔ full support for and consistent interfaces in both Python and C++

cut-flow reports

Datasource

E. Guiraud, “RDataFrame”, CHEP 2018

 ...employing elements of declarative and functional programming helped greatly

7

An ergonomic, fast C++ dataframe

ROOT::RDataFrame df(dataset); on this (ROOT, CSV, …) dataset

E. Guiraud, “RDataFrame”, CHEP 2018

8

An ergonomic, fast C++ dataframe

ROOT::RDataFrame df(dataset);

auto df2 = df.Filter("x > 0") only accept events for which x > 0

E. Guiraud, “RDataFrame”, CHEP 2018

on this (ROOT, CSV, …) dataset

9

An ergonomic, fast C++ dataframe

ROOT::RDataFrame df(dataset);

auto df2 = df.Filter("x > 0")

 .Define("r2", "x*x + y*y");

only accept events for which x > 0

define r2 = x² + y²

E. Guiraud, “RDataFrame”, CHEP 2018

on this (ROOT, CSV, …) dataset

10

An ergonomic, fast C++ dataframe

ROOT::RDataFrame df(dataset);

auto df2 = df.Filter("x > 0")

 .Define("r2", "x*x + y*y");

auto rHist = df2.Histo1D("r2");

only accept events for which x > 0

define r2 = x² + y²

plot r2 for events that pass the cut

E. Guiraud, “RDataFrame”, CHEP 2018

on this (ROOT, CSV, …) dataset

11

An ergonomic, fast C++ dataframe

ROOT::RDataFrame df(dataset);

auto df2 = df.Filter("x > 0")

 .Define("r2", "x*x + y*y");

auto rHist = df2.Histo1D("r2");

df2.Snapshot("newtree", "out.root");

only accept events for which x > 0

define r2 = x² + y²

plot r2 for events that pass the cut

write the skimmed data and r2
to a new ROOT file

E. Guiraud, “RDataFrame”, CHEP 2018

on this (ROOT, CSV, …) dataset

12

An ergonomic, fast C++ dataframe

ROOT::EnableImplicitMT();

ROOT::RDataFrame df(dataset);

auto df2 = df.Filter("x > 0")

 .Define("r2", "x*x + y*y");

auto rHist = df2.Histo1D("r2");

df2.Snapshot("newtree", "out.root");

only accept events for which x > 0

define r2 = x² + y²

plot r2 for events that pass the cut

write the skimmed data and r2
to a new ROOT file

E. Guiraud, “RDataFrame”, CHEP 2018

on this (ROOT, CSV, …) dataset

Run a parallel analysis

13

An ergonomic, fast C++ dataframe

ROOT::EnableImplicitMT();

ROOT::RDataFrame df(dataset);

auto df2 = df.Filter("x > 0")

 .Define("r2", "x*x + y*y");

auto rHist = df2.Histo1D("r2");

df2.Snapshot("newtree", "out.root");

only accept events for which x > 0

define r2 = x² + y²

plot r2 for events that pass the cut

write the skimmed data and r2
to a new ROOT file

Lazy execution guarantees that all operations are performed in one event loop

E. Guiraud, “RDataFrame”, CHEP 2018

on this (ROOT, CSV, …) dataset

Run a parallel analysis

14

Analyses as computation graphs

ROOT::RDataFrame df(dataset);

auto df2 = df.Filter("x > 0")

 .Define("r2", "x*x + y*y");

auto rHist = df2.Histo1D("r2");

df2.Snapshot("newtree", "newfile.root");

filter

x > 0

define
r2 = x² + y²

data
x, y

histo
r2

ROOT file
x, y, r2

data
transformation
result

E. Guiraud, “RDataFrame”, CHEP 2018

15

No templates: C++ → JIT → Python

E. Guiraud, “RDataFrame”, CHEP 2018

d.Filter([](double t) { return t > 0.; }, {"theta"})
 .Snapshot<vector<float>>("t","f.root",{"pt_x"});

C++

16

d.Filter([](double t) { return t > 0.; }, {"theta"})
 .Snapshot<vector<float>>("t","f.root",{"pt_x"});

d.Filter("theta > 0").Snapshot("t","f.root","pt_x");

C++ with cling’s just-in-time compilation

C++

E. Guiraud, “RDataFrame”, CHEP 2018

No templates: C++ → JIT → Python

17

PyROOT, automatically generated Python bindings

d.Filter("theta > 0").Snapshot("t","f.root","pt_x")

E. Guiraud, “RDataFrame”, CHEP 2018

No templates: C++ → JIT → Python

d.Filter([](double t) { return t > 0.; }, {"theta"})
 .Snapshot<vector<float>>("t","f.root",{"pt_x"});

d.Filter("theta > 0").Snapshot("t","f.root","pt_x");

C++ with cling’s just-in-time compilation

C++

18

auto inMemDF = d.Filter("All(event.muons.eta < 2.5)")

