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ROOT: a foundation library

= The amount of data produced by HEP experiments is going to increase drastically
€ c.g at CERN: HL-LHC, FCC, ...

= ROOT's mission does not change:
bring physicists from collision to publication as effectively as possible
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A recipe for efficient HEP analyses

= strive for a simple programming model
= expose modern, elegant interfaces that are
easy to use correctly and hard to use incorrectly

= allow to transparently benefit from parallelism
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A recipe for efficient HEP analyses

= strive for a simple programming model
= expose modern, elegant interfaces that are
easy to use correctly and hard to use incorrectly

= allow to transparently benefit from parallelism

HEP is not alone in these challenges:
we can learn from the data science industry
and bring back what physicists need, in the form they need it
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A recipe for efficient HEP analyses

= strive for a simple programming model
= expose modern, elegant interfaces that are
easy to use correctly and hard to use incorrectly

= allow to transparently benefit from parallelism

HEP is not alone in these challenges:
we can learn from the data science industry
and bring back what physicists need, in the form they need it

RDataFrame, officially part of ROOT since v6.14, tries to incarnate
these ideas in the context of HEP analyses and HEP data manipulation
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https://doi.org/10.5281/zenodo.260230
https://root.cern/doc/master/classROOT_1_1RDataFrame.html

RDataFrame design goals
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ROOT
csv
Apache Arrow
[ ATLAS XAOD ]
[ LHCb's MDF ]

~.

- being the fastest way to manipulate HEP data
- being the go-to ROOT analysis interface from 1 to 100 cores, laptop to cluster
= full support for and consistent interfaces in both Python and C++

..employing elements of declarative and functional programming helped greatly
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An ergonomic, fast C++ dataframe

ROOT::RDataFrame df(dataset); -~ on this (ROOT, CSV, ...) dataset
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An ergonomic, fast C++ dataframe

ROOT::RDataFrame df(dataset); -~ on this (ROOT, CSV, ...) dataset
auto df2 = df.Filter("x > 0") - only accept events for which x > 0
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An ergonomic, fast C++ dataframe

ROOT::RDataFrame df(dataset); -~ on this (ROOT, CSV, ...) dataset
auto df2 = df.Filter("x > 0") - only accept events for which x > 0
.Deﬁne("FZ"’ "x*kx + y*y"); ................... deﬂne 2 =x2+ yZ
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An ergonomic, fast C++ dataframe

ROOT::RDataFrame df(dataset); oo on this (ROOT, CSV, ...) dataset

auto dfF2 = dFFilter("x > 0") <o only accept events for which x > 0
Define("r2", "x*x + y*Fy"); define r2 = x2 + y2

auto rHist = df2.Histo1D("r2"); -~ plot r2 for events that pass the cut
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An ergonomic, fast C++ dataframe

ROOT::RDataFrame df(dataset); oo on this (ROOT, CSV, ...) dataset

auto df2 = df.Filter("x > 0") ~- v only accept events for which x > 0
Define("r2", "X*X + yFy"): define r2 = x2 + y2

auto rHist = df2.Histo1D("r2"); oo plot r2 for events that pass the cut

df2.Snapshot("newtree”, "out.root"); -~ write the skimmed data and r2

to a new ROQOT file
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An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis

ROOT::RDataFrame df(dataset); oo on this (ROOT, CSV, ...) dataset

auto df2 = df.Filter("x > 0") ~- v only accept events for which x > 0
Define("r2", "X*X + yFy"): define r2 = x2 + y2

auto rHist = df2.Histo1D("r2"); oo plot r2 for events that pass the cut

df2.Snapshot("newtree”, "out.root"); -~ write the skimmed data and r2

to a new ROQOT file
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An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis

ROOT::RDataFrame df(dataset); oo on this (ROOT, CSV, ...) dataset

auto df2 = df.Filter("x > 0") ~- v only accept events for which x > 0
Define("r2", "X*X + yFy"): define r2 = x2 + y2

auto rHist = df2.Histo1D("r2"); oo plot r2 for events that pass the cut

df2.Snapshot("newtree”, "out.root"); -~ write the skimmed data and r2

to a new ROQOT file
Lazy execution guarantees that all operations are performed in one event loop
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(Odata
()transﬂNTnann
ROOT::RDataFrame df(dataset);

auto df2 = df.Filter("x > 0")
Define("r2", "x*x + y*y");
auto rHist = df2.Histo1D("r2");

df2.Snapshot("newtree", "newfile.root"); \
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No templates: C++ — JIT — Python

C++

d.Filcer([J(double £) {return t>0.; }, {"theta"})
Snapshot<vector<float>>("t","f.root" {"pt_x"});
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d.Filcer([J(double £) {return t>0.; }, {"theta"})
Snapshot<vector<float>>("t","f.root" {"pt_x"});

