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ABSTRACT

A resistive beam monitor was developed for the observation of
transverse and longitudinal microwave instabilities and for bunch
length (o = 0.7 ns) measurements. The relevant eguations are
derived, analysed, and optimized. The electrical and mechanical
layouts are given as well as the characteristics of the monitor.
The signals for horizontal and vertical beam-position and for in-
tensity have a rise-time of < 230 ps at the end of 100 m trans-
mission cables. Cable losses are compensated by computer-optimized
filters. The peak intensity signal is 2.7 V for the nominal beam
intensity of 2.5 x 10'° e’ /e  particles per bunch. At 40 mm off
centre, the position signals equal the intensity signal. A labora-
tory set-up allows the transverse displacement of a rod or wire in
a 3 m long, cylindrical chamber. Time filtering prevents perturba-
tion through imperfect matching at the end of the tube for coff-
centre wire positions. Results obtained with the laboratory set-up

and with real beams in the accumulator ring are presented.
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1. INTRODUCTION AND REQUIREMENTS

This monitor was developed for the electron-positron accumu-
lator (EPA) ring to observe the fast longitudinal and transverse
behaviour of the bunches during acceleration and stacking. Of
special interest are the microwave instabilities. The accelerated
bunches have a bunch length of about 3 ns. It was decided that a
300 ps monitor rise-time, corresponding to ~ 1 GHz, would be suffi-
cient for analysing the longitudinal bunch structure. The lower
frequency limit was fixed at 10 MHz, as other pick-ups cover the
lower freguency range.

The nominal beam intensity per bunch for e (e” ) is 2.5 (1.25)
x 10%° particles per bunch (ppb), which corresponds to a peak cur-
rent of 2.2 (1.1) A [1]. A dynamic of 10° was specified to cover
the intensity range of 10° < 1 < 10'? ppb.

The beam coupling impedances [Z/n| should not exceed 0.2 Q.

Because of the desired flat frequency response up to 1 GHz,
the monitor was chosen of the resistive type, where a short length
of the wvacuum chamber is replaced by a uniformly resistive ring.
The voltage distribution across this ring, induced by the image
current of the beam, contains all information about the beam

position and intensity.

2. THEQRY

A charged-particle bunch moving with a highly relativistic
speed in a well-conducting vacuum chamber is accompanied by a pure
transverse electric field. The induced charge distribution of the
image current on a circular chamber wall versus beam.position is
well known [2-6]

2
a(r,e,X) = 1 -z . (1)

1 + r’ - 2r cos {p - X)

The parameters are shown in Fig. 1, where the chamber is repre-

sented as the unit circle in the x-y plane:



Fig. 1

Off-centre beam in circular chamber

The beam position is given by

with

and

IH

V]

the complex vector

- r 3% (2)
= r sin X (3a)
= r cos X (3b)
+y> = 7 . (3c)

The charge density g appears over the azimuthal angle ¢. Figure 2

shows the charge density versus ¢ [from Eg. (1)] for a centred beam
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Charge density versus angle ¢



(r = 0) and five off-centre beam positions r = 0 to r = 1 on the
real axis (X = 0).
The integral

I
[ alzx,9) dp = 2n (4)
-1t

is a constant for all beam positions r. This can easily be seen for
r = 0, where the charge distribution g is uniform and equal to 1.
But Eg. (4) is also valid for r = 1, where g{0) is infinite, if the

total charge of the beam is the same in both cases.

2.1 Four-point pick-~up with uniformly conducting ring

Knowledge of the chamber image current at the four axis pcints
is sufficient to determine the beam position and intensity. These
four currents are measured by means of a resistive ring inserted in
the vacuum chamber (see Fig. 11).

