
https://doi.org/10.1007/s42484-021-00055-9

RESEARCH ARTICLE

Hybrid quantum classical graph neural networks for particle track
reconstruction

Cenk Tüysüz1 · Carla Rieger2 · Kristiane Novotny3 · Bilge Demirköz1 ·Daniel Dobos3,4 · Karolos Potamianos3,5 ·
Sofia Vallecorsa6 · Jean-Roch Vlimant7 · Richard Forster3

Received: 18 May 2021 / Accepted: 26 October 2021
© The Author(s) 2021

Abstract
The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) will be upgraded to further
increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC (HL-LHC). This
increase in luminosity will significantly increase the number of particles interacting with the detector. The interaction
of particles with a detector is referred to as “hit”. The HL-LHC will yield many more detector hits, which will pose a
combinatorial challenge by using reconstruction algorithms to determine particle trajectories from those hits. This work
explores the possibility of converting a novel graph neural network model, that can optimally take into account the sparse
nature of the tracking detector data and their complex geometry, to a hybrid quantum-classical graph neural network that
benefits from using variational quantum layers. We show that this hybrid model can perform similar to the classical approach.
Also, we explore parametrized quantum circuits (PQC) with different expressibility and entangling capacities, and compare
their training performance in order to quantify the expected benefits. These results can be used to build a future road map to
further develop circuit-based hybrid quantum-classical graph neural networks.

Keywords Quantum graph neural networks · Quantum machine learning · Particle track reconstruction

1 Introduction

Particle accelerator experiments aim to understand the
nature of particles by colliding groups of particles at
high energies and try to observe creation of particles and
their decays, e.g. to validate theories. The Large Hadron
Collider (LHC) at the European Organisation for Nuclear

� Cenk Tüysüz
cenk.tuysuz@cern.ch

1 Department of Physics, Middle East Technical University,
Ankara, Turkey

2 Department of Physics, ETH Zürich, Zürich, Switzerland

3 gluoNNet, Geneva, Switzerland

4 Lancaster University, Lancaster, UK

5 University of Oxford, Oxford, UK

6 CERN, Geneva, Switzerland

7 California Institute of Technology, Pasadena, CA, USA

Research (CERN) provides proton-proton collisions to four
main experiments as well as other small experiments
and fixed-target experiments. In order to achieve a high
sensitivity, these experiments use advanced software and
hardware.

In addition, these experiments will require very fast
processing units as the time between two consecutive
collisions is very short (reaching up to 1 MHz for ATLAS
and CMS according to The ATLAS Collaboration (2015),
Contardo et al. (2015)) and Albrecht et al. (2019). A big
data storage and processing problem arise, when the fast
data acquisition is combined with sensitive hardware. A
total disk and tape spaces of 990 PetaBytes and around 550
thousand CPU cores were pledged to LHC experiments in
2017 according to a report by CERN Computing Resources
Scrutiny Group (CRSG) (Lucchesi 2017).

Currently, the LHC is going through an upgrade
period to increase the number of particles in the beam
(i.e. luminosity) (Apollinari et al. 2015). Therefore, the
future High Luminosity LHC (HL-LHC) experiments will
require much faster electronics and software to process the
increased rate of collisions.

/ Published online: 28 November 2021

Quantum Machine Intelligence (2021) 3: 29

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-021-00055-9&domain=pdf
http://orcid.org/0000-0003-0257-9784
mailto: cenk.tuysuz@cern.ch

Fig. 1 Drawing of particle track
reconstruction problem.
Particles interact near the origin
of the coordinate system.
Products of these interactions
travel outwards from the origin.
Charged particles bend in a
direction depending on their
electric charge. When these
charged particles pass through
the detectors, they create signals
called as hits. Particle track
reconstruction aims to connect
hits belonging to the same
particles

In particle track reconstruction problem, the aim is
to identify the trajectory of particles using the measure-
ments of the tracking detectors. Accelerated particles inter-
act/collide near the origin of the coordinate system of detec-
tors. Products of these interactions travel outwards from the
origin. Charged particles bend in a direction depending on
their electric charge. When these particles pass through the
detectors, they create signals in the detector called as hits.
Particle track reconstruction aims to connect hits belonging
to the same particles to assign a trajectory (Fig. 1).

The efficient reconstruction of particle tracks is one of
the most important challenges in the HL-LHC upgrade.
Although there are novel algorithms (ATLAS Collaboration

2019; Bocci et al. 2020) available that are able to handle the
current rate of collisions, they suffer from higher collision
rates as they scale worse than quadratically (e.g. O(n6))
(Magano et al. 2021).

Recent developments in Quantum Computing (QC)
allowed scientists to look at computational problems from
a new perspective. There is a great effort to make use
of these new tools provided by QC to gain high speed-
ups for many computational tasks in High Energy Physics
(Guan et al. 2021). There are many problems investigated.
This include but not limited to physics analysis at LHC
using kernel (Wu et al. 2021a; Heredge et al. 2021) and
variational methods (Wu et al. 2021b; Terashi et al. 2021),

Fig. 2 TrackML detector
geometry projected to 2
dimensions (r , z). The region
highlighted in orange indicates
the detector layers used in this
work. Drawing is adapted from
Amrouche et al. (2019)

3000 2000 1000 0 1000 2000 3000
z [mm]

0

200

400

600

800

1000

r

[
m
m
]

Quantum Machine Intelligence (2021) 3: 29Page 2 of 2029

simulating parton showers (Jang et al. 2021) and imitating
calorimeter outputs using Quantum Generative Adversarial
Networks (Chang et al. 2021).

Researchers have been investigating QC tools for a com-
putational advantage for the particle track reconstruction
problem, since it also suffers from scaling. While there
are several attempts using adiabatic QC (Bapst et al. 2019;
Zlokapa et al. 2019), Quantum Associative Memory Shapo-
val and Calafiura (2019) or Quantum search routines (Mag-
ano et al. 2021), this work focuses on hybrid variational
methods.

In this work, we aim to give a complete overview on our
developments, where we investigated the use of a hybrid
quantum-classical graph neural network (QGNN) approach
to solve the particle track reconstruction problem (Tüysüz
et al. 2020a, 2020b, 2020c) that has been trained on the
publicly available TrackML Challenge dataset (Amrouche
et al. 2019, 2021). We present an analysis of several well-
performing Quantum Circuits and give a comparison with
its classical equivalent, HEP.TrkX (Farrell et al. 2018), on
which our approach is based on.

The rest of the paper is organized as follows. Details
of the dataset and pre-processing methods are given in
Section 2. The QGNN model is explained in detail in
Section 3. Results and comparisons with novel methods
are given in Section 4, along with a discussion of the
findings. Finally, our summary and comments on possible
improvements are presented in Section 5.

2 The dataset and pre-processing

The publicly available TrackML Challenge dataset pro-
vides 10,000 events to emulate the HL-LHC conditions

Fig. 3 A sketch of the cylindrical coordinate system for particle
collisions. The beam is along the z-axis and the particles collide near
z=0. The r axis is the projection of the transverse (x-y) plane

(Amrouche et al. 2019). It has become a benchmark
dataset for researchers after the conclusion of the chal-
lenge (Amrouche et al. 2021) and allows comparisons
across different methods. The simulated tracking detector
geometry of the dataset is that of a general purpose collider
experiment. The schema of this geometry in 2 cylindrical
coordinates (r,z) can be seen in Fig. 2. Horizontal layers in
the center of the detector represent a barrel-shaped geome-
try, while vertical layers represent a disk-shaped geometry
and are generally referred to as end-cap layers.

In many Quantum Machine Learning applications, it is
very hard to work with large datasets due to restrictions on
simulation times. A pre-processing step is necessary, which
reduces the amount of samples and prepares the data format
for the model.