C++ with cling’s just-in-time compilation
d.Filcer("theta > 0").Snapshot("t","f.root","pt_x");
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No templates: C++ — JIT — Python

C++

d.Filcer([J(double t) {return t>0.; }, {"theta"})
.Snapshot<vector<float>>("t","f.root" {"pt_x"});

C++ with cling’s just-in-time compilation
d.Filcer("theta > 0").Snapshot("t","f.root","pt_x");

PyROOT, automatically generated Python bindings
d.Filter("theta > 0").Snapshot("t","f.root","pt_x")
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Collections, in-memory caching

Jitted C++ or PyROOT

auto inMemDF = d.Filter("All(event.muons.eta < 2.5)")

E. Guiraud, “RDataFrame”. CHEP 2018 18



Collections, in-memory caching

Jitted C++ or PyROOT

auto inMemDF = d.Filter("All(event.muons.eta < 2.5)")
.Cache({"event.muons.eta"});
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Collections, in-memory caching

Jitted C++ or PyROOT

auto inMemDF = d.Filter("All(event.muons.eta < 2.5)")
.Cache({"event.muons.eta"});

C++

auto cutEtas = [](RVec<float> etas) { return All(etas < 2.5); };
auto inMemDF = d.Filter(cutEtas, {"event.muons.eta"})
.Cache<RVec<float>>({"event.muons.eta"});
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https://root.cern/doc/master/classROOT_1_1VecOps_1_1RVec.html

data cleaning &
generic selections

alias systematic
variables

to normalized

column names

cuts on variables

that depend on
systematics

correlations
and other
useful
quantities
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write out
processed /
ntuple "

report

cutflow
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systematics #1

(O data

Qtransformation
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-
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Local ntuple — ntuple processing, MC data is
processed to add quantities relevant for publication

program'’s main reads similarly to this graph

the large blue boxes represent one single function
that applies the same operations to an RDF variable
and is re-used for all different systematics

cuts, calculations and writing of the 60 output trees
all happen in the same multi-thread event loop
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High-level customization points: RDataSource

uses queries reads
User RDataFrame RDataSource

= RDataFrame can read non-ROOT data through RDataSource objects

= third parties can implement and seamlessly integrate RDataSource
implementations for their format of choice
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v_‘_High—IeveI customization points: RDataSource

uses queries reads
User RDataFrame RDataSource

= RDataFrame can read non-ROOT data through RDataSource objects

= third parties can implement and seamlessly integrate RDataSource
implementations for their format of choice

= (S5Vand Apache Arrow currently supported via RDataSource

- prototypes for L HCH's MDFE binary data format and ATLAS xAOD event mode!

DOl 10.5281/zenodo.1303038
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https://root.cern/doc/master/classROOT_1_1RDF_1_1RCsvDS.html
https://root.cern/doc/master/classROOT_1_1RDF_1_1RArrowDS.html
https://github.com/bluehood/mdfds
https://gitlab.cern.ch/uworlika/xaod-ds/tree/master
https://zenodo.org/record/1303038#.WzoSdHYzZNw

High-level customization points: RDataSource

uses queries reads
User RDataFrame RDataSource

= RDataFrame can read non-ROOT data through RDataSource objects

= third parties can implement and seamlessly integrate RDataSource
implementations for their format of choice

= (S5Vand Apache Arrow currently supported via RDataSource

- prototypes for L HCH's MDFE binary data format and ATLAS xAOD event mode!

Users can write the same code independently of the data format analyzed
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Does it scale? Is it fast?

Z

No disk reads, KNL, 64 physical cores Read speed on SSD, 4 physical cores @ 3.6GHz
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Summary, outlook

- ROOT provides a modern, high-level, type-safe, parallel
interface for data analysis and manipulation

-=> RDataFrame is available since ROOT v6.14

€ performant, scales to many-core architectures,
€ has already been used successfully by physicists of major LHC experiments
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Summary, outlook

- ROOT provides a modern, high-level, type-safe, parallel
interface for data analysis and manipulation

- RDataFrame is available since ROOT v6.14
€ performant, scales to many-core architectures,
€ has already been used successfully by physicists of major LHC experiments

For the future

-> (conversion to/from numpy, python callables, ...)
- distributed execution of RDataFrame analyses:
e 2

integration with TMVA's inference layer i about
= |ow-level performance optimization !
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More stuft!