Consider the four charge densities q . 9 and q, on the

I~
2 3
exis for ¢ = 0, n/2, n, and 3n/2 created by a beam in position r

0, n, n/2, and 3n/2, these charge

(Fig. 1). From Egq. (1), for ¢

densities are respectively

2

1l -
q, = - = : (5)
1l + 1 - 2r cos (~%X)
2
1 —
q, = - = : (6)
1 + 1 - 2r cos (m - X)
2
l -
a, = - = : (7)
1 +1rr - 2r cos [(n/2) - X]
2
q, = L -z , (8)

2r cos [(3/2)n - X]

=

+

H
|

Equations (5) to (8) can be written in a shorter form:

2
q = 1 -z : (9)
1+ 1 - 2r cos E% {v - 1) - X]




with v = 1, 2, 3, 4.

a) The difference charge [Egs. (5) and (6)] is

2
Ly - {1 rz) 4r cos X% (10a)

(1 + ) - 4r® cos® X

or, with Egs. (3) in Cartesian coordinates,

2 2
pg,(x,y) = =X - ¥) 4x (10b)
(1 + x° + yv°) - 4x

Similarly, from Egs. (7) and (8),

2 .
_ _ _ (1 - r") 4r sin X
Q, Q, = f-\q“ = 3 ) ; (11)

(1 + rz) - 4r? sin® x

or, with Egs. (3a) and (3c),

2 2
g, (x,y) = L =X - ¥) 4y (12)

(1 + x° +y°) - 4y°

The sensitivities in the x and vy directions are eqgqual, as from
Egs. (10b) and (12),

aAq13 ) aAq24 (13)
X 3y :

Figure 3 gives a three-~dimensional perspective presentation of the
function Eqs. (10a, b). It can be seen that the slope of the tq,

surface in the x direction is maximum for Yy = 0 and minimum for
y = +1.
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b) The sum of the four point charges Egs.

Difference

signal Aql3

versus beam position (r,X)

(3) to (8),

Eq:ql tq, +tag, +4q .
is calculated in Appendix 1:
8
rq(r,X) - x)
(1 - r4) + 167 cos® X sin® X

(14)

Figure 4 gives the three-dimensional perspective representa-

tion of Iqg (g is constant equal 4 for small r).
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Fig. 4 Sum signal ILg versus beam position (r,x)

Figure 5 shows the projection of g in the x - g plane (tilt

and rotation = 0) with r as the parameter. The error of g is about

+5% for r < 0.4.
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Fig. 5 Sum signal tg(r,x) projected in the Xx-Iqg plane

c) The normalized beam-position signal is, from Egs. (10a) and
(14):



2
4 4 2 , 2

Ag _ r cos X [il ~r ) + 16 r cos X sin” X] (15)

Iq [(1 + :r:z) - 4r® cos® xX1(1 + 2+ 4 rs)
or in Cartesian coordinates with Eg. (3},

2 2.7 2 2
g (x,y) = x{[1 - (x° + ¥v")] + 16x"y }
r 2 2 -
rq (1 + % +y°) -4x°1(1 + x> + y°)[1 + (x* +¥") ]
(16)

This function has a constant slope r cos X in the x direction for

small r (Fig. 6).

Fig. 6 Position signal Agq/Ig versus beam position (r,X) or (x,y)

d) The linearity error £ in the x direction

(2q/Iq) - x
£ = - A9 g (17)
X
Lg-x

and with Egs. (15) and (3b)



2
4 4 2 . 2
e = {1 ; r ) + 16r cos® X sin® X -1, (18)
[(1 + r2) - 4r° cos? X1(1 + 2 o+ 4 rﬁ)

Eqguation (18) is represented in Fig. 7 as the projection in the x-¢
plane for various r parameters. From this figure, there is a ~ 12%

error for |x| < 0.4 and |y| < 0.2.

Fig. 7 Error function e(r,X) projected in the x-¢ plane

The linearity error referred to the full scale Xoax = 1

[(ag/Eq) - x]
g = " (19)
max

is plotted in ¥ig. 8.

This error, normally given for instruments used for measure-

ments is +5% for a range |r| < 0.4.



Fig. 8 Full-scale error function sf projected in X-€ ¢ plane

2.2 Pick-up with a ring of lumped resistors

A pick-up is considered where the uniformly conducting ring is
replaced by N resistors (Fig. 9). The image charges QV (v = 1, 2,

g
0,

Y

>
6 2 56

Fig. 9 Qs

3, 4) fiowing through the four axis resistors can be obtained by

integrating Eg. (1):
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¢, ¢, 5
QV ..-:J- q~dtp =J 2(1 - T ) dfP . (20)
1 + 1 - 2r cos (¢ - X)
‘Pl (Pl

where the integration limits are for

n t -

Ql- $, =" § ¢ *, * N -

. =T _ ., = X R
Qz' v, =3 N ¢, 7t N -

- (21)