The pre-processing procedure starts by selecting the first
100 events from the dataset. Although it would be ideal to
use all events of the dataset, computation time restrictions
of the QC simulation limited us to use only a portion of
the dataset. Then, particle hits are restricted to the barrel
region of the detector, which is the region highlighted in
Fig. 2. This limits the number of tracks and the ambiguity
in identifying the particle trajectories. In addition, a cut in
the transverse momentum of the particle is applied to further
reduce the number tracks.

After reducing the number of tracks to reasonable
numbers, the next step is to create graphs out of the
remaining particle hits. Particle hits become nodes and the
track segment candidates will be defined as edges of graphs
at this stage. Then, a set of restrictions is applied to all
possible graph edges for creating a graph with as less fake
edges as possible, while preserving as many true edges as
possible.

These restrictions are defined using a cylindrical
coordinate system, which is widely used in High Energy
Physics to leverage the symmetries of the detectors. We
follow the same convention and present some of the
definitions visually in Fig. 3 for further clarification.

As the first step of the hit graph construction, only the
edges that connect nodes of consecutive detector layers
are considered. Then, edges with the pseudorapidity (η =
− ln(tan(φ/2)) larger than 5 are eliminated. Pseudorapidity
is a measure of the angle to the z-axis used in High Energy
Physics.

Next, the ratio of difference in φ to r (Δφ/Δr), where
φ is the angle to the z-axis, is required to be smaller than
6×10−4. Finally, a z intercept (z0) of all edges is required to
be smaller than 200 mm to eliminate highly oblique edges.

The Pseudo-code of the algorithm is also presented in
Algorithm 1. Detailed plots of these selections are presented
in Appendix A.

Quantum Machine Intelligence (2021) 3: 29 Page 3 of 20 29

In total, 100 graphs from 100 events are obtained with
this method. The graph production is done with a 99%
efficiency and a purity of 51%, which are defined as:

Efficiency = # of selected true track segments

of initial track segments
, (1)

Purity = # of selected true track segments

of selected track segments
. (2)

After the graph construction, the dataset is stored in form
of 4 matrices; stores 3 spatial coordinates of
all nodes (in cylindrical coordinates; r, φ, z), Ri and Ro

(Ri, Ro ∈ {0, 1}NV ×NE) store input and output nodes of all
edges, and y ∈ {0, 1}NE stores the labels of edges. Their
definitions can be seen below.

R
jk
i =

{
1, if kth edge is input of j th node
0, otherwise

(3)

R
jk
o =

{
1, if kth edge is output of j th node
0, otherwise

(4)

yk =

⎧⎪⎨
⎪⎩

1,
if nodes of kth edge belong to

same particle
0, otherwise

(5)

Constructed graphs have 8784 ± 1877 edges (NE) and
5583 ± 804 nodes (NV) on average. An example graph
showing the fake and true edges is presented in Fig. 4.

The pre-proprecessing method is identical to the one used
in HEP.TrkX project (Farrell et al. 2018), except the pT

restriction, which is used to reduce total number of particles
in an event. This is done intentionally in order to compare
our results with the classical equivalent model.

3 The hybrid quantum-classical graph neural
networkmodel

A graph neural network (GNN) is a Neural Network model
that acts on features of the graph, such as nodes, edges
or global features (Veličković et al. 2018). GNNs have
shown great success in many occasions for node and graph
classification and link prediction (Wu et al. 2021c). Their
success led to applications in High Energy Physics for
many problems such as track and particle flow construction
(Farrell et al. 2018; Ju et al. 2020; Shlomi et al. 2021;
Biscarat et al. 2021; Pata et al. 2021). This situation attracted
the interest of the Quantum Machine Learning community
to develop quantum graph neural networks for different
applications (Verdon et al. 2019; Chen et al. 2021).

The hybrid quantum-classical graph neural network
(QGNN) model that we propose takes a graph as the input
and returns a probability as the output for all edges of the
initial graph. The QGNN builds up an attention passing
graph neural network model proposed by Veličković et al.
(2018), following the same strategy as the HEP.TrkX project
of Farrell et al. (2018). In contrast to the classical GNN
approach, we add a Quantum Neural Network (QNN) layer
to Multi Layer Perceptrons (MLP).

The QGNN consists of 3 parts. The first one is the
Input Network, whose task is to increase the dimension of
the input data. It takes the spatial coordinate information
(e.g. 3 cylindrical coordinates) and passes them through a
single fully connected Neural Network layer with sigmoid
activation and an output size corresponding to the hidden
dimension size (ND). Then, these new data points are
concatenated (⊕) to form the initial node feature vector,
where .

v = x ⊕ φFC(x) (6)

As a next step, the node feature vector is fed to Edge
and Node Networks, which process the graph iteratively
in order to obtain a final edge probability value (e) for
each of the edges. During this process, the same Edge and
Node Network is sequentially executed for a predetermined
number of iterations (NI) times and finally the same
Edge Network is used one more time to obtain final edge

Quantum Machine Intelligence (2021) 3: 29Page 4 of 2029

Fig. 4 Graphs are produced
with the pre-processing of each
event. 2D projection of hits, fake
and true edges of an event are
plotted. All hits are plotted with
black circles. Fake (on the left)
and true (on the right) edges of a
graph are plotted in the Cartesian
coordinates (transverse plane).
There are 5162 true and 5508
fake edges of this event

probabilities (e ∈ [0, 1]NE). This pipeline is summarized
with a simple drawing in Fig. 5.

3.1 The Edge Network

The Edge Network takes pairs of nodes into account and
returns the probability for those two nodes to be connected.
Initially, the connectivity of each pair of nodes is given by
the connectivity matrices Ri and Ro. Using these matrices,
node feature vectors bo and bi of all initially connected
edges, or so called doublets (bo ⊕ bi), are obtained.

b k
o =

NV∑
j=1

R
jk
o vj b k

i =
NV∑
j=1

R
jk
i vj (7)

The feature vectors of input and output nodes of each
edge are concatenated in order to be fed into a Hybrid
Neural Network (HNN, φEdgeNetwork). The HNN returns
edges features (e), which are the probabilities for each edge,
to be part of a real trajectory or not. Next, the edge features
are passed to the Node Network.

ek = φEdgeNetwork

(
b k
o ⊕ b k

i

)
(8)

3.2 The Node Network

The Node Network builds up on the edge feature matrix
given by its predecessor, the Edge Network. Based on
this input information, the node features are updated. In
this case, a combination of each node of interest and
its neighbors from upper and lower detectors is created,
forming a triplet. Here, the node features of the neighbors’
are scaled with the corresponding edge features.

v′
j,input =

NE∑
k=1

ekR
jk
i bk

o v′
j,output =

NE∑
k=1

ekR
jk
o bk

i (9)

Similar to the Edge Network, the triplet is fed to a Hybrid
Neural Network (φNodeNetwork).

vj := φNodeNetwork

(
v′
j,input ⊕ v′

j,output ⊕ vj

)
(10)

This time, the HNN returns new node features v. The
updated features are passed again to the Edge Network
and this process is repeated for NI times. This allows the
aggregation of information from farther nodes of the graphs
and updates the hidden features accordingly.