RDataFrame’s parallelization scheme

Thread 1

partial u
result

__» task 1
task 2 >

Thread 2

RDF result

>

each task processes a range of entries (thanks to inherent independence of HEP events)
cannot overcommit, plays well with e.g. experiment frameworks

range granularity is the same as TTree compression’s to avoid redundant decompressions
Intel TBB is currently ROOT's task scheduler and thread pool manager

RDF parallel writing is also task-based, see

——» ftask3 ———»

Task-based parallelism

Vi vl
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Design principles

Elements of declarative programming
“user says what, ROOT chooses how”

high level interfaces provide less typing, increased readability, abstraction of complex operations

..and allow transparent optimisations, e.g. multi-thread parallelisation, lazy evaluation and caching

Elements of functional programming
pure functions, higher level functions

users code in terms of small reusable components

less side-effects and less shared state increase thread-safety and code correctness
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arallel event generation and processing

// The pythia generator: a “slot” corresponds to a thread
Pythia8::Pythia pythia[nSlots];

// The generator function

auto genFunc = [&J(unsigned int slot) {
return &pythias[slot].event;

¥

ROOT::Experimental::TDataFrame tdf(nevents);
tdf.DefineSlot("event", genFunc)

Filter(...).Define(...)

Snapshot<Pythia8::Event*>("tree", "nardQCD.root", {"event"});
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RDataFrame cheat sheet

Transformations apply modifications to the dataframe, return a new RDataFrame

Actions (next slide) produce results from a (possibly transformed) dataset

Transformation Description

Define Creates a new column in the dataset.

Same as Define, but the user-defined function must take an extra unsigned int slot asits first parameter. slot will take a different value, 0 to nThreads - 1, for each thread
DefineSlot of execution. This is meant as a helper in writing thread-safe Define transformation when using RDataFrame after ROOT: : EnableImplicitMT (). DefineSlot works just as well
with single-thread execution: in that case slot will always be 0.

DefineSlotEntry Same as DefineSlot, but the entry number is passed in addition to the slot number. This is meant as a helper in case some dependency on the entry number needs to be

honoured.
Filter Filter the rows of the dataset.
Range Creates a node that filters entries based on range of entries

htm! cheat sheet
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Lazy action Description

Aggregate Execute a user-defined accumulation operation on the processed column values.

Book Book execution of a custom action using a user-defined helper object.

Cache Caches in contiguous memory columns' entries. Custom columns can be cached as well, filtered entries are not cached. Users can specify which columns to save (default is all).
Count Return the number of events processed.

Fill Fill a user-defined object with the values of the specified branches, as if by calling *Obj.Fill(branchl, branch2, ...).

Histo{1D,2D,3D} | Fill a {one,two,three}-dimensional histogram with the processed branch values.

Max Return the maximum of processed branch values. If the type of the column is inferred, the return type is double, the type of the column otherwise.

Mean Return the mean of processed branch values.

Min Return the minimum of processed branch values. If the type of the column is inferred, the return type is double, the type of the column otherwise.

Profile{1D,2D} Fill a {one,two}-dimensional profile with the branch values that passed all filters.

Reduce (e.g. sum, merge) entries using the function (lambda, functor...) passed as argument. The function must have signature T(T,T) where T is the type of the branch. Return

Bedute the final result of the reduction operation. An optional parameter allows initialization of the result object to non-default values.

RéfibiE Obtains statisticst on how ma.ny entries have'been accepted e.:nd rejected. by the ﬁ.lters. See the section on narnefi .ﬁlters for a more detailed explanation. The method returns a
RCutFlowReport instance which can be queried programmatically to get information about the effects of the individual cuts.

Sum Return the sum of the values in the column. If the type of the column is inferred, the return type is double, the type of the column otherwise.

- Extract a column from the dataset as a collection of values. If the type of the column is a C-style array, the type stored in the return container is a ROOT: : VecOps: :RVec<T> to

guarantee the lifetime of the data involved.

Instant
action

Description

Foreach Execute a user-defined function on each entry. Users are responsible for the thread-safety of this lambda when executing with implicit multi-threading enabled.

Same as Foreach, but the user-defined function must take an extra unsigned int slot as its first parameter. slot will take a different value, 0 to nThreads - 1, for each thread of
ForeachSlot execution. This is meant as a helper in writing thread-safe Foreach actions when using RDataFrame after ROOT: : EnableImplicitMT(). ForeachSlot works just as well with single-
thread execution: in that case slot will always be 0.

Writes processed data-set to disk, in a new TTree and TFile. Custom columns can be saved as well, filtered entries are not saved. Users can specify which columns to save (default

Snapshot
P is all). Snapshot, by default, overwrites the output file if it already exists. Snapshot can be made /azy setting the appropriate flage in the snapshot options.

Other Operations

Operation Description

Alias Introduce an alias for a particular column name

GetColumnNames | Get all the available columns of the dataset




