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Abstract
This note describes a compact and efficient algorithm for the Monte Carlo gener-

ation of the synchrotron radiation photon spectrum. The minimal photon energy can
be chosen between zero and about fifty times the critical energy.
The algorithm generates unweighted events, so that the number of photons per energy
follows directly the synchrotron radiation spectrum.

1 Introduction

Synchrotron radiation is of major importance for e+e− storage rings. The properties of
synchrotron radiation are well understood and described in standard textbooks [1]. The
energy loss in synchrotron radiation of particle of charge e, velocity β, γ and energy E,
travelling in a circular orbit of radius R is given1 by :

Energy loss/revolution U =
e2

3ε0R
β3γ4 (1)

For electrons we have γ4 = [E/(mec
2)]4 and β ≈ 1 :

U =
e2

3ε0R
γ4 = 0.0884627 MeV

(E/GeV)4

R/meter
(2)

The critical energy is usually2 defined as Ec = 3
2

h̄cγ3/R, in agreement with reference [2],
section III.40. With k we denote the photon energy E, expressed in units of the critical
energy Ec:

k =
E

Ec
(3)

Using this definition, the photon spectrum can be written independently of photon energy
as

dn

dk
=

√
3 α γ · I(k) where I(k) =

∫ ∞

k
K5/3(x)dx (4)

1in SI units, the equivalent expression in c.g.s units as used in [2] is obtained formally by multiplying (1)
with 4πε0

2Jackson in reference [1] instead uses Ec twice as large as defined here
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where α is the fine-structure constant and K5/3 a modified Bessel function of the third kind.
For I(k), we use the efficient and precise Chebyshev series algorithm SYNRAD from H.H.
Umstätter [3]. Useful formulas for the total number of photons can be found in the appendix.
Synchrotron radiation can also be a serious source of background to the physics experiments
and various equipment installed at storage rings. This necessitates the design of masks and
collimators to absorb the synchrotron radiation.

Synchrotron radiation in the energy range of tenth of keV and above may traverse sub-
stantial amounts of material and undergo numerous scatterings. For a Monte Carlo simula-
tion of synchrotron radiation and its passage through matter, it is convenient to start from
a compact and efficient algorithm, that randomly generates photon energies following the
synchrotron radiation spectrum (4).

2 Technique of Generation

The task is to find an algorithm, that effectively transforms the flat distribution given by
standard pseudo-random generators into the desired distribution given by expression (4).

There are standard techniques to generate an arbitrary distribution. For references see
[4] and [2], section III.37.

Generally, to obtain the probability distribution function f(k), the transformation can
be constructed from the inverse of the cumulative distribution function F (k) =

∫ k
0 f(x)dx.

The transformation function to be applied on the random numbers is F−1(l(k)), where l(k)
is a linear mapping of the form a + bk to match the interval limits of the random numbers
(usually the open interval from 0 to 1 ) with the ones of the desired distribution.
Monte Carlo generation of synchrotron radiation using standard numerical integration and
interpolation techniques is discussed in [5].

The method presented here is based on simple, analytic approximations fa(k) for I(k),
that are both integrable and invertible. The exact distribution is obtained by internal rejec-
tion, following a probability given by the ratio exact/approximate distribution.
In detail:
Approximations for the integral of the modified Bessel function I(k) can be derived from its
low and high energy asymptotic limits:

I(k) =
∫ ∞
k K5/3(x)dx ≈ a1 · k−2/3 for k � 1

≈ a2 · e−k/
√

k for k � 1

We see, that I(k) is sufficiently well behaved for k → 0 such that the integral over I(k)
evaluated from 0 to infinity is finite.
The high energy asymptotic limit is further simplified by dropping the term

√
k. The ap-

proximate frequency distributions are chosen as :

fa1(k) = a1 · k−2/3 for k < 1
fa2(k) = a2 · e−k for k ≥ 1

The factors a1,a2 are fixed such, that the approximated functions, in their range of appli-
cation, are always greater or equal than the exact function. In the limit k → 0, a1 is also
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known analytically : a1 = 22/3Γ(2/3)
From integration and inversion of fa1,2 we find the following transformations:

F−1
a1 (k) =

[
k

1/3
0 + (1 − k

1/3
0 ) · k

]3

F−1
a2 (k) = max (1, k0) − log k (5)

The value k0 allows to artificially cut off the photon spectrum at low energies. The complete
spectrum is generated for k0 = 0. For k0 > 1 all photons are generated using approximation
2. Otherwise, both approximations are used and the fraction of photons generated from
approximation 1 is obtained by analytic integration:

P =

∫ 1
k0

fa1(x)dx∫ 1
k0

fa1(x)dx +
∫ ∞
1 fa2(x)dx

(6)