3.3 The hybrid neural network

Our approach employs Hybrid Neural Networks (HNNs),
which combine both classical and quantum layers. The

Fig. 5 Schematic of the QGNN architecture. The pre-processed graph
is fed to an Input Network, which increases the dimension of the node
features. Then, the graph’s features are updated with the Edge and
Node Networks iteratively, number of iterations (NI) times. Finally,

the same Edge Network is used one more time to extract the edge fea-
tures of the graph that predicts the track segments. There is only one
Edge Network in the pipeline, two Edge Networks are drawn only for
visual purposes. The pipeline is adapted from Farrell et al. (2018)

Quantum Machine Intelligence (2021) 3: 29 Page 5 of 20 29

Fig. 6 The Hybrid Neural Network (HNN) architecture. The input is
first fed into a classical fully connected Neural Network (FC NN) layer
with sigmoid activation. Then, its output is encoded in the QNN with
the information encoding circuit (IEC). Next, the parametrized quan-
tum circuit (PQC) applies transformations on the encoded states. The
output of QNN is obtained as expectation values for each qubit that
is measured. A final FC NN layer with sigmoid activation is used to

combine the results of different qubit measurements. The same HNN
architecture is used in Edge (upper input and output dimension) and
Node Networks (lower input and output dimension) with different
parameters. The input and output dimension sizes change according to
the network type. Details of the dimensions of each layer are given in
Table 1

HNN starts with a single fully connected neural network
(FC NN 1) layer with sigmoid activation. The output
dimension of this layer is equal to number of qubits (NQ)
used by the quantum layer. Then, the output of the FC
NN 1 is used in the encoding step of the QNN. Finally,
the measurements of the QNN are fed to another FC NN
with sigmoid activation, which has the output dimension
of 1 (in the case of Edge Network) or hidden dimension
size (ND) (in the case of Node Network). This architecture,
as presented in Fig. 6, allows full flexibility in the hidden
dimension size, the number of qubits and the type of the
QNN. Details of input and output dimensions of all layers
can be seen in Table 1.

The QGNN model is experimented with different
quantum layers to understand potential benefits. These type

Table 1 Input and output dimensions of layers used in the HNN. QNN
has the output dimension of 1 if the circuit measures only one qubit
(e.g. MPS and TNN)

Layer I/O Edge
Network

Node
Network

FC NN 1 Input 2 × (3 + ND) 3 × (3 + ND)

Output NQ NQ

QNN Input NQ NQ

Output 1 or NQ NQ

FC NN 2 Input 1 or NQ NQ

Output 1 ND

QNN has the output dimension of NQ if all qubits are measured (e.g.
Circuit 10 and Circuit 19)

of quantum models with parametrized quantum circuits
have been called differently in the literature (McClean et al.
2018; Farhi and Neven 2018; Benedetti et al. 2019; Mitarai
et al. 2018; McClean et al. 2016; Romero and Aspuru-Guzik
2021). Here, we use the name Quantum Neural Network
(QNN) as we use them in a similar fashion to Neural
Network layers.

The QNN of our choice consists of three consecutive
parts. An information encoding circuit (IEC) encodes
classical data to states of the qubits followed by a
parametrized quantum circuit (PQC) that is applied to
transform these states to their optimal location on the
Hilbert Space. Finally, measurements are performed along
the z-axis with the σz operator.

Information encoding has a significant effect on the
training capacity of QNN models (Schuld et al. 2021),
therefore a lot of attention is required when deciding on how
to do it. We employ angle encoding, because it provides
an encoding which uses significantly less gates compared
to others, e.g. amplitude encoding, and it needs almost no
classical processing (Larose and Coyle 2020).

Encodings such as amplitude encoding allow encoding of
classical information by using significantly less qubits, but
this advantage is usually reverted by the number of gates
required to build the circuit. For example, the amplitude
encoding of a feature vector only uses log2 n qubits
but needs 4n single and two qubit gates. On the other hand,
the angle encoding requires n number of qubits and a single
qubit gate per qubit (Leymann and Barzen 2020). This
allows an easier implementation and experimentation with
angle encoding. An angle encoding of a four dimensional

Quantum Machine Intelligence (2021) 3: 29Page 6 of 2029

Fig. 7 Angle encoding quantum circuit of a four dimensional feature
vector with respect to the y-axis

feature vector can be performed, e.g. with the circuit given
in Fig. 7.

The QNN encodes classical incoming information on
the qubits via rotational gates in the desired axis using
angle encoding. In order to obtain a unique and bijective
representation of the classical data, the rotation angle is

mapped between θ ∈ [0, π] due to the periodicity of the
cosine function. This is relevant since the expectation value
is taken with respect to the σz-operator at the end of the
circuit execution.

The PQC is the part of the QNN model that is going
to be tuned in order to provide the desired output. As in
classical Neural Network layers, those initially randomly
assigned variables are optimized during training to fit the
certain training objective, i.e. to minimize the overall loss
function. In order to achieve a good training performance,
choosing a good combination of IEC and PQC is essential.
Although there are many practical and theoretical work to
understand this better (Sim et al. 2019; Leyton-Ortega et al.
2021; Hubregtsen et al. 2021), our current understanding
of which combination works for which task is still limited
(Schuld et al. 2021). We therefore try to cover a range of
PQCs and fix the IEC to a specific angle encoding to provide
more controlled results. We consider two types of PQCs.

The first PQC type consists of circuits with a hierarchical
architecture. Matrix Product State (MPS) (Bhatia et al.
2019) and Tree Tensor Network (TTN) (Grant et al. 2018)
inspired circuits belong to this group. However, these PQCs
measure only one qubit. Thus, they are only implemented in
case of the Edge Network as a multi-dimensional output is
needed for the Node Network. Examples of MPS and TTN
circuits can be seen in Fig. 8.

Fig. 8 Hierarchical (a, b) and layered (c, d) PQCs used in the HNN.
(a) MPS applies two-qubit gates with a ladder-like architecture, (b)
while TTN uses a tree-like architecture implement RY and CZ gates.
MPS and TTN circuits measure only one qubit at the end. (c) Circuit

19 employs RX , RZ and CRX gates in a nearest neighbour fashion,
(d) while Circuit 10 do this with RY and CZ gates. Circuit 10 and Cir-
cuit 19 can be extended to any number of layers by repating the circuit.
Circuit 10 and Circuit 19 measure all qubits available

Quantum Machine Intelligence (2021) 3: 29 Page 7 of 20 29

Table 2 Labels of PQC settings used in the HNN

Label Edge Network Node Network

circuit 10 Circuit 10 Circuit 10

circuit 19 Circuit 19 Circuit 19

MPS-10 MPS Circuit 10

TTN-10 TTN Circuit 10

The second type of PQCs are more common in the
QML literature. They consist of layers of parametrized
gates that are generally followed by controlled operations.
These circuits act on all qubits fairly, meaning all qubits
can be measured to obtain information. This makes them
suitable for both Edge and Node Networks. Another
important advantage of this type of PQCs is having
different descriptors in the literature, which allows to
compare different properties such as expressibility and
entanglement capacity. In this work, two circuits with
different expressibility and entanglement capacity were
chosen from Sim et al. (2019), namely Circuit 10 (Fig. 8d)
and Circuit 19 (Fig. 8c).

This work compares the two different configurations
of PQCs. Models with the labels circuit 10 and
circuit 19 use the same circuits with different initial
parameters for the Edge and Node Networks, as it was
done in previous comparisons. While the models with
TTN-10 and MPS-10 labels use circuit 10 for the
Node Network and either a TTN or an MPS type of PQC
for the Edge Network. These definitions are also presented
in Table 2.

Expressibility measures a PQC’s ability to explore the
Hilbert Space (Sim et al. 2019). It is a numerical method that
samples two random states from a given PQC. Fidelities of
these states are computed and a distribution (P̂PQC(F ; θ))

is obtained after collecting many samples (e.g. 5000
samples for four qubits). Then, this process is repeated
by sampling Haar random states. Finally, two distributions
are compared using Kullback Leibler divergence (DKL).
Expressibility (E) is expressed as;

E = DKL(P̂PQC(F ; θ) ‖ PHaar (F)) (11)

The value of Expressibility is less for more expressive
circuits. In order to avoid confusion E′ = −log10(E) will
be used as Expressibility. Hence, the Expressibility value
(E’) increases with more expressive circuits (Hubregtsen
et al. 2021).