Jitted C++ or PyROOT

E. Guiraud, “RDataFrame”, CHEP 2018

Collections, in-memory caching

19

auto inMemDF = d.Filter("All(event.muons.eta < 2.5)")
 .Cache({"event.muons.eta"});

Jitted C++ or PyROOT

E. Guiraud, “RDataFrame”, CHEP 2018

Collections, in-memory caching

20

auto cutEtas = [](RVec<float> etas) { return All(etas < 2.5); };
auto inMemDF = d.Filter(cutEtas, {"event.muons.eta"})

 .Cache<RVec<float>>({"event.muons.eta"});

Jitted C++ or PyROOT

C++

E. Guiraud, “RDataFrame”, CHEP 2018

Collections, in-memory caching

auto inMemDF = d.Filter("All(event.muons.eta < 2.5)")
 .Cache({"event.muons.eta"});

RVec reference guide

https://root.cern/doc/master/classROOT_1_1VecOps_1_1RVec.html

Case study: ATLAS SUSY ntuple → ntuple

21

data cleaning &
generic selections

cutflow
report

snapshot

syst #2 syst #60

aliases
&

defines

filters

filters

data

systematics #1

defines

➔ program’s main reads similarly to this graph

➔ the large blue boxes represent one single function
that applies the same operations to an RDF variable
and is re-used for all different systematics

➔ cuts, calculations and writing of the 60 output trees
all happen in the same multi-thread event loop

alias systematic
variables

to normalized
column names

cuts on variables
that depend on

systematics

Local ntuple → ntuple processing, MC data is
processed to add quantities relevant for publication

correlations
and other
useful
quantities

write out
processed
ntuple

E. Guiraud, “RDataFrame”, CHEP 2018

data
transformation
result

➔ program’s main reads similarly to this graph

➔ the large blue boxes represent one single function
that applies the same operations to an RDF variable
and is re-used for all different systematics

➔ cuts, calculations and writing of the 60 output trees
all happen in the same multi-thread event loop

22

data cleaning &
generic selections

data

transformation

result

cutflow
report

snapshot

syst #2 syst #60

aliases
&

defines

filters

filters

data

systematics #1

defines

alias systematic
variables

to normalized
column names

cuts on variables
that depend on

systematics

correlations
and other
useful
quantities

write out
processed
ntuple

E. Guiraud, “RDataFrame”, CHEP 2018

Case study: ATLAS SUSY ntuple → ntuple

Local ntuple → ntuple processing, MC data is
processed to add quantities relevant for publication

23

High-level customization points: RDataSource

User RDataFrame RDataSource

➔ RDataFrame can read non-ROOT data through RDataSource objects

➔ third parties can implement and seamlessly integrate RDataSource
implementations for their format of choice

queries readsuses
Data

E. Guiraud, “RDataFrame”, CHEP 2018

24

User RDataFrame RDataSource

➔ RDataFrame can read non-ROOT data through RDataSource objects

➔ third parties can implement and seamlessly integrate RDataSource
implementations for their format of choice

➔ CSV and Apache Arrow currently supported via RDataSource

➔ prototypes for LHCb’s MDF binary data format and ATLAS’ xAOD event model

queries readsuses
Data

E. Guiraud, “RDataFrame”, CHEP 2018

High-level customization points: RDataSource

https://root.cern/doc/master/classROOT_1_1RDF_1_1RCsvDS.html
https://root.cern/doc/master/classROOT_1_1RDF_1_1RArrowDS.html
https://github.com/bluehood/mdfds
https://gitlab.cern.ch/uworlika/xaod-ds/tree/master
https://zenodo.org/record/1303038#.WzoSdHYzZNw

25

User RDataFrame RDataSource

➔ RDataFrame can read non-ROOT data through RDataSource objects

➔ third parties can implement and seamlessly integrate RDataSource
implementations for their format of choice

➔ CSV and Apache Arrow currently supported via RDataSource

➔ prototypes for LHCb’s MDF binary data format and ATLAS’ xAOD event model

queries readsuses
Data

Users can write the same code independently of the data format analyzed

E. Guiraud, “RDataFrame”, CHEP 2018

High-level customization points: RDataSource

https://root.cern/doc/master/classROOT_1_1RDF_1_1RCsvDS.html
https://root.cern/doc/master/classROOT_1_1RDF_1_1RArrowDS.html
https://github.com/bluehood/mdfds
https://gitlab.cern.ch/uworlika/xaod-ds/tree/master

Does it scale? Is it fast?

26E. Guiraud, “RDataFrame”, CHEP 2018

No disk reads, KNL, 64 physical cores Read speed on SSD, 4 physical cores @ 3.6GHz
TTree+SetBranchAddress vs TTreeReader vs RDataFrame

Original results by J. Blomer

Monte Carlo QCD Low-Pt events generation+ analysis on the fly

Ad-hoc implementation (patched ROOT 5 + POSIX threads) vs RDF

Performance analysis by X. Valls Pla

https://indico.cern.ch/event/567550/contributions/2628878/
https://indico.cern.ch/event/607855/

Monte Carlo QCD Low-Pt events generation+ analysis on the fly

Ad-hoc implementation (patched ROOT 5 + POSIX threads) vs RDF

Performance analysis by X. Valls Pla

Does it scale? Is it fast?