) - _rn . = a
Q3' ¢, = ¢ N ¢, TN

. _ 3 oo, . 3 b1
Q4‘ ¢, =z ™1 N’ b, Tz TR g

The integral of Eg. (20) can be solved analytically (see
Appendix 2):

o, = 2forots [ e 252 ] - omers [122 w0 20

with ® and ?, given in Eqg. (21).
The difference between the opposite charges Q1 and Q3 can be
calculated from Egs. (22) and (21):

AQ = Q - Q. . (23)

For the example N = 32 resistors, this function 2Q is plotted in
Fig. 10. Comparing aQ of Fig. 10 with Ag of Fig. 3 (uniformly
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Fig. 10 Difference signal versus beam position {(x,vy)

conducting ring), a goed similarity is noticed although the corres-
ponding functions, Egs. (9) and (22) resp.Egs. (10a) and (23) , are
completely different.

The functions

T = 0 +Q2+Q3+Q

s (24)

4 r
AQ/IQ, and & can be computed correspondingly from Egs. (22) and
(21).

For a sufficiently high number N of resistors the values of
the functions considered above approach, more and more, those of

the uniformly conducting ring.

2.3 Signal propagation on the leossy transverse gap line

2.3.1 Low-frequency limit of the difference signal
Figure l1la shows the wvacuum chamber with the beam in the
extreme position near point A. Figure 1llb is a projection of a cut

through A and B.
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image
b) Va current

resistive
'ring

Ug

Fig. 11 Vacuum chamber with beam in extreme position

The signal UA generated in A across the resistive gap is given
in Fig. 2 for r = 1. This signal immediately starts to propagate to
point B on the two resistive gap lines.

According to the principle that if these signals are suffi-
ciently damped on the lossy line, no signal will appear at point B,
then the difference voltage

AU = UA - UB (25)

can be used to determine the beam position. This is only possible

for higher frequencies or for short bunches. For a debunched beam
(direct current),

8U = 0 , (26)

because a transmission line without longitudinal losses but with
transverse insulation losses has no attenuation for a d.c. signal
{(i.e. UA = UB).

The lower cut-off frequency is derived in Appendix 3

(Eg. A3.14)

£ = 9;;li_ i (27)

L-G-d
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where

I is the line inductance (9:-s/cm),

G the line conductance (1/0-cm),

d the diameter of chamber (cm).

In order to bring the cut-ocff fregquency of the position signal
to low values, the line inductance L, the conductance G and
diameter d must be large. In other words, the characteristic time
constant of the transverse gap line (Eg. A3.15)

(28)

which determines the droop of the position signal, must be high.

The conductance G and diameter d can only be increased to
certain limits, because the sensitivities of the intensity and
positicon signals will decrease.

The inductance L must be pushed to a maximum.

The condition for obtaining the lower-fregquency cut-off of the
position signal according to Eq. (27) is that the admittance in
parallel with G (external closure) is much smaller than G.

Example: d = 10 (em), G = 1/30 (1/0-cm), L = 3.3 (nH/cm):

0.111 30

= 10 MHz .
3.3 x 10°° 109

£ =
C

Figure 12 shows the resistive ring line of impedance Z with

the distributed current sources (arrows)

ai = q(f) af . (29)
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Fig. 12

From each source di alone, there is one wave going to the left and
one to the right (each di/2). The voltage generated at the output
point % by the source di/2 at a distance f is

au = z e V£ di (30)

As each current source can contribute not only from distance but
also from £ + NA (A = circumference, N =0, 1, 2, ..., =), integra-
tion to infinity is reguired. Assuming a symmetric current density
distribution q(f) with respect to x-x' (beam on the x axis), the

left-going and right-going waves give the same contribution, i.e.
by superposition

o

U=z J e Y gty af . (31)

G

a) A centred beam with current I has a constant charge and

current distribution versus [ (o f for r = 1):

Li§

]
rd L]

a(f) , (32)

and generates an output voltage [Eg. (31)]

oo

U(p) = z-%- J eVl oaf . (33)

0
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integrated, this gives

U(p) = Z- . (34)

>l
< |

Inserting into Eg. (34) the characteristic impedance [9]

_ 1(R + pL)
- - [E+28 (29)

and the propagation constant y of Eg. (A3.1), the factor (R + pL)}

cancels and

_ I{(p) _ I(p) 1
UP) = e+ porl = & TT + p(Cc/8)] ° (38)

Equating the-real and imaginary part of the denominator leads to

the high-freguency limit for a centred beam

_ G
fHC T 2n = 2nC ° (37)

Example: C = 1 pF/cm; G = 1/30 Q-cm; — fHC = 5.3 GH=z.