Similarly, Entanglement Capability is a numerical
method that quantifies a PQCs ability to produce entangled
states (Sim et al. 2019). It averages the Meyer-Wallach
entanglement measure (Q) over many random samples
obtained from the PQC (e.g. 5000 samples for four
qubits). For example, a fully entangled two qubit state

(
|Ψ 〉 = |00〉+|11〉√

2

)
has Q(|Ψ 〉) = 1 and a state with

no entanglement (e.g. |Φ〉 = |01〉) has Q(|Φ〉) = 0.
Entanglement Capability (Ent) is expressed as;

Ent = 1

‖S‖
∑
θi∈S

Q(|ψθi
〉) (12)

Expressibility and Entanglement Capability are descrip-
tors that allow comparison of layered PQCs. Expressibility
and Entanglement Capability improve with more layers and
will be a point of interest in our discussions. For exam-
ple, Circuit 10 has less Expressibility and Entanglement
Capability compared to Circuit 19, with the same number
of qubits and layers. This is because Circuit 10 has only
RY and CZ gates compared to additional RZ and CRX

gates of Circuit 19, which brings additional degrees of free-
dom. The differences between these circuits will be another
point of interest in our comparisons to better understand
the behaviour of PQCs. Expressibility and Entanglement
Capability of Circuit 10 and Circuit 19 is presented in
Appendix B.

The reason behind analyzing PQCs under two types is
related to their response to scaling with increasing number
of qubits and layers. We use gradient-based optimizers
due to the hybrid nature of QGNN model. Gradient-based
optimizers require the model to produce strong enough
gradient signals to be able to explore the loss landscape.
This might become a problem when a model is scaled.
Barren Plateaus are the name given to flattening of the loss
landscape (McClean et al. 2018). They appear in models
where gradients vanish exponentially with an increasing
model size and they are one of the greatest challenges in
training variational quantum algorithms (VQAs) (Cerezo
et al. 2021). In general, layered-type PQCs suffer from
Barren Plateaus, which makes them hard or even impossible
to train for a large amount of qubits and layers. On the
other hand, the absence of Barren Plateaus were shown
for some PQCs with hierarchical architectures, such as
Quantum Convolutional Neural Networks (QCNNs) (Pesah
et al. 2020) and TTNs (Zhao and Gao 2021). Because
of this, comparing these two types of PQCs have great
importance to better understand the behaviour of hybrid
models at large scales.

3.4 Training the network

Training hybrid quantum-classical neural networks requires
software that can differentiate both types of networks.
Pennylane by Bergholm et al. (2018) is one of the
most popular open-source tools that provides this feature.
Pennylane was used along with PyTorch (Paszke et al.
2019) during the early stages of this work. However, this
combination turned out to be too slow to handle both

Quantum Machine Intelligence (2021) 3: 29Page 8 of 2029

Fig. 9 Best validation loss comparison with respect to different param-
eters of the hybrid GNN model. (a) The axis of angle embedding
comparison considers the best loss obtained for different embedding
axes by setting ND = NQ = 4, NL = 1 and NI = 3. (b) The num-
ber of layers comparison considers the best loss for various numbers
of layers (NL) by setting ND = NQ = 4 and NI = 3. (c) The number
of iterations comparison considers the best loss for different numbers

of iterations (NI) by setting ND = NQ = 4 and NL = 1. (d) The hid-
den dimension size comparison considers the loss for different hidden
dimension sizes (ND) by setting NQ = ND , NL = 1 and NI = 3.
5 instances of all models with different initial parameters are trained
for 10 or 20 epochs depending on complexity for each setting, and
the mean of best losses are presented. The error bars represent the ±
standard deviation of the best losses of all 5 runs

the dataset and the model. A computational speed-up in
training has been achieved using Qulacs (Suzuki et al.
2020). Although it provided faster training, it was still not
enough. Finally, the combination of Cirq, Tensorflow and
Tensorflow Quantum (Cirq Developers 2021; Abadi et al.
2016; Broughton et al. 2020) produced the optimal scenario,
in which we were able to reduce the training times to less
than a week. The quantum circuit simulations are performed
with only taking analytical results into account, i.e.
without sampling the quantum circuits. Although analytical
results do not reflect hardware conditions, we made this
choice in order to obtain results in a reasonable amount
of time.

The 100 events selected from the dataset are separated
randomly with a 50/50 ratio to be used as training and
validation sets. Models are trained using the binary cross
entropy loss function, given in Eq. 13, where yi is the truth
label and ŷi is the model prediction for an edge.

L = − 1

NE

NE∑
i=1

yi log (1 − ŷi) + (1 − yi) log ŷi (13)

The Adam optimizer (Kingma and Ba 2017) with a
learning rate of 0.01 is used to train all trainable parameters
of the hybrid model. The learning is done with a batch
size of 1 per graph and continued up-to 10 or 20 epochs

Quantum Machine Intelligence (2021) 3: 29 Page 9 of 20 29

Fig. 10 Best validation loss comparison with respect to different
hidden dimension sizes (ND) of the hybrid and classical GNN models.
The comparison is made with the choice of NQ = ND , NI = 3 and
NL = 1. 5 instances of all models with different initial parameters are
trained for 10 epochs, and the mean of best losses are presented. The
error bars represent the ± standard deviation of the best losses of all 5
runs

depending on model complexity. All models are trained for
5 independent initializations and their mean is presented in
all results.

4 Results and discussion

We trained the hybrid model with many configurations to
explore the potential of the method. Here, we present four
key comparisons of features that have a significant effect on
the performance of the model.

First, the effect of angle embedding axis choice on
the training performance of circuit 10 and 19 is
compared. Circuit 10 is a PQC that consists of RY and CZ

gates, while circuit 19 is a PQC with RZ , RX and CRX

gates. The comparison is made by setting number of qubits
and number of hidden dimension size to 4 (NQ = ND = 4).
Then, number of layers is also set to 1 (NL = 1) and number
of iterations is set to 3 (NI = 3). The best loss values of
each model is plotted in Fig. 9a. In both cases, the x and
y-axis embedding resulted in better loss values, compared
to z-axis. The z-axis embedding requires deeper circuits
to match other axes’ representation capacity, since the
measurements are taken with respect to the Pauli-Z operator.
Because of this outcome, the y-axis angle embedding is
considered for the rest of the results. Training curves of
these comparisons are presented in Appendix F.

There are contrasting results in the literature on
how expressibility and entanglement capacities affect the

training performance. Recently, Hubregtsen et al. (2021)
showed a positive correlation between expressibility and
accuracy, while Leyton-Ortega et al. (2021) showed
the opposite. They found that more expressive models
perform worse and also overfit more. On the other hand,
entanglement has been shown to limit the trainability
of models depending on how it propagates in between
qubits by Marrero et al. (2020) and Zhang et al. (2020).
To better understand the situation on our case, we
tested two models with circuit 19 and circuit
10 with various number of layers. circuit 19 has
better expressibility and entanglement capacity compared to
circuit 10 (Sim et al. 2019). Best loss values obtained
after a training with 20 epochs is plotted with respect to
number of layers in Fig. 9b with NQ = ND = 3 and NI =
3. We could not observe a significant difference between
two models. This situation might be a result of using an
encoder and decoder consisting of a fully connected neural
network in the model, which could have compensated for
the different expressive capacity of the models. However,
increasing expressibility and entanglement capacity of both
models resulted in worse performance in both cases. In this
way, our results are consistent with results of Leyton-Ortega
et al. (2021). This behaviour is thought to be the result of
Barren Plateau formation (McClean et al. 2018). Training
curves of these comparisons are presented in Appendix D.

The number of iterations of a GNN is an important
parameter that determines a model’s performance (Farrell
et al. 2018; Veličković et al. 2018). It allows propagation
of information to farther nodes. A comparison with NQ =
ND = 3 and NL = 1 is made with circuit 10 and
circuit 19 and the results are presented in Fig. 9c.
Training results show that the best loss is obtained for NI =
3 for the hybrid cases. However, this is not the case in the
classical case. Ju et al. (2020) report an NI = 8 as the
optimal value for their model with 128 hidden dimensions in
their extended project Exa.TrkX. The increase in the value
of the lowest loss with increasing number of iterations might
be due to low expressive capacity of the whole model, as this
comparison is made only with a ND = 4. Training curves
of these comparisons are presented in Appendix E.

