» Google
=1 CERN
“1;= openlab

Accelerating GAN training
using distributed tensorflow
and highly parallel hardware

Architecture of the GAN

e 3D convolutional Generative Adversarial Network using physics
constraints.

e Generates 51x51x25 pixels images, representing energy depositions in
calorimeters, similar to the ones generated by Monte Carlo.

Weight kemel
Fxyz

Discriminator

.::_'._. Si?é“mab IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 2

GAN Training - General Idea

e The GAN training is divided into two steps: the Discriminator Training and
the Generator Training

e \We train the Discriminator and then the Generator for each batch of data.

e This process of training is repeated for a specific amount of epochs.

Real Data

——> Discriminator

A
Random Fake
Generator
=", CERN IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 3

I,,= openlab

GPUs - Parallel Approach

Reduces Weights and sends losses

e Using Tensorflow Mirrored
Strategy l

e Mirrored Strategy uses
synchronous training with
NVIDIA NCCL as the all-reduce | Woikat Woikat Workat
implementation ManGPY | “epu GPU GPU

e Model needs to be initialized in
strategy scope

e Tensorflow Train_on_batch 3 5 5
function takes care of
distributed training. Distibutes batcn

{::- 8Egl;gnlab IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 4

GPU Configuration

e The models were run using the Mirrored Strategy to implement
parallelization across the multiple GPUs

e Weused 1, 2and 4 V100 GPUs present in Google Cloud

e The batch used for each GPU was 128, meaning that for each step in the
training (update of the discriminator and the generator) the global batch
size is 128 x N .-

e \We measured the average time for each individual training for a batch of
data, as well as the average training for a single epoch

e Alltimes are in seconds

.:". g?;gnlab IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 5
H Lol

GPU Results

e Batch size: - .
ver Im r h:
o 1GPU=1x128 = 128 Average Time per epoc

o 4GPUs=4x128 = 512. e 1 GPU: 4999

e 4 GPUs process 4x more data than 1 o 2GPU: 3481
GPU per batch o 4 GPU: 2565

e 1 GPUneeds4.8 x4 =19.2 seconds to
process the same data.

a5 Training time for discriminator per batch a5 Training time for generator per batch Total training Time per one batch
- total= 4.3 85 1 tal= 8.
I Initialization and image generation I Initialization and image generation g0 { HEE Discriminator Train tot 2
40 1 mmm Real data train times total= 3.9 401 == Train times 7.5 1 HEE Generator Train
35 | EE Fake data train times 35 4 total= 3.4 ég
. - total= 3.1 - 6:0 .
g 30 g 307 8 55
g . total= 2.6 § 55 S 5.0 -
o - T o o 1 |
% % 5451
£ 20 £ 20 £ 407
E total= 1.7 E Tg 354
S 15 S 15 4 = 3.0
= = = 251
10 10 - 2.0 1
15 A
05 05 10 1
05
0.0 00 - 0.0 -
1GPU 2 GPUs 4 GPUs 1GPU 2 GPUs 4 GPUs 1GPU 2 GPUs 4 GPUs

-:::- gE;';gnlab IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 6

GPU Conclusions

e Overall Decrease in Training time
per epoch 4999 -> 3481 -> 2565

e Small variances of training time 000§ P chawdting |
while increasing number of GPUs o
06->0.7->0.9 -

e Bottleneck in initialization of data g o
and image generation 8]

e T[imes obtained are not near linear 1500
S p ee d -U p . 10 15 20 Numbezr.'if . 30 35 40

", CERN IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 7

I,,= openlab

TPUs - Tensor Processing Units

Tensor Processing Units (TPUs) are application-specific integrated circuits
(ASICs) developed by Google in order to accelerate the machine learning
workload.

Core Core Core Core
scalar/ vector scalar/ vector scalar/
units units vector us vector units
YA v A ;;;
o\l [BE252E2E |[[22522E2E |, [ew | ([ome| L SaEauasn Saamaaas) | 3ammass| saaaaans) . oo
:g; ‘G‘H'D"D"D"D"D'g HIDIHIDIHHHB 8GB 16GB ENEEEEEE FESNEENE | ||| TTEEENEE IENEEEEE 16GB
o o o s DEDEEEEE rrrrrrryrrrrrrrrae L L Lt ne iyl
0ooooooo oEoEooEn EEEENENE EEEEEEEE ||| SEENNEEE SEEENEEEE
DEEEDEEEE o o SEEENEEE (EEEEENEE | ||SEENEEER S EEEENEEE
oeoooooo oosopnooo ENEEEEEE ENSRSNEN ||| TEENEEEE SEEENEEEE
oooooooo onoooooo IEEENEEN AEEEEEE N SENENNER | FEEEEEERE
MXU MXU MXU MXU MXU MXU
128x128 128x128 128x128 128x128 128x128 128x128
https://cloud.google.
s 4 i 2 . com/tpu/docs/syste
v2 - 4 chips, 2 cores per chip TPU v3 - 4 chips, 2 cores per chi .
? perene m-architecture
-l
g CERN IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 8

1, = openlab

TPUs Hardware

e Alarge two-dimensional matrix multiply e two cores per chip

unit (MXU) size of 128x128 e 2 MXUs per core for
e Inter-Core Interconnect (ICl) TPUsv3
e High Bandwidth Memory (HBM)
e Core Sequencer
e \ector Processing Unit
e The Transpose Reduction Permute Unit
- § ™ | e Ror
" vy | 1 s L
{:}g?;gnlab IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 9

TPU Parallel Approach

e Using Tensorflow TPU Strategy

e \Weight updates using All-reduce and a 2D
torus topology

e Model needs to be initialized in strategy
scope

e Tensorflow Train_on_batch function takes
care of distributed training.

e Cores on a Cloud TPU execute an
identical program residing in their own
respective HBM in a synchronous manner.

e Areduction operation is performed at the DOI: 10.1145/3360307
end of each neural network step across all
the cores.

.::} 8Egl;gnlab IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 10

http://dx.doi.org/10.1145/3360307

TPU Configuration

e Test were run on TPU version 3 with 8 cores
e Multiple batch sizes were used to see the difference in
performance.

e Batch specification for one TPU core:
o 8 cores -> Global batch size = 8 x batch size

e \We measured the average of time for each individual
training.

e In the end we measured the average time for one
epoch for the best setup

e Alltimes are in seconds

.::} gE;';gnlab IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 1

Time(in seconds)

TPU Results

Best Result - 8 cores batch size of 128 for each core.

64 batch size - similar training time - double the batches
256 batch size - double training time
Average time per epoch of best Result: 2070 seconds

Training time for discriminator per batch

:]lg | Bl Initialization and image generation =15.6
14 { E=3 Real data train times
13 { BB Fake data train times
12 4
11
10
9 .
8] =
7 p
6 .
5 -
4 -
3 .
2 -
1 4
0 -
TPU v3-8 batch 64 TPU v3-8 batch 128 TPU v3-8 batch 256

-l
£ ML 2020

Time(in seconds)

=
o =

Training time for generator per batch

| I Initialization and image generation s
E= Train times
9 p
8 4
7 B
6
5 4
4
3 R
2 p
1
0 p
TPU v3-8 batch 64 TPU v3-8 batch 128 TPU v3-8 batch 256

Total training Time per one batch

26 1 HEM Discriminator Train
1 HEE Generator Train

TPU v3-8 batch 64 TPU v3-8 batch 128

Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware

TPU v3-8 batch 256

12

TPU Results Validation

Results obtained from running the on TPUs v3 with 8 cores and a batch per
core of 128, during 40 epochs.

Sampling Fraction (cell energy sum / primary particle energy)

0016}
(mu:— S 0.03
E Qo
o012~ k3
: 8
0011~ w
oo0sf- 2 0025
o :
St 3 - e
mzé_ 0.02 — =
40 50 10 20 30 4 50 > 0 |
Energy deposition along x axis Energy deposition along y axis Energy deposition along x axis Energy deposition along y axis B
0.015 —
Energy deposited along x, y, z axis u'm:_ Energy deposited along x, y, z axis
L 0.01—
G4 G4
GAN GAN 0.005— — Data
0_1IlllllllIllllll\IIlIIIIIIIlIIII\IIlI
0 50 100 150 200 250 300 350 400 450 500
=+ = + + = % = Primary particle energy [GeV]
Energy deposition along 2 axis Energy deposition along 2 axis

Shower Shapes for Geant4 Shower Shapes for Sampling fraction GAN and

vs. GAN events along x, y Geant4 vs. GAN events Geant4 events for 100 -
and z in log scale along x, y and z 200 GeV primary energy
.:::- SE;';gnlab IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 13

Time(in seconds)

GPU+TPU Comparison

e Batch size:

o 4GPU=4x128 =512

o 8cores TPU=8x128 =1024.
e TPU are better than 4 GPUs

e Price:

o TPU: 1 USD/hour -> 4,6 per epoch
o GPU: 1,8 USD/hour -> 5,13 per epoch

Training time for discriminator per batch

? I [nitialization and image generation s
81 B Real data train times

7 B Fake data train times

6 -

5

4 total= 3.9

3

2

1 4

0 -

4 GPUs

TPU v3-8 batch 128

=1 CERN

%, openlab IML 2020

Training time for generator per batch

Average Time per
epoch:

o 4 GPU: 2565

e TPU v3-8: 2070

Total training Time per one batch

B |Initialization and image generation total= 5.6 14 1 mmm Discriminator Train total=13.8
| E=3 Train times - HEl Generator Train
total= 4.3
T 4 % 107
o o
5 5 total= 8.2
by B 81
w b wv
£ =
T T 67
E 5 £
= =
4 -
] ;5 |
e 0 e
4 GPUs TPU v3-8 batch 128 4 GPUs TPU v3-8 batch 128
Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 14

Summary

e Deployment of 3DGAN training on GPUs and TPUs
e Benchmark of TPUs and GPUs
e TPUs offer better performance than GPUs but still present a bottleneck in

training

Future Work
e Increase the amount of code being parallelized

e Better strategies for data input
e Modify models run on TPUs to achieve better performance

Resources accessed on GCloud thanks to the CERN openlab + Google collaboration

=11, CERN IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 15

1, = openlab

Any questions?

.::} Si?é“mab IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 16

GAN Training - Discriminator

Get the Real Images and the
Labels: Physics constrains

e The Discriminator has two steps for
training, the Real data training and the [

Fake data training.

e |n order to train the Discriminator on real
data we use “1” labels + small fraction of
“0” to introduce noise.

e For the fake data we use “0” labels + a
small fraction of “1” to introduce noise.

With the Generator, generate a Fake
mage using the random noise and
the physics constrains

Generate a random Noise J

comparing with the physics
constraint and an array of ones with

Train Dlscrlminator using the Real
image, obtaining the loss by
a chance for a bit flip

comparing with the physics
constraint and an array of zeros with

v

Train Discriminator using the Fake

image, obtaining the loss by
a chance for a bit flip

.:::. g?;gnlab IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 18

GAN Training - Generator

e The Generator only needs to train using the

random noise to generate the image and pass Qatl sbeles Eiysios cmsiraing
It to the Discriminator
e The combined model is responsible for l
generating the image and updating the
WelghtS Of the g_ener_ator _ Generate a random Noise
e The Generator is trained twice to balance the
training of the Discriminator
e \We use “17 labels in order to give the idea that
the generated data is all real data. Train the Generator twice using the
combined model with the random
noise, the physics constraint and an
array of ones
", CERN IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 19

I,,= openlab

Backup v3-32

TPU v3-32 TPU v3-8
batch 128 batch 128
Initialization and image | 18,1 5,3
generation
Discrimina o
tor Real data train times 13,2 1,1
Training Fake data train times 16,3 1,7
Sum of times 47.6 8,2
Initialization 0,6 2.4
Generator |Mage generation 0,047 0,013
Training Trgjning 2,7 1,6
Sum of times 14,894 5,626
Total training Time 62,494 13,626
=1, CERN IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 20

1, = openlab

Backup v2-8

TPU V3-8 | TPU v2-8
batch 128 | batch 128
Initialization and image 5,3 5,2
generation
Discriminator Real data train times 1,1 1,7
Training
Fake data train times 1,7 2,4
Sum of times 8,2 9,3
1. CERN IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 21

I,,= openlab

Backup Strategy code

strategy = tf.distribute.MirroredStrategy():

BATCH_SIZE_PER_REPLICA = batch_size
batch_size = batch_size * strategy.num_replicas_in_sync

with strategy.scope():
d=discriminator(xpower, dformat=dformat)
g=generator(latent_size, dformat=dformat)

with strategy.scope():
combined = Model(
inputs=[latent],
outputs=[fake, aux, ang, ecal, add_loss],

name="'combined_model"’

)

dataset = tf.data.Dataset.from_tensor_slices(dataset).batch(batch_size)

discriminator.train_on_batch

.::_':. g?;gnlab IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 22

Backup TPU code

tpu_address = os.environ["TPU_NAME"]
cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=tpu_address)
tf.config.experimental_connect_to_cluster(cluster_resolver)

tf.tpu.experimental.initialize_tpu_system(cluster_resolver)

strategy = tf.distribute.TPUStrategy(cluster_resolver)
BATCH_SIZE_PER_REPLICA = batch_size
batch_size = batch_size * strategy.num_replicas_in_sync
with strategy.scope():
d=discriminator(xpower, dformat=dformat)
g=generator(latent_size, dformat=dformat)
with strategy.scope():
combined = Model(
inputs=[latent],
outputs=[fake, aux, ang, ecal, add_loss],
name="'combined_model"’

)

dataset = tf.data.Dataset.from_tensor_slices(dataset).batch(batch_size)

discriminator.train_on_batch

.::} Sié‘é“mab IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 23

Full TPU Hardware

It has two TensorCores: Node fabric data and NF controller move on-chip data.

|
1 1CT Link IR Miscellaneous Host | S I
Datapath Queue NF
I PCIe ctrl el I
(= 10
[£l LsT
I Vector Unit Matrix Multiply Unit Vector Unit
Node ~and (128 x 128 x16b = 16K MAC) ~and Node
| HBM Fabric 8MiB Vmem 8MiB Vmem Fabric HBM =]
I port Data Data port %
i
— Core Y T i
I = Transposé |
I I/Smem Unit I
' |
1 ICI Switch
= and Controller 4
|
_— Transpose 1 I
| Unit Core |
Seq.
| rRPU | I/Smem
Vector Unit Vector Unit o
HBM FNt;d_e ~and ~and FNc;dg HBM]
port Satnac 8MiB Vmem Matrix Multiply Unit 8MiB Vmem Sagc port -06
(128 x 128 x16b = 16K MAC))
LST LST
(S e ¥
NF | Chip s |
. otrl Host Miscellaneous Manager = .
ICI Link Queue Datapath ICI Link I
I |
I I I I B B B B I B BaE GEE BEE GBS BEm EEE B 7-77 W7-7 ; E I N S - -
£ L CERN IML 2020 Renato Cardoso | Accelerating GAN training using distributed tensorflow and highly parallel hardware 24

I,,= openlab