A Dirac current input pulse delivers an output signal which
decays with T = C/G = 30 ps time constant.

b) An off-centre beam with the current distribution of Eg. (1)
and r # 0 delivers with Eg. (31) a less simple integral.

But let this problem be considered in another way.

The signals generated by the wall currents travel in both
directions around the resistive ring and need a certain propagation

time

a([ecL/2) £
d
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[see Eg. (A3.3b), {/ = distance between generation and observation]
which, differentiated, gives

- 1 |GL,
t, =5 |52f - (38b)
The signal attenuation for a line of length { is [see Eg. (A3.3b)]

-af _ -(Je6L72)-f

A=¢e (39)
From Eg. (39),
£ = - =22 (40)
JoGL/2
inserted in Eg. (38b) yields
£y = -5 2R (41)

The propagation delay which lengthens the output signal (e.g. a
Dirac pulse current) depends on the considered frequency and the

desired attenuation. It must be shorter than the expected rise-time

t. = 5., (42)

Combining Egs. (41) and (42),

gives

A >
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Only signals from the circumference which contribute with more than
1.2% to the output signal have tp < tr. Signals contributing with
less than 1.2% have tp > tr’

Example: fmax = 1.5 GHz, tr = 233 ps, G = 1/30 @-cm,
L = 3.3 nH/cm.

Let the signal from length”f, delayed, contribute 10% to the
output signal. Then

A = 0.1
1 in 0.1
b =732 9
Z2n x 1.5 x 10

t = 122

D ps

t <t .

P r

The length which contributes more than 10% from both sides of the
output point [Eg. (40)] is

- - Anad in 0.1 = 3.2 cm

Jnf-G-L Jm x 1.5 x (1/30) x 3.3

From this point of view it seems that there is no upper band limi-
tation: the higher the freguency, the shorter the length and the
propagation time. In reality there is the gap capacity C (neglected
until now) which limits at

_ G
fmax - 2nC (43)

as for the centred beam [Eg. (37)].

2.4 The frequency-dependent transfer functions of the monitor

The image charge of the beam advances on the chamber wall with
the same speed v as the beam (Fig. 13). At the time when the front
of the beam reaches the position E, the potential difference
between E and F is (for frequencies £ < 0.35-v/w):

UEF = iR , (44)
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Fig. 13 Beam entering a resistive pick-up

& *
where R 1is complex. The elements which determine R are shown in

the equivalent circuit (Fig. 14). The ouptput voltage is

Cp

F |, E
— oot
/

N

R’

Fig. 14 Equivalent circuit of the resistive pick-up

1 + pLS/Rs
Ugp = U(p) = iRS — , ( p = jw) , (45)
1 + pRst + p Lscp
or
1 + pTQO®
U(p) = iR TS - (46)
1 + pT + p"T°Q
with
L
0 = %_ =2 (47)
s p

and



1%

T =R . (48)

C
S P
The transient response in the time domain of a current step

input

i(p) =

WA

is

2.2 .2

2
U(t) = IRS'S—l[ 1 + pTQ } , (29)
p(l + pT + P"T°Q°) '

where 3_1, the inverse Laplace transform, is plotted {11] in

Fig. 15 for various quality factors Q and T = 1.

o) 1 2 3 4 __ 5
t
/%
Fig. 15 Signal overshoot versus normalized time for different Q
values

The covershoot ratio A/A_ and the relative 90% rise-times T/to
shown in Fig. 15, are tabulated in Table 1. The aperiodic damping,
without overshoot occurs for Q = 0.5. The rise-time is 69% of the
uncompensated case. The overshoot of the monitor signal for Q > 0.5
can be used to compensate the capacitance and, partially, the
losses of the signal transmission cable.
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Table 1

Normalized overshcoot and rise-time versus Q values

0 0 0.3 0.5 0.7 C.85 1 .1
A/A_ 1 1 1 1.06 1.17 1.30 .39
t/to 1.0 0.89 0.69 0.51 0.45 0.43 .42

The inductance of a homogeneous resistive ring is not high

enough (the exterior stored magnetic energy, which determines the

inductance,

especially when the resistors are long (Fig. 16). Furthermore,

Several resistors around the gap increase the inductance,

Fig. 16

is too small).

SN N SN SN RS R T e :
N L - Ferrite
N P N Ring
SRR R N~ g -
— "}
- —
— T}
O AN NN SN SO SSSNp—ead
) R
N X
N )
N N
A SSSSER S e T O

the

Cross-section of the monitor with external closure

capacitance of the resistors (and also of the gap) must be small.

Several resistors in series decrease the capacitance and increase

the inductance as desired.
The low-frequency cut-off of the sum signal depends on the
The time constant

external inductance Lp

which is parallel to RS.
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can be increased by ferrite rings (Fig. 16). The total monitor
transfer function for the sum signal then becomes

U pT, 1 + pro?

Fls(p) = IRS =T+ pT1 1+ pT + p2T2Q2 *

(50)

The frequency dependence of the transfer function for the diffe-

rence signal is

A pT 2
Fog(P) = K 4(x) yoggm (1 - —2——) 2 2 PI0 (5
1 cosh IpTc 1 + pT + p°T°Q

The third term of Eq. (51) is derived in Appendix 3 [Egq. (A3.19)].
The second and third terms determine the low-frequency limit, the

fourth term the high-frequency cut-off. The constant Kld of the

difference signal depends on the beam position x [Eg. (16}, K o X

1d
for small x].

2.5 Signal transmission and optimization

The four signals appearing at the four axis points are con-
nected to wide-band hybrids which deliver the sum and difference
signals (Fig. 17). Three filters (Fi) correct these signals before

Fi > AV
H
y i Fi =23
» |
L
Fi »AH

Fig. 17 Schematic diagram of the pick-up and the signal
transmission

they are transmitted via high-quality cables to the observation

point.
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The following block diagram shows the elements with their
transfer functions Fv(p), which determine the final signal shape

(Fig. 18). The output voltage is

U(p) = S(p)-Fl(p)‘FZ(p)-Fa(p)-F4(p)-Fs(p) . (52)

S(p) —» Fy(P) bomt Fz(p) ] Fo(P) }d Fo(P) ol Fo(P) U (P)

Fig. 18 Block diagram of the signal transmission

In the ideal case, one would expect a theoretical transfer function

c

(p) _ .
T(p) = gy = K e pTHIY (53)

where
= total propagation delay (constant),
= phase offset,

constant,

o= e d
I

= jw.
In the case when the amplitude K = const and the group delay
is

_ do _ d(wt) _
T = 30 - “do ¢ const ,

the signal would be transmitted without distortion.

In reality, it is necessary to approach as near as possible

F(p) = T(p) = K ¢ PTHI¥ | (54)

where

F(p) = Fl(p)‘Fz(p)-Fs(p)-F4(p)-Fs(p) . (55}
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The difference between the vectors F(p) and T(p) is a complex error

vector
e{p) = F(p) - T(p) , (56)
shown in Fig. 19. At every frequency w, there is an error wvector

s(jwv), (v =1, 2, ..., m).

Im

T(P)

& A
| F(P)

Fig. 19 Signal transfer function in the complex plane

Summing up the squared abscolute values of € for many different
freguencies in the desired range gives a total measure for the

errors at all interesting frequencies:

m

Z le (3o )| (57)

v=1

E

n

or, with Eg. (56),

3

E =Z [F(p,) - T(p )| : (58)

E is a real function of all known and unknown variables of Fv(p)

[see Eg. (55})]. The optimum values of the unknown variables (RX,
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Lx’ Cx’ Tx, ..-) can be found by a computer minimization program
(MINUIT) [7] which looks for a minimum of E. The condition is, of
course, that all the complex transfer functions Fv(p) are Known.

The different transfer functions are discussed in the follow-
ing, and a summary is shown in Fig. 20.

a) Monitor

The monitor transfer functions FlS and Fld were derived in the
preceding paragraph [Egs. (50) and (51)].

b) Hybrid

The low- and high-frequency limits of the wide-band hybrids
are assumed tO be linear first-order expressions:

pTz 1

() s ey T Ty (59)

Tz: low-frequency cut-off time constant,

T3: high-freqguency cut-off time constant.
Example:
f = 2 MHz,
f = 2 GHz,
T = 1/2nf2
T = 1/2nf3

c) Filter

79.6 ns,
79.6 ps.