In order to investigate how these hybrid models scale,
their performances with respect to increasing the hidden
dimension size and qubits are compared. This comparison
is made with the choice of NQ = ND , NI = 3 and NL =
1. Two different configurations of PQCs are compared.
Models with the labels circuit 10 and circuit 19
use the same circuits with different initial parameters for
the Edge and Node Networks, as it was done in previous
comparisons. While the models with TTN-10 and MPS-10

Quantum Machine Intelligence (2021) 3: 29Page 10 of 2029

labels use Circuit 10 for the Node Network, a TTN or an
MPS type of PQC for the Edge Network. These definitions
are given in Table 2.

A comparison of the best losses is made after 10 epochs
and presented in Fig. 9d. The performance of the models
improve consistently with the increasing hidden dimension
size. This shows that learning capacity of the model benefits
from more dimensions. The model with circuit 10
outperforms the rest consistently. However, there seems to
be a saturation of the best loss as the hidden dimension
size increases. Training curves of these comparisons are
presented in Appendix C.

Finally, the hybrid model is compared against the
classical model at different hidden dimension sizes and
presented in Fig. 10. For this comparison the same choice
of NQ = ND , NI = 3 and NL = 1 is followed. This
result shows that the hybrid model scales similarly to the
classical model until a certain hidden dimension size. We
did not perform simulations for qubits larger than 16 due to
restrictions set by simulation times and classical hardware
resources.

5 Conclusion

In this work, we implemented a hybrid quantum-classical
GNN (QGNN) model for particle track reconstruction using
the TrackML dataset (Amrouche et al. 2019). This is the first
end-to-end implementation of a hybrid quantum-classical
GNN model with attention passing to the best of our
knowledge. We showed that the model can perform similar
to classical approaches for low number of hidden dimension
sizes. We investigated how the model scales for different
hyper-parameters. circuit 10 consistently performed
the best among other models in all comparisons. On the
other hand, circuit 10 has the worst expressibility
and is the lowest entangling model in a single layer
configuration. Numerical results indicate that larger PQC
models are harder to train, as it was shown in many instances
(McClean et al. 2018; Leyton-Ortega et al. 2021).

The current status of Quantum hardware restricted us
to use only simulations of Quantum Circuits. This was
mainly due to thousands of circuit executions required by
the model. Because of the high pile-up conditions of the
TrackML dataset, the graphs have thousands of nodes and
edges, and therefore using hardware is a challenge for this
approach. A forward pass of the presented QGNN model
builds NI +1 circuits for each edge and NI circuits for each
node. This also limited us experimenting with larger sized
models due to restrictions in simulating Quantum Circuits.

In order to cope with this problem, we enforced a pT -cut for
reducing the number of particles, a small number of qubits
(up to 16) was used. We also used analytical results with
no noise and trained models up to 20 epochs at maximum.
Very large RAM requirements and the significant increase
of training times to more than a week for models with 16
qubits were the limiting factor in our results.

This work explores an advantage in reducing the size
of high dimensional NN layers with Quantum Circuits that
have significantly less qubits. However, results obtained
with NQ = ND were only able to match the performance of
the classical model. On the other hand, this does not mean
that an advantage is impossible. There is more to explore to
better understand the potential of this approach.

First, the QGNN model was only experimented with
simple encoding circuits (angle encoding), while more
sophisticated encodings are conjectured to significantly
affect the performance of QNN-based models (Schuld
et al. 2021). Furthermore, recent work by Abbas et al.
(2021) showed that QNN models with four qubits and
ZZ Feature Maps of depth two has a larger effective
dimension compared to its classical equivalent, which leads
to a better learning capacity. Therefore, a further study is
needed to explore the potential benefits of different data
encodings.

On top of that, this work does not explore any noise
effects, which is considered as one of the limiting factors
of VQAs as it can lead to Barren Plateaus (Wang et al.
2021). Hardware noise is conjectured to slow down training
of VQAs. However, this does not mean that noise always
disfavors VQAs. It is argued that hardware noise can
help to explore the loss landscape (Cerezo et al. 2021).
In many instances, VQAs were shown to have noise
resilience (Sharma et al. 2020; Gentini et al. 2020) and
benefit from noise (Cao and Wang 2021; Campos et al.
2021). Furthermore Mari et al. (2021) showed that gradients
and higher order of derivatives can be accurately obtained
under hardware and shot noise. The results from the
literature indicate that understanding the effect of noise on
variational models is essential to estimate their potential. In
this work, experiments with noise were attempted but then
abandoned due to technical limitations posed by the size of
the dataset.

The QGNN model can be further improved by employing
better training schemes (Leyton-Ortega et al. 2021) and
noise aware optimizers (Arrasmith et al. 2020). Further
research directions include exploring more sophisticated
data encodings and understanding effect of noise. It would
be more beneficial to work with a smaller dataset for
exploring hybrid GNN models that target NISQ hardware.

Quantum Machine Intelligence (2021) 3: 29 Page 11 of 20 29

Appendix A: The dataset and pre-proceesing
details

Fig. 11 Histogram of number of particles in 100 events that are inside the barrel region of the TrackML detector. The dashed line represents the
1 GeV pT threshold we have selected in order to reduce total number of particles and tracks

Fig. 12 Histogram of fake and true segments obtained during the
graph construction procedure. The segments that reside inside the
dashed lines are considered in order to maximize purity and efficiency.

This step is important as it allows graph construction with fewer fake
edges, and thus reduces computation times significantly

Quantum Machine Intelligence (2021) 3: 29Page 12 of 2029

Appendix B: Expressibility and entanglement
capability of PQCs

Fig. 13 Expressibility vs. number of layers for Circuit 10 (orange) and Circuit 19 (blue) in their 4 qubit configurations. Negative log of
Expressibility is plotted for visual purposes

Fig. 14 Entanglement Capability vs. number of layers for Circuit 10 (orange) and Circuit 19 (blue) in their 4 qubit configurations

Quantum Machine Intelligence (2021) 3: 29 Page 13 of 20 29

Appendix C: Hidden dimension size
comparison

Fig. 15 Hidden dimension size comparison compares different hidden dimension sizes (ND) by fixing NQ = ND , NI = 3 and NL = 1. The
shaded regions represent the ± standard deviation of the best losses of all 5 runs. A 0.5 threshold is used for metrics that require a threshold

Quantum Machine Intelligence (2021) 3: 29Page 14 of 2029

Appendix D: Number of layers comparison

Fig. 16 Number of layers comparison compares number of layers by fixing NQ = ND = 4 and NI = 3. The shaded regions represent the ±
standard deviation of the best losses of all 5 runs. A 0.5 threshold is used for metrics that require a threshold

Quantum Machine Intelligence (2021) 3: 29 Page 15 of 20 29

Appendix E: Number of iteration comparison

Fig. 17 Number of iteration comparison compares number of iteration by fixing NQ = ND = 4 and NL = 1. The shaded regions represent the ±
standard deviation of the best losses of all 5 runs. A 0.5 threshold is used for metrics that require a threshold

Quantum Machine Intelligence (2021) 3: 29Page 16 of 2029

Appendix F: Embedding comparison

Fig. 18 Axis of angle embedding comparison compares different embedding axes by fixing NQ = ND = 4, NI = 3 and NL = 1. The shaded
regions represent the ± standard deviation of the best losses of all 5 runs. A 0.5 threshold is used for metrics that require a threshold

Quantum Machine Intelligence (2021) 3: 29 Page 17 of 20 29

Acknowledgements Authors would like to thank Alessandro Roggero
for fruitful discussions. Part of this work was conducted at “iBanks”,
the AI GPU cluster at Caltech. We acknowledge NVIDIA, SuperMicro
and the Kavli Foundation for their support of “iBanks”.