Now, let R1,2,3,4 be random numbers with a flat distribution in the open interval (0,1). The
algorithm proceeds as follows.
1. step: if R1 < P use approximation 1, otherwise approximation 2.
2. step: generate a value for the photon energy k = F−1

a (R2).
3. step: calculate the weight for the generated photon energy from the ratio exact over
approximated probability : w = f(k)/fa(k).
4. step: if R4 < w , keep the generated photon energy k as result, else restart at step 1 with
four new random numbers.
A simple example might help in demonstrating that this way the generated photon energies
follow exactly the photon spectrum given by equation (4):
If we obtain from step 2 a value of k for which the approximation is just 2 times the exact
formula, then our internal weight as calculated in step 3 would be w = f(k)/fa(k) = 1/2.
Internally we have generated too many photons at energy k by a factor of two. Half of them
would be rejected by step 4 so that we are left with the correct number of photons at energy
k.
Figure 1 shows the distributions of weights as used internally in step 3 for k0 = 0. The
combined mean of the two weight distributions is 0.737 which means that only 26.3 % of
the photons are rejected internally to go from the approximated to the precise frequency
distribution.
The generation procedure is very fast (about 32 µsec per call on the CRAY XMP).

3 Use and Results

The procedure described in the previous section has been implemented in a FORTRAN
function SYNGEN(k0). The function value returned is the photon energy in units of the
critical energy. The argument k0 allows to restrict the generation to hard photons. To
generate the full spectrum, the function should be called with the argument set to zero. To
obtain only the extreme high energy tail, k0 might be set to values as high as 50.

The results of 107 calls to SYNGEN with k0 = 0 are shown in figure 2. The left histogram
shows the photon spectrum and the right histogram the power spectrum.
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Figure 1: Weight distributions
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Figure 2: Generated spectra obtained from 107 calls to SYNGEN
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Figure 3: Ratio, generated/exact

for k above photon spectrum power spectrum
0.001 0.8772 0.9999
0.01 0.7381 0.9979
0.1 0.4628 0.9592
0.5 0.1896 0.7369
1.0 0.0868 0.5000
2.0 0.0233 0.2150
3.0 0.7030 ·10−2 0.8864 ·10−1

4.0 0.2242 ·10−2 0.3571 ·10−1

5.0 0.7372 ·10−3 0.1417 ·10−1

10.0 0.3494 ·10−5 0.1243 ·10−3

15.0 0.1915 ·10−7 0.9930 ·10−6

20.0 0.1115 ·10−9 0.7593 ·10−8

30.0 0.4120 ·10−14 0.4146 ·10−12

40.0 0.1617 ·10−18 0.2152 ·10−16

50.0 0.6518 ·10−23 0.1079 ·10−20

Table 1: Fraction of photons and photons weighted with their energy above a certain photon
energy. The photon energy cut is given in units of the critical energy
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On top of the histogram, the result of the exact spectrum has been drawn as smooth
line. Figure 3 shows the ratio generated over exact. It is identical for the photon and power
spectrum and shows perfect agreement, within statistical errors.

Table 1 gives results for the fractions above a certain photon energy. We see that only
8.68 % of the photons are radiated above the critical energy. The power spectrum instead,
obtained from weighting each photon with its energy, is divided into equal halves by the
critical energy, as expected.

4 Appendix: Some useful formulas for synchrotron radiation

To obtain the total number of photons or the total energy we use the relation [6]:

∫ ∞

0
xn Kν(x) dx = 22n−1 Γ

(
1 + n − ν

2

)
Γ

(
1 + n + ν

2

)
(7)

and the following property of the Γ - function:

Γ(x) Γ(1 − x) =
π

sin(πx)

For the number of photons we evaluate :

∫ ∞

0
I(k)dk =

∫ ∞

0
dk

∫ ∞

k
K5/3(x)dx =

∫ ∞

0
xK5/3(x)dx = Γ(1/6)Γ(11/6) =

5π

3
(8)

and for the total energy :

∫ ∞

0
k · I(k)dk =

∫ ∞

0
kdk

∫ ∞

k
K5/3(x)dx =

∫ ∞

0

x2

2
K5/3(x)dx = Γ(2/3)Γ(7/3) =

8π

9
√

3
(9)

From integration of (4) we obtain the total number of photons, radiated by one electron per
turn:

n =
5παγ√

3
(10)

The number of electrons, circulating per time interval dN/dt, follows from the beam current
I and the electron charge e :

dN

dt
=

I

e

We divide by l = 2πR to obtain the number of photons, radiated by an electron beam with
current I, per unit length and time for a dipole with bending radius R as:

d2 n

dl dt
=

5α

2
√

3

I

e

γ

R
= 6.574 · 1016 γ

R

I/A

s
= 1.2865 · 1017 E/GeV

R

I/mA

s
(11)

For LEP I (Ebeam = 45.6 GeV, R = 3096.175 m, γ = 8.924 · 104) we find that

d2 n

dl dt
= 1.895 · 1015/ ( m s mA)
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photons are radiated (per meter, second and milliamp of beam current) by the main bending
magnets.
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