The filter transfer function F3(p) is determined in Appen-
dix 4 [Eg. (A4.8)]. The variables are Cl, Cz, Rl, and Rz.

d} Cable

The transfer function of a transmission line, which has only

conductor losses (skin effect), can be described by [12]

U . —_—
F (p) = ﬁi = e-(l+3)af = e_IpTo
1

’ (60)
with
_ (af)?
T = o (61)
= rise-time 0-48%;
o« f = attenuation exponent of line with length { (in neper =

1l Np = 8.686 dB):;
f = freguency at the attenuation of.
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1l - exp (-pt_)
S (p) = = 1L rectangular
P ts
Beam or Ty = 3 ns
[1 - exp (-pt_/2)]°
S¢(p) = > = —/:\— triangular
p s

pT 2
I + pT
Fig(P) = 7% lT . P Q2 — sum
p 1 1 +pT +p°7T°Q 5
n
Pick-up or T, = LGa2 i
Fia(p) = F(p) - (1 - —-—1——m——) difference
cosh \[pTC
pT
Hybrid F,(p) 2 1

(1 + pTz) T {1+ pTB)

!

It

pC, /(1 + pT,)

. 1 1
Filter F_ (p) = _
3 2+ ¥ (R, +2)+R/Z R, = R, /(1 + pT,_)
T =R C ; T = RC
i 4 11 5 2 2
J— 2
Cable F,(p) = exp (-[PT,) T, = («f) /- £

!

Oscill. Fs(p) = exp (pTG)2 = exp [-(mT6)2]

'

Uout(P)

Fig. 20 Flow chart of signal transmission with transfer functions
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Example: { = 100 m, 4 dB/100 m attenuation at 1 GHz,
ol = 4/8.686 = 0.4606 Np, T, = (0.4606)*/(n x 1 x 10°) = 67.5 ps.
e) Oscilloscope

It is assumed that the oscilloscope has a Gaussian attenuation

2 2
F (p) = e!PTe) = o7 (¢T,) (62)

Example: attenuation of 3 dB at 1 GHz:

T - \I——ln (1/,[2)
6 2nf

= 93.7 ps

The product of the complex transfer functions*) [Eg. (55)] is
computed in a FORTRAN subroutine FCN (Appendix 5A) with eight
unknown variables,

X(1) = K amplitude of theoretical function [Eg. (53)1],

X(2) = ©v propagation delay [Eg. (53)],

X(3) = Q pick-up factor [Eq. (47)],

X(4) = R1 resistance

X(5) = R2 resistance of filter [Appendix 4, Fig. Ad.1,
X{6) = C1 capacitance Eg. (A4.8)]

(7)) = 02 capacitance

X{8) = ¢ 1initial phase offset [Eg. (53)],

for 30 frequencies (10 per decade) between 2 MHz and 2 GHz in
constant logarithmic steps:

max
f . (63)
min

AUG

n
w
=}

or

AUG

1.25892541

The absolute wvalues of the difference vectors [Eg. (58)] had to be
normalized with K’ [X(1)**2] as the difference vectors are propor-
tional to K° (to avoid K = 0 sclution).

* ) Except the oscilloscope transfer functiocon.
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The sum E of the 30 squared and normalized absolute values of
the difference vectors is fed to MINUIT [7] version MINTLD (double
precision) and minimized by varying all eight unknown wvariables
X o oeeer X -

The starting values, initial step sizes, and lower and upper
limits of the eight variables are listed below the FORTRAN program
(Appendix 5A). o

The output of this program is given in Appendix 5B. After 192
calls it finds a minimum for FCN. The values of the parameters are
circled. The value of K = 0.35 corresponds to about 3 dB attenu-
ation (0.35/0.5 = 0.7 = -3 dB).

For higher attenuations, i.e. smaller K values, there exist
deeper minima, but the output signals become smaller.

A good compromise is investigated in Appendix 6 with the

LAPLACE program [12]. (Rl, R Cl, and C2 are underlined.)