Funding Open access funding provided by CERN (European Orga-
nization for Nuclear Research). This work was partially supported
by the Turkish Atomic Energy Authority (TAEK) (Grant No:
2017TAEKCERN-A5.H6.F2.15 and 2020TAEK(CERN)-A5.H1.F5-26).

Software information The open-source software used in this work
can be listed as follows. Python 3.8.5, NumPy v1.18.5 (Harris et al.
2020), Cirq v0.9.1 (Cirq Developers 2021), Tensorflow v2.3.1 (Abadi
et al. 2016), Tensorflow Quantum v0.4.0 (Broughton et al. 2020),
Scikit-learn v0.23.2 (Pedregosa et al. 2011), qpic v1.0.2 (Draper and
Kutin 2020), Matplotlib v3.2.2 (Hunter 2007). The project codebase
to reproduce all of the results presented here can be accessed through
https://qtrkx.github.io.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M,
Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: a system
for large-scale machine learning. In: 12th {USENIX} symposium
on operating systems design and implementation ({OSDI} 16),
pp 265–283. arXiv:1605.08695

Abbas A, Sutter D, Zoufal C, Lucchi A, Figalli A, Woerner S (2021)
The power of quantum neural networks. Nat Comput Sci 1(6):
403–409. https://doi.org/10.1038/s43588-021-00084-1

Albrecht J, Alves AA, Amadio G, Andronico G, Anh-Ky N, Aphe-
cetche L, Apostolakis J, Asai M, Atzori L et al (2019) A roadmap
for HEP software and computing R&D for the 2020s. Comput
Softw Big Sci 3(1). https://doi.org/10.1007/s41781-018-0018-8

Amrouche S, Basara L, Calafiura P, Estrade V, Farrell S, Ferreira
DR, Finnie L, Finnie N, Germain C, Gligorov VV et al (2019)
The tracking machine learning challenge: accuracy phase. The
Springer Series on Challenges in Machine Learning. https://doi.
org/10.1007/978-3-030-29135-8 9. arXiv:1904.06778

Amrouche S, Basara L, Calafiura P, Emeliyanov D, Estrade V, Farrell
S, Germain C, Vava Gligorov V, Golling T, Gorbunov S et al
(2021) The tracking machine learning challenge : throughput
phase. arXiv:2105.01160

Apollinari G, Brüning O, Nakamoto T, Rossi L (2015) High lumi-
nosity large hadron Collider HL-LHC. CERN Yellow Rep 5:1–19.
https://doi.org/10.5170/CERN-2015-005.1, arXiv:1705.08830

Arrasmith A, Cincio L, Somma RD, Coles PJ (2020) Operator
sampling for shot-frugal optimization in variational algorithms.
arXiv:2004.06252

ATLAS Collaboration (2019) Fast track reconstruction for HL-LHC.
Tech. Rep ATL-PHYS-PUB-2019-041, CERN, Geneva. https://
cds.cern.ch/record/2693670

Bapst F, Bhimji W, Calafiura P, Gray H, Lavrijsen W, Linder L, Smith
A (2019) A pattern recognition algorithm for quantum annealers.
Comput Softw Big Sci 4(1):1. https://doi.org/10.1007/s41781-
019-0032-5. arXiv:1902.08324

Benedetti M, Lloyd E, Sack S, Fiorentini M (2019) Parame-
terized quantum circuits as machine learning models. Q Sci
Technol 4(4):043001. https://doi.org/10.1088/2058-9565/ab4eb5.
arXiv:1906.07682

Bergholm V, Izaac J, Schuld M, Gogolin C, Blank C, McKiernan K,
Killoran N (2018) PennyLane: automatic differentiation of hybrid
quantum-classical computations. arXiv:1811.04968

Bhatia AS, Saggi MK, Kumar A, Jain S (2019) Matrix product
state–based quantum classifier. Neural Comput 31(7):1499–1517.
https://doi.org/10.1162/neco a 01202, arXiv:1905.01426

Biscarat C, Caillou S, Rougier C, Stark J, Zahreddine J (2021)
Towards a realistic track reconstruction algorithm based on
graph neural networks for the HL-LHC. EPJ Web Conf
251:03047. https://doi.org/10.1051/epjconf/202125103047,
arXiv:2103.00916

Bocci A, Innocente V, Kortelainen M, Pantaleo F, Rovere M
(2020) Heterogeneous reconstruction of tracks and primary
vertices with the CMS pixel tracker. Front Big Data 3:49.
https://doi.org/10.3389/fdata.2020.601728, arXiv:2008.13461

Broughton M, Verdon G, McCourt T, Martinez AJ, Yoo JH, Isakov SV,
Massey P, Niu MY, Halavati R, Peters E et al (2020) TensorFlow
quantum: a software framework for quantum machine learning.
arXiv:2003.02989

Campos E, Rabinovich D, Akshay V, Biamonte J (2021) Training
saturation in layerwise quantum approximate optimization. Phys
Rev A 104(3):L030401. https://doi.org/10.1103/PhysRevA.104.
L030401, publisher: American Physical Society

Cao C, Wang X (2021) Noise-assisted quantum autoencoder. Phys
Rev Appl 15(5):054012. https://doi.org/10.1103/PhysRevApplied.
15.054012, publisher: American Physical Society

Cerezo M, Arrasmith A, Babbush R, Benjamin SC, Endo S, Fujii
K, McClean JR, Mitarai K, Yuan X, Cincio L, Coles PJ
(2021) Variational quantum algorithms. Nat Rev Phys 3:625–644.
https://doi.org/10.1038/s42254-021-00348-9

Chang SY, Herbert S, Vallecorsa S, Combarro EF, Duncan R
(2021) Dual-parameterized quantum circuit GAN model in high
energy physics. EPJ Web of Conf 251:03050. https://doi.org/10.
1051/epjconf/202125103050. arXiv:2103.15470

Chen SYC, Wei TC, Zhang C, Yu H, Yoo S (2021) Hybrid quantum-
classical graph convolutional network. arXiv:2101.06189

Cirq Developers (2021) Cirq. https://doi.org/10.5281/zenodo.4586899,
See full list of authors on Github: https://github.com/quantumlib/
Cirq/graphs/contributors

Contardo D, Klute M, Mans J, Silvestris L, Butler J (2015) Technical
proposal for the Phase-II upgrade of the CMS detector. Tech.
Rep. CERN-LHCC-2015-010, LHCC-P-008, CMS-TDR-15-02,
CERN. https://cds.cern.ch/record/2020886

Draper TG, Kutin SA (2020) <q—pic>: Quantum circuits made easy.
https://github.com/qpic/qpic

Farhi E, Neven H (2018) Classification with quantum neural networks
on near term processors. arXiv:1802.06002

Quantum Machine Intelligence (2021) 3: 29Page 18 of 2029

https://qtrkx.github.io
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1605.08695
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/978-3-030-29135-8_9
https://doi.org/10.1007/978-3-030-29135-8_9
http://arxiv.org/abs/1904.06778
http://arxiv.org/abs/2105.01160
https://doi.org/10.5170/CERN-2015-005.1
http://arxiv.org/abs/1705.08830
http://arxiv.org/abs/2004.06252
https://cds.cern.ch/record/2693670
https://cds.cern.ch/record/2693670
https://doi.org/10.1007/s41781-019-0032-5
https://doi.org/10.1007/s41781-019-0032-5
http://arxiv.org/abs/1902.08324
https://doi.org/10.1088/2058-9565/ab4eb5
http://arxiv.org/abs/1906.07682
http://arxiv.org/abs/1811.04968
https://doi.org/10.1162/neco_a_01202
http://arxiv.org/abs/1905.01426
https://doi.org/10.1051/epjconf/202125103047
http://arxiv.org/abs/2103.00916
https://doi.org/10.3389/fdata.2020.601728
http://arxiv.org/abs/2008.13461
http://arxiv.org/abs/2003.02989
https://doi.org/10.1103/PhysRevA.104.L030401
https://doi.org/10.1103/PhysRevA.104.L030401
https://doi.org/10.1103/PhysRevApplied.15.054012
https://doi.org/10.1103/PhysRevApplied.15.054012
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1051/epjconf/202125103050
https://doi.org/10.1051/epjconf/202125103050
http://arxiv.org/abs/2103.15470
http://arxiv.org/abs/2101.06189
https://doi.org/10.5281/zenodo.4586899
https://github.com/quantumlib/Cirq/graphs/contributors
https://github.com/quantumlib/Cirq/graphs/contributors
https://cds.cern.ch/record/2020886
https://github.com/qpic/qpic
http://arxiv.org/abs/1802.06002