27E. Guiraud, “RDataFrame”, CHEP 2018

No disk reads, KNL, 64 physical cores Read speed on SSD, 4 physical cores @ 3.6GHz
TTree+SetBranchAddress vs TTreeReader vs RDataFrame

Original results by J. Blomer

https://indico.cern.ch/event/607855/
https://indico.cern.ch/event/567550/contributions/2628878/

Does it scale? Is it fast?

28E. Guiraud, “RDataFrame”, CHEP 2018

Read speed on SSD, 4 physical cores @ 3.6GHz
TTree+SetBranchAddress vs TTreeReader vs RDataFrame

Original results by J. Blomer

Monte Carlo QCD Low-Pt events generation+ analysis on the fly

Ad-hoc implementation (patched ROOT 5 + POSIX threads) vs RDF

Performance analysis by X. Valls Pla

No disk reads, KNL, 64 physical cores

https://indico.cern.ch/event/567550/contributions/2628878/
https://indico.cern.ch/event/607855/

Monte Carlo QCD Low-Pt events generation+ analysis on the fly

Ad-hoc implementation (patched ROOT 5 + POSIX threads) vs RDF

Performance analysis by X. Valls Pla

Does it scale? Is it fast?

29E. Guiraud, “RDataFrame”, CHEP 2018

No disk reads, KNL, 64 physical cores Read speed on SSD, 4 physical cores @ 3.6GHz
TTree+SetBranchAddress vs TTreeReader vs RDataFrame

Original results by J. Blomer

uses

understood,
will be
reduced

https://indico.cern.ch/event/607855/
https://indico.cern.ch/event/567550/contributions/2628878/

Summary, outlook
➔ ROOT provides a modern, high-level, type-safe, parallel

interface for data analysis and manipulation

➔ RDataFrame is available since ROOT v6.14
◆ performant, scales to many-core architectures,
◆ has already been used successfully by physicists of major LHC experiments

30E. Guiraud, “RDataFrame”, CHEP 2018

Summary, outlook

31E. Guiraud, “RDataFrame”, CHEP 2018

For the future

➔ more pythonic pyROOT bindings (conversion to/from numpy, python callables, …)
➔ distributed execution of RDataFrame analyses:

working prototype for python+Spark
➔ integration with TMVA’s inference layer
➔ low-level performance optimization

➔ ROOT provides a modern, high-level, type-safe, parallel
interface for data analysis and manipulation

➔ RDataFrame is available since ROOT v6.14
◆ performant, scales to many-core architectures,
◆ has already been used successfully by physicists of major LHC experiments

Birds of a feather session about
“Present and Future of Data Analysis in ROOT”

https://indico.cern.ch/event/694818/contributions/2985777
https://github.com/shravan97/PyRDF
https://doodle.com/poll/28e2wrrq2tga3wcn

More stuff!

RDataFrame’s parallelization scheme

33

➔ each task processes a range of entries (thanks to inherent independence of HEP events)
➔ cannot overcommit, plays well with e.g. experiment frameworks
➔ range granularity is the same as TTree compression’s to avoid redundant decompressions
➔ Intel TBB is currently ROOT’s task scheduler and thread pool manager
➔ RDF parallel writing is also task-based, see G. Amadio, “Writing ROOT Data in Parallel", Track 5

E. Guiraud, “RDataFrame”, CHEP 2018

Task-based parallelism

pt_x pt_y p_z eta
Thread 1

task 1
task 2

partial
result

RDF result
Thread 2

task 3 partial
result

https://indico.cern.ch/event/587955/contributions/2938149/

Design principles

34

less side-effects and less shared state increase thread-safety and code correctness

users code in terms of small reusable components

Elements of functional programming
pure functions, higher level functions

E. Guiraud, “RDataFrame”, CHEP 2018

...and allow transparent optimisations, e.g. multi-thread parallelisation, lazy evaluation and caching

high level interfaces provide less typing, increased readability, abstraction of complex operations

Elements of declarative programming
“user says what, ROOT chooses how”

Parallel event generation and processing

// The pythia generator: a “slot” corresponds to a thread
Pythia8::Pythia pythia[nSlots];

// The generator function
auto genFunc = [&](unsigned int slot) {
 return &pythias[slot].event;
};

ROOT::Experimental::TDataFrame tdf(nevents);
tdf.DefineSlot("event", genFunc)
 .Filter(...).Define(...)
 .Snapshot<Pythia8::Event*>("tree", "hardQCD.root", {"event"});

35

36

Transformations apply modifications to the dataframe, return a new RDataFrame

Actions (next slide) produce results from a (possibly transformed) dataset

RDataFrame cheat sheet

html cheat sheet

https://root.cern/doc/master/classROOT_1_1RDataFrame.html

37

