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The Need for FS Virtualization



Two examples of large Git repositories
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Perf of Git commands on Windows repo

12hrs clone

3hrs checkout

8mins status

30mins commit



Git background
Git is a Distributed Version Control System



Basic concepts

• https://git-scm.com/book/en/v2

• Some very basic concepts (focusing on storage):
• History is a Directed Acyclic Graph of commits

• Branches are pointers to those commits

• Every object is content addressable, with a sha1 hash

https://git-scm.com/book/en/v2


Commits form a DAG

Branches are pointers to commits in the DAG
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Trees and Blobs

Every commit points to one tree, representing the root of the working directory
Trees point at other trees and blobs
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Git objects

• Commit
• Represents the entire state of the working directory at a moment in time

• Points at a single tree object representing the root folder

• Tree
• Roughly equivalent to a folder

• Points to other trees and blobs

• Blob
• Roughly equivalent to a file



Some basic Git commands

• clone
• Copy all history from server to client, then checkout most recent commit

• Normally includes downloading all blobs, including historical ones

• checkout
• Place all the files from a given commit into the working directory

• status
• Scan through all files in working directory to figure out which are dirty

• commit
• Take the current state of all files in the working directory and construct a 

new commit object from it



The Need for FS Virtualization



Problem statement …

• Git suffers from:

• Too many files
• Status and checkout have to scan every single file in the repo

• Approaching 4M files in the Windows repo 

• Too much content
• Clone and fetch have to download too much content

• ~300GB in the Windows repo



… we tried lots of different solutions …

Go to https://www.visualstudio.com/learn/gvfs-design-history/ to 
read up on all the things we tried before we built GVFS

https://www.visualstudio.com/learn/gvfs-design-history/


… solution

• Virtualize the file system
• Too many files  Hide unmodified files from Git

• Too much content  Only download the contents that are accessed



Benefits of virtualizing

• Support very large repos
• No arbitrary boundaries in the codebase

• Splitting the repo into many smaller repos fixes some scale problems, but 
creates new ones as well

• We can use stock Git
• Using standard tools is far better than building new ones

• All existing tools (build, IDE) are unaware of the change



NTFS background
NTFS is the primary file system on Windows



Windows File System Drivers

• A file system is implemented by a file system driver, e.g. ntfs.sys

• A file system driver can have zero or more file system filter drivers 
stacked on top of it

• Filter drivers intercept calls intended for the FS driver
• The can pass through, redirect, modify, or reject those calls

• Transparent to the user of the file system



File system objects

File
Metadata 

(Timestamps, Attributes, 
EAs, Security Descriptor)

Primary (default) Data Stream Alternate Data Streams

Directory
Metadata 
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Reparse points

• Extra metadata on a file object

• Informs NTFS that a filter driver owns this file

Metadata 
(Timestamps, Attributes, 
EAs, Security Descriptor)

Alternate Data Streams
Reparse 

Point
Primary (default) Data Stream



GVFS Architecture
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The File System 
Reflector (GvFlt)



Key Concepts and Functionality

• Kernel-mode file system filter driver 

• Optimized callbacks from kernel-
mode reflector to user-mode file 
system

• Maintains a local file cache in NTFS

• Unions local file cache with view 
projected by the user-mode file 
system



State of Items in the Local File Cache

Virtual
- Does not exist on local disk
- Projected during enumerations of parent directory 

Placeholder
- No primary data content on disk
- Metadata on local disk as cache

Hydrated Placeholder
- Metadata and primary data content on disk as a cache

Full file
- Primary data content modified (no longer a cache)

Tombstone
- Item deleted (no longer a cache)



Placeholder Files

• Contains
• Reparse point (but not a name redirector like symlink or junction)

• Timestamps, attributes, alternate data streams, Eas

• Primary data stream is sparse with correct EOF and VDL

• Share access checks, oplocks, byte range locks are all established on the Placeholder

• Hydrated on: 
• first read of primary data stream 

• open for write

• Specific FS operations on a file (e.g. oplock, byte-range lock)

• All IO on hydrated placeholder is passthrough to the file system for native FS performance
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Placeholder Directories

• Contains
• Reparse point (but not a name redirector like symlink or junction)

• Timestamps, attributes, alternate data streams, Eas

• Contains no directory entries or directory entries for some children

• Leverages new feature in NTFS
• Directory with reparse points can now have children

• Share access checks, oplocks are established on the Placeholder

• Enumerations are reflected to / merged with the directory view from user-mode file system

• Tombstones record deleted entries (deletes and renames of child items)

2/22/2018 Microsoft Confidential 28
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Virtualization Root
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1. Virtualization Callbacks

Directory Enumeration
- Start 
- Get Directory Entries
- Stop

Placeholder creation
- Get Placeholder Information

File Hydration
- Get File Stream



2. Notification Callbacks

Directly reflects FS operations:
• Post Create
• Pre and Post Rename

No direct mapping to FS operations:
• Pre First Write

- For Files: Before data modification
- For Directories: Before creation, rename or deletion of a child item

• Pre Delete 
- PreSetFileDisposition
- PreCleanup for handle with DeleteOnClose

• Handle Closed 
• Notification of file modified 
• Notification of file deleted



User-mode 
File System for 

Git (GVFS)



GVFS goals

• 0. Virtual repos behave like real repos in every way that matters to 
users

• 1. Git commands are fast on arbitrarily large repos

• 2. Don’t download unnecessary contents



Goal 0 – Behave like a normal Git repo

• Respond to GvFlt callbacks to
• Enumerate directories

• Hydrate files

• Building on top of a filter driver means we inherit all the rich 
functionality of NTFS. Build tools, etc, continue to work as before.

• This implementation also implies goal 2 – only download the 
contents that are accessed, thanks to the lazy nature of GvFlt



Goal 1 – Make Git commands fast

• GVFS reduces Git command run times from O(files in repo) to 
O(files modified by user)

• Git has a pre-existing sparse-checkout feature

• GVFS manages the set of files that Git will consider
• The set starts out empty

• Files that the user modifies are added to this set

• Our world view is:
• Git owns the set of files that the user has modified

• GVFS virtually projects everything else



GVFS goals

• Make Git commands fast
• Git on NTFS is O(N) on the number of files in the working directory

• With GVFS, Git becomes O(N) on the number of files you’ve modified

• Only download what’s needed

• Make sure all Git commands function correctly
• The end result should look the same as a normal repo on NTFS



Git perf with GVFS

12hrs90secs clone

3hrs30secs checkout

8mins3sec status

30mins10secs commit



Cache layers

• Internet
• Source of truth: a server such as VSTS

• Intranet
• Cache servers: machines on the LAN with copy of all data

• Local machine
• Git object cache: Compressed Git objects are stored in a volume-wide 

cache, shared by all repos on that volume

• Working directory: Uncompressed contents are cached in placeholder 
files once a user reads their contents



Next steps

• Continue to optimize performance of various Git commands
• e.g. ‘git status’ is now in the 3-5s range, but we want <1s

• Optimize our caching and prefetching strategies
• Git command performance is highly sensitive to misses on commit and 

tree objects

• e.g. a command that should take <10s can end up taking minutes

• GVFS for Mac