Farrell S, Calafiura P, Mudigonda M, Prabhat, Anderson D, Vlimant
JR, Zheng S, Bendavid J, Spiropulu M, Cerati G, Gray L,
Kowalkowski J, Spentzouris P, Tsaris A (2018) Novel deep
learning methods for track reconstruction. arXiv:1810.06111

Gentini L, Cuccoli A, Pirandola S, Verrucchi P, Banchi L (2020)
Noise-resilient variational hybrid quantum-classical optimization.
Phys Rev A 102(5):052414. https://doi.org/10.1103/PhysRevA.
102.052414, publisher: American Physical Society

Grant E, Benedetti M, Cao S, Hallam A, Lockhart J,
Stojevic V, Green AG, Severini S (2018) Hierarchi-
cal quantum classifiers. NPJ Quantum Inf 4(1):17–19.
https://doi.org/10.1038/s41534-018-0116-9

Guan W, Perdue G, Pesah A, Schuld M, Terashi K, Vallecorsa S, Vli-
mant JR (2021) Quantum machine learning in high energy physics.
Mach Learn Sci Technol 2(1):011003. https://doi.org/10.1088/
2632-2153/abc17d. arXiv:2005.08582

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P,
Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ et al (2020)
Array programming with NumPy. Nature 585(7825):357–362.
https://doi.org/10.1038/s41586-020-2649-2

Heredge J, Hill C, Hollenberg L, Sevior M (2021) Quantum support
vector machines for continuum suppression in B meson decays.
arXiv:2103.12257

Hubregtsen T, Pichlmeier J, Stecher P, Bertels K (2021) Evaluation of
parameterized quantum circuits: on the relation between classification
accuracy, expressibility, and entangling capability. Quantum Mach
Intell 3(1):9. https://doi.org/10.1007/s42484-021-00038-w

Hunter JD (2007) Matplotlib: A 2d graphics environment. Comput Sci
Eng 9(3):90–95. https://doi.org/10.1109/MCSE.2007.55

Jang W, Terashi K, Saito M, Bauer CW, Nachman B, Iiyama Y, Kishi-
moto T, Okubo R, Sawada R, Tanaka J (2021) Quantum gate
pattern recognition and circuit optimization for scientific appli-
cations. EPJ Web of Conf 251:03023. https://doi.org/10.1051/
epjconf/202125103023. arXiv:2102.10008

Ju X, Farrell S, Calafiura P, Murnane D, Prabhat GL, Klijnsma
T, Pedro K, Cerati G, Kowalkowski J et al (2020) Graph
neural networks for particle reconstruction in high energy physics
detectors. arXiv:2003.11603

Kingma DP, Ba J (2017) Adam: A method for stochastic optimization.
arXiv:1412.6980

Larose R, Coyle B (2020) Robust data encodings for quantum
classifiers. Phys Rev A 102(3):1–24. https://doi.org/10.1103/Phys
RevA.102.032420. arXiv:2003.01695

Leymann F, Barzen J (2020) The bitter truth about gate-based quantum
algorithms in the NISQ era. Quantum Sci Technol 5(4):044007.
https://doi.org/10.1088/2058-9565/abae7d

Leyton-Ortega V, Perdomo-Ortiz A, Perdomo O (2021) Robust imple-
mentation of generative modeling with parametrized quantum
circuits. Quantum Mach Intell 3(1):17. https://doi.org/10.1007/
s42484-021-00040-2

Lucchesi D (2017) Computing resources scrutiny group report. Tech.
Rep. CERN-RRB-2017-125 CERN, Geneva, Switzerland. http://
cds.cern.ch/record/2284575

Magano D, Kumar A, Kālis M, Locāns A, Glos A, Pratapsi S, Quinta
G, Dimitrijevs M, Rivošs A, Bargassa P, Seixas J, Ambainis
A, Omar Y (2021) Investigating quantum speedup for track
reconstruction: classical and quantum computational complexity
analysis. arXiv:2104.11583

Mari A, Bromley TR, Killoran N (2021) Estimating the gradient
and higher-order derivatives on quantum hardware. Phys Rev
A 103(1):012405. https://doi.org/10.1103/PhysRevA.103.012405,
publisher: American Physical Society

Marrero CO, Kieferovȧ M, Wiebe N (2020) Entanglement induced
barren plateaus. arXiv:2010.15968

McClean JR, Romero J, Babbush R, Aspuru-Guzik A (2016) The
theory of variational hybrid quantum-classical algorithms. New
J Phys 18(2):023023. https://doi.org/10.1088/1367-2630/18/2/
023023

McClean JR, Boixo S, Smelyanskiy VN, Babbush R, Neven H
(2018) Barren plateaus in quantum neural network training land-
scapes. Nat Commun 9(1):1–6. https://doi.org/10.1038/s41467-
018-07090-4. arXiv:1803.11173

Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum circuit
learning. Phys Rev A 98(3):032309. https://doi.org/10.1103/Phys
RevA.98.032309

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L et al (2019) PyTorch:
An imperative style, high-performance deep learning library. In:
Wallach H, Larochelle H, Beygelzimer A, d’ Alché-Buc F, Fox
E, Garnett R (eds) Advances in neural information processing
systems, vol 32. Curran Associates Inc., pp 8024–8035

Pata J, Duarte J, Vlimant JR, Pierini M, Spiropulu M (2021) MLPF:
efficient machine-learned particle-flow reconstruction using graph
neural networks. Eur Phys J C 81(5):381. https://doi.org/10.1140/
epjc/s10052-021-09158-w. arXiv:2101.08578

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel
O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas
J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E
(2011) Scikit-learn: machine learning in python. J Mach Learn Res
12:2825–2830

Pesah A, Cerezo M, Wang S, Volkoff T, Sornborger AT, Coles PJ
(2020) Absence of barren Plateaus in quantum convolutional
neural networks. arXiv:2011.02966

Romero J, Aspuru-Guzik A (2021) Variational quantum gener-
ators: generative adversarial quantum machine learning for
continuous distributions. Adv Quantum Technol 4(1):2000003.
https://doi.org/10.1002/qute.202000003

Schuld M, Sweke R, Meyer JJ (2021) Effect of data encoding on
the expressive power of variational quantum machine learning
models. Phys Rev A 103(3):032430. https://doi.org/10.1103/Phys
RevA.103.032430

Shapoval I, Calafiura P (2019) Quantum associative memory in hep
track pattern recognition. EPJ Web of Conf 214:01012. https://
doi.org/10.1051/epjconf/201921401012. arXiv:1902.00498

Sharma K, Khatri S, Cerezo M, Coles PJ (2020) Noise resilience
of variational quantum compiling. New J Phys 22(4):043006.
https://doi.org/10.1088/1367-2630/ab784c, publisher: IOP Pub-
lishing

Shlomi J, Battaglia P, Vlimant JR (2021) Graph neural networks
in particle physics. Mach Learn Sci Technol 2(2):021001.
https://doi.org/10.1088/2632-2153/abbf9a, arXiv:2007.13681

