
Git Virtual File System 
(GVFS)

Saeed Noursalehi sanoursa@microsoft.com

Visual Studio Team Services @ Microsoft

mailto:sanoursa@microsoft.com


Agenda

• The Need for File System Virtualization

• Git background

• NTFS background

• GVFS Architecture



The Need for FS Virtualization



Two examples of large Git repositories

0

0.5

1

1.5

2

2.5

3

3.5

VSTS
3GB

Linux
0.6GB



0

50

100

150

200

250

300

VSTS
3GB

Linux
0.6GB

Windows
270GB

57K files

1.7GB initial pack file

5.5MB index file

110K files

8GB initial pack file

16MB index file

300 users

3.5M files

86GB initial pack file

400MB index file

4K users



Perf of Git commands on Windows repo

12hrs clone

3hrs checkout

8mins status

30mins commit



Git background
Git is a Distributed Version Control System



Basic concepts

• https://git-scm.com/book/en/v2

• Some very basic concepts (focusing on storage):
• History is a Directed Acyclic Graph of commits

• Branches are pointers to those commits

• Every object is content addressable, with a sha1 hash

https://git-scm.com/book/en/v2


Commits form a DAG

Branches are pointers to commits in the DAG

C1 C2 C4

C3

master

topic



Trees and Blobs

Every commit points to one tree, representing the root of the working directory
Trees point at other trees and blobs

C1

T1

T2
B1

B2

A 1.txt

2.txt



Git objects

• Commit
• Represents the entire state of the working directory at a moment in time

• Points at a single tree object representing the root folder

• Tree
• Roughly equivalent to a folder

• Points to other trees and blobs

• Blob
• Roughly equivalent to a file



Some basic Git commands

• clone
• Copy all history from server to client, then checkout most recent commit

• Normally includes downloading all blobs, including historical ones

• checkout
• Place all the files from a given commit into the working directory

• status
• Scan through all files in working directory to figure out which are dirty

• commit
• Take the current state of all files in the working directory and construct a 

new commit object from it



The Need for FS Virtualization



Problem statement …

• Git suffers from:

• Too many files
• Status and checkout have to scan every single file in the repo

• Approaching 4M files in the Windows repo 

• Too much content
• Clone and fetch have to download too much content

• ~300GB in the Windows repo



… we tried lots of different solutions …

Go to https://www.visualstudio.com/learn/gvfs-design-history/ to 
read up on all the things we tried before we built GVFS

https://www.visualstudio.com/learn/gvfs-design-history/


… solution

• Virtualize the file system
• Too many files  Hide unmodified files from Git

• Too much content  Only download the contents that are accessed



Benefits of virtualizing

• Support very large repos
• No arbitrary boundaries in the codebase

• Splitting the repo into many smaller repos fixes some scale problems, but 
creates new ones as well

• We can use stock Git
• Using standard tools is far better than building new ones

• All existing tools (build, IDE) are unaware of the change



NTFS background
NTFS is the primary file system on Windows



Windows File System Drivers

• A file system is implemented by a file system driver, e.g. ntfs.sys

• A file system driver can have zero or more file system filter drivers 
stacked on top of it

• Filter drivers intercept calls intended for the FS driver
• The can pass through, redirect, modify, or reject those calls

• Transparent to the user of the file system



File system objects

File
Metadata 

(Timestamps, Attributes, 
EAs, Security Descriptor)

Primary (default) Data Stream Alternate Data Streams

Directory
Metadata 

(Timestamps, Attributes, 
EAs, Security Descriptor)

Directory Entries for all children in the directory Alternate Data Streams



Reparse points

• Extra metadata on a file object

• Informs NTFS that a filter driver owns this file

Metadata 
(Timestamps, Attributes, 
EAs, Security Descriptor)

Alternate Data Streams
Reparse 

Point
Primary (default) Data Stream



GVFS Architecture



Disk

Local file cache & 
Git Metadata

(NTFS)

App

User Mode

Kernel Mode

File System 
Reflector 

(GvFlt)

User-mode File 
System (GVFS)

VSTS Cloud

Local Cloud

Components

User-mode support 
Library (GvLib)



The File System 
Reflector (GvFlt)



Key Concepts and Functionality

• Kernel-mode file system filter driver 

• Optimized callbacks from kernel-
mode reflector to user-mode file 
system

• Maintains a local file cache in NTFS

• Unions local file cache with view 
projected by the user-mode file 
system



State of Items in the Local File Cache

Virtual
- Does not exist on local disk
- Projected during enumerations of parent directory 

Placeholder
- No primary data content on disk
- Metadata on local disk as cache

Hydrated Placeholder
- Metadata and primary data content on disk as a cache

Full file
- Primary data content modified (no longer a cache)

Tombstone
- Item deleted (no longer a cache)



Placeholder Files

• Contains
• Reparse point (but not a name redirector like symlink or junction)

• Timestamps, attributes, alternate data streams, Eas

• Primary data stream is sparse with correct EOF and VDL

• Share access checks, oplocks, byte range locks are all established on the Placeholder

• Hydrated on: 
• first read of primary data stream 

• open for write

• Specific FS operations on a file (e.g. oplock, byte-range lock)

• All IO on hydrated placeholder is passthrough to the file system for native FS performance

2/22/2018 Microsoft Confidential 27

File
Metadata 

(Timestamps, Attributes, 
EAs, Security Descriptor)

Primary (default) Data Stream Alternate Data Streams

Metadata 
(Timestamps, Attributes, 
EAs, Security Descriptor)

Primary Data Stream 
(sparse, no allocation)

Alternate Data Streams
Reparse 

Point
Placeholder



Placeholder Directories

• Contains
• Reparse point (but not a name redirector like symlink or junction)

• Timestamps, attributes, alternate data streams, Eas

• Contains no directory entries or directory entries for some children

• Leverages new feature in NTFS
• Directory with reparse points can now have children

• Share access checks, oplocks are established on the Placeholder

• Enumerations are reflected to / merged with the directory view from user-mode file system

• Tombstones record deleted entries (deletes and renames of child items)

2/22/2018 Microsoft Confidential 28

Directory
Metadata 

(Timestamps, Attributes, 
EAs, Security Descriptor)

Directory Entries for all children in the directory Alternate Data Streams

Metadata 
(Timestamps, Attributes, 
EAs, Security Descriptor)

Directory Entries for none or some children in 
the directory

Alternate Data Streams
Reparse 

Point
Placeholder



Virtualization Root

Virtual View Projected
By User-Mode FS

On-disk Local File
Cache in NTFS

C:\ntsrc\

C:\ntsrc\

Virtualization Root

App

FS Union / Overlay

Directory

Placeholder Dir.

File

Placeholder File

Pure Virtual File/Dir

Repo Root



1. Virtualization Callbacks

Directory Enumeration
- Start 
- Get Directory Entries
- Stop

Placeholder creation
- Get Placeholder Information

File Hydration
- Get File Stream



2. Notification Callbacks

Directly reflects FS operations:
• Post Create
• Pre and Post Rename

No direct mapping to FS operations:
• Pre First Write

- For Files: Before data modification
- For Directories: Before creation, rename or deletion of a child item

• Pre Delete 
- PreSetFileDisposition
- PreCleanup for handle with DeleteOnClose

• Handle Closed 
• Notification of file modified 
• Notification of file deleted



User-mode 
File System for 

Git (GVFS)



GVFS goals

• 0. Virtual repos behave like real repos in every way that matters to 
users

• 1. Git commands are fast on arbitrarily large repos

• 2. Don’t download unnecessary contents



Goal 0 – Behave like a normal Git repo

• Respond to GvFlt callbacks to
• Enumerate directories

• Hydrate files

• Building on top of a filter driver means we inherit all the rich 
functionality of NTFS. Build tools, etc, continue to work as before.

• This implementation also implies goal 2 – only download the 
contents that are accessed, thanks to the lazy nature of GvFlt



Goal 1 – Make Git commands fast

• GVFS reduces Git command run times from O(files in repo) to 
O(files modified by user)

• Git has a pre-existing sparse-checkout feature

• GVFS manages the set of files that Git will consider
• The set starts out empty

• Files that the user modifies are added to this set

• Our world view is:
• Git owns the set of files that the user has modified

• GVFS virtually projects everything else



GVFS goals

• Make Git commands fast
• Git on NTFS is O(N) on the number of files in the working directory

• With GVFS, Git becomes O(N) on the number of files you’ve modified

• Only download what’s needed

• Make sure all Git commands function correctly
• The end result should look the same as a normal repo on NTFS



Git perf with GVFS

12hrs90secs clone

3hrs30secs checkout

8mins3sec status

30mins10secs commit



Cache layers

• Internet
• Source of truth: a server such as VSTS

• Intranet
• Cache servers: machines on the LAN with copy of all data

• Local machine
• Git object cache: Compressed Git objects are stored in a volume-wide 

cache, shared by all repos on that volume

• Working directory: Uncompressed contents are cached in placeholder 
files once a user reads their contents



Next steps

• Continue to optimize performance of various Git commands
• e.g. ‘git status’ is now in the 3-5s range, but we want <1s

• Optimize our caching and prefetching strategies
• Git command performance is highly sensitive to misses on commit and 

tree objects

• e.g. a command that should take <10s can end up taking minutes

• GVFS for Mac