2!
The spectrum of a rectangular input pulse of length =<

r

s (p) = ~——¢ (p = jo) (64)
r p r ’
is trangsformed by each transfer function FV (v = 1 to 5) (see

Fig. 20) and the inverse Laplace transform is performed. The output
of a 3 ns input pulse is shown below the FORTRAN subroutine in
Appendix 6 (Fig. Ab6.1).

The output of a 3 ns triangular input pulse with spectrum

. -p(rs/z)]2
- e
S.(p) = = (65)

is shown in Appendix 6 (Fig. A6.2) for the same transfer function
parameters.

Appendices 7 and 8 give the FORTRAN INPUTS and OUTPUTS for the
difference signal as do Appendices 5 and 6 for the sum signal.

3. MECHANICAL DESIGN
Figure 21 shows the monitor with three 180° hybrids (ANZAC HI,
2 MHz-2 GHz) which produce the sum and difference signals. The

hybrids are connected to the resistor ring via four coaxial cables
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Fig. 21 Mechanical layout of the monitor
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(RG58) of equal length. The ring is composed of 96 resistors,

32 parallel groups of 3 in series on the periphery. The three

series resistors (3 x 10 2 metal film) bridge the 4 cm gap between

two tubes of 100 mm diameter. A ceramic tube of 5 mm thickness

makes the gap vacuum~tight. To avoid charging effects, the inner

surface of the tube is metallized with antimony (300 © over gap).
The outer cavity comtains two ferrite (2E8) rings. The induc-

tance of these rings in parallel with tﬁé total gap resistance

determines the lower cut-off frequency of the intensity signal.
Further remarks:

- There are three resistors in series to decrease the parasitic
capacitance and increase the inductance.

- The inductance L of the transverse gap-line increases with the
gap width. In order to obtain a low cut-off freguency, the gap
width was pushed to the maximum.

- The hybrids are placed as near as possible to the resistor ring
to reduce the cable lengths to the minimum.

A length difference of 0.3 mm limits the beam position

resolution for 1 GHz at 0.5 mm.

_ Figure 22 shows the assembled monitor.

4. TEST BENCH .
4.1 Mechanical test device

Figure 23 shows the monitor in the measurement device, which
is a 3 m long brass tube of 100 mm inner diameter. The rectangular
flanges on both ends allow linear transverse displacements of an
inner wire (1 mm) or tube (¢ = 20 mm). A fast pulse or step-pulse
generator (reflectometer) feeds the inner conductor through one
flange.

Unavoidable reflection at the perpendicular end flanges was
eliminated by time-filtering or windowing. This means that the
reflected signals are well separated in time from the direct
signals owing to the relatively long travelling time in the tube.

The filters for cable loss compensation are located directly
at the hybrid outputs.

A cable of 100 m length is required for the transmission of
the signals between the monitor and the observation room.
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e,

Fig. 22 Photo of monitor with hybrids

Laboratory test bench

. 23

Fi
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The coaxial cable chosen, with enough waveguide mode margin
for fmax = 1.5 GHz, is a 7/8-inch Flexwell cable [4 dB/100 m atte-
nuation at 1 GHz]. As this cable is unwieldy, a thinner and shorter
cable with the same total attenuation was used in the laboratory
for the filter optimization.

Rotation of the monitor with respect to the displacement plane

allows to simulate the béam in any pecint of the cross-section.

4.2 Laboratory results

The monitor was tested with short pulses and with step pulses.
a) The pulse generator signal is shown in Fig. 24 (upper trace,
47 dB attenuated). The modulated pulse has about 3 ns length.

50 mv/div.
1l ns/div.

Generator
~"+47 dB attenuation

Output sum

| Fig. 24 Input and sum output of the transmission system

The sum output [via monitor, hybrids, filter, cable, and
sampling scope (TEK. 151)] is shown in the lower trace. The
pulse shape of the generator is well reproduced. The difference
signals for three simulated beam positions (+15, 0, -15 mm) are
given in Fig. 25. The zero position resolution is about 0.3 mm.

Output AH

20 mv/div.
1l ns/div

+15
AX = OF mm
-15

‘ Fig. 25 Difference output signals for three beam positions
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b) The step-pulse generator (S$52), belonging to the TDR sampler
(TEK. 7S12), with the sampling head (S6), has a rise-time of
about 35 PS. o

The overall difference and sum