Sim S, Johnson PD, Aspuru-Guzik A (2019) Expressibility
and entangling capability of parameterized quantum cir-
cuits for hybrid quantum-classical algorithms. Adv Quantum
Technol 2(12):1900070. https://doi.org/10.1002/qute.201900070,
arXiv:1905.10876

Suzuki Y, Kawase Y, Masumura Y, Hiraga Y, Nakadai M, Chen J,
Nakanishi KM, Mitarai K, Imai R, Tamiya S et al (2020) Qulacs: a
fast and versatile quantum circuit simulator for research purpose.
arXiv:2011.13524

Terashi K, Kaneda M, Kishimoto T, Saito M, Sawada R, Tanaka
J (2021) Event classification with quantum machine learn-
ing in high-energy physics. Comput Softw Big Sci 5(1):2.
https://doi.org/10.1007/s41781-020-00047-7, arXiv:2002.09935

The ATLAS Collaboration (2015) ATLAS Phase-II upgrade scop-
ing document. Technical Report CERN-LHCC-2015-020.LHCC-
G-166 CERN, Geneva, Switzerland. https://cds.cern.ch/record/
2055248

Quantum Machine Intelligence (2021) 3: 29 Page 19 of 20 29

http://arxiv.org/abs/1810.06111
https://doi.org/10.1103/PhysRevA.102.052414
https://doi.org/10.1103/PhysRevA.102.052414
https://doi.org/10.1038/s41534-018-0116-9
https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.1088/2632-2153/abc17d
http://arxiv.org/abs/2005.08582
https://doi.org/10.1038/s41586-020-2649-2
http://arxiv.org/abs/2103.12257
https://doi.org/10.1007/s42484-021-00038-w
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1051/epjconf/202125103023
https://doi.org/10.1051/epjconf/202125103023
http://arxiv.org/abs/2102.10008
http://arxiv.org/abs/2003.11603
http://arxiv.org/abs/1412.6980
https://doi.org/10.1103/PhysRevA.102.032420
https://doi.org/10.1103/PhysRevA.102.032420
http://arxiv.org/abs/2003.01695
https://doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.1007/s42484-021-00040-2
https://doi.org/10.1007/s42484-021-00040-2
http://cds.cern.ch/record/2284575
http://cds.cern.ch/record/2284575
http://arxiv.org/abs/2104.11583
https://doi.org/10.1103/PhysRevA.103.012405
http://arxiv.org/abs/2010.15968
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-018-07090-4
http://arxiv.org/abs/1803.11173
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1140/epjc/s10052-021-09158-w
https://doi.org/10.1140/epjc/s10052-021-09158-w
http://arxiv.org/abs/2101.08578
http://arxiv.org/abs/2011.02966
https://doi.org/10.1002/qute.202000003
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1051/epjconf/201921401012
https://doi.org/10.1051/epjconf/201921401012
http://arxiv.org/abs/1902.00498
https://doi.org/10.1088/1367-2630/ab784c
https://doi.org/10.1088/2632-2153/abbf9a
http://arxiv.org/abs/2007.13681
https://doi.org/10.1002/qute.201900070
http://arxiv.org/abs/1905.10876
http://arxiv.org/abs/2011.13524
https://doi.org/10.1007/s41781-020-00047-7
http://arxiv.org/abs/2002.09935
https://cds.cern.ch/record/2055248
https://cds.cern.ch/record/2055248

Tüysüz C, Carminati F, Demirköz B, Dobos D, Fracas F, Novotny
K, Potamianos K, Vallecorsa S, Vlimant JR (2020a) Particle
track reconstruction with quantum algorithms. EPJ Web Conf
245:09013. https://doi.org/10.1051/epjconf/202024509013

Tüysüz C, Carminati F, Demirköz B, Dobos D, Fracas F, Novotny
K, Potamianos K, Vallecorsa S, Vlimant JR (2020b) CTD2020: A
quantum graph network approach to particle track reconstruction.
https://doi.org/10.5281/zenodo.4088474, arXiv:2007.06868

Tüysüz C, Novotny K, Rieger C, Carminati F, Demirköz B, Dobos
D, Fracas F, Potamianos K, Vallecorsa S, Vlimant JR (2020c)
Performance of particle tracking using a quantum graph neural
network. arXiv:2012.01379

Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y
(2018) Graph attention networks. arXiv:1710.10903

Verdon G, McCourt T, Luzhnica E, Singh V, Leichenauer S, Hidary J
(2019) Quantum graph neural networks. arXiv:1909.12264

Wang S, Fontana E, Cerezo M, Sharma K, Sone A, Cincio L, Coles
PJ (2021) Noise-induced barren plateaus in variational quantum
algorithms. arXiv:2007.14384

Wu SL, Chan J, Guan W, Sun S, Wang A, Zhou C, Livny M, Carminati
F, Di MeglioA, Li ACY, Lykken JD, Spentzouris P, Chen
SYC, Yoo S, Wei TC (2021a) Application of quantum machine
learning using the quantum variational classifier method to high
energy physics analysis at the LHC on IBM quantum computer
simulator and hardware with 10 qubits. J Phys G: Nuclear

Part Phys. https://doi.org/10.1088/1361-6471/ac1391, arXiv:2012.
11560

Wu SL, Sun S, Guan W, Zhou C, Chan J, Cheng CL, Pham T, Qian Y,
Wang AZ, Zhang R, Livny M, Glick J, Barkoutsos PK, Woerner
S, Tavernelli I, Carminati F, Di MeglioA, Li ACY, Lykken J,
Spentzouris P, Chen SYC, Yoo S, Wei TC (2021b) Application
of quantum machine learning using the quantum kernel algorithm
on high energy physics analysis at the LHC. Phys Rev Res
3(3):033221. https://doi.org/10.1103/PhysRevResearch.3.033221,
arXiv:2104.05059

Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2021c) A comprehen-
sive survey on graph neural networks. IEEE Trans Neural Netw
Learn Syst 32(1):4–24. https://doi.org/10.1109/TNNLS.2020.
2978386

Zhang K, Hsieh MH, Liu L, Tao D (2020) Toward trainability of
quantum neural networks. arXiv:2011.06258

Zhao C, Gao XS (2021) Analyzing the barren plateau phenomenon in
training quantum neural networks with the ZX-calculus. Quantum
5:466. https://doi.org/10.22331/q-2021-06-04-466

Zlokapa A, Anand A, Vlimant JR, Duarte JM, Job J, Lidar D,
Spiropulu M (2019) Charged particle tracking with quantum
annealing-inspired optimization. arXiv:1908.04475

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Quantum Machine Intelligence (2021) 3: 29Page 20 of 2029

https://doi.org/10.1051/epjconf/202024509013
https://doi.org/10.5281/zenodo.4088474
http://arxiv.org/abs/2007.06868
https://arxiv.org/abs/2012.01379
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1909.12264
http://arxiv.org/abs/2007.14384
https://doi.org/10.1088/1361-6471/ac1391
http://arxiv.org/abs/2012.11560
http://arxiv.org/abs/2012.11560
https://doi.org/10.1103/PhysRevResearch.3.033221
http://arxiv.org/abs/2104.05059
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
http://arxiv.org/abs/2011.06258
https://doi.org/10.22331/q-2021-06-04-466
http://arxiv.org/abs/1908.04475

	Hybrid quantum classical graph neural networks for particle track reconstruction
	Abstract
	Introduction
	The dataset and pre-processing
	The hybrid quantum-classical graph neural network model
	The Edge Network
	The Node Network
	The hybrid neural network
	Training the network

	Results and discussion
	Conclusion
	Appendix A: The dataset and pre-proceesing details
	Appendix A
	
	Appendix B
	Appendix B: Expressibility and entanglement capability of PQCs
	
	Appendix C
	
	Appendix D
	Appendix C: Hidden dimension size comparison
	Appendix D: Number of layers comparison
	Appendix E: Number of iteration comparison
	
	Appendix E
	
	Appendix F
	Appendix F: Embedding comparison
	Declarations
	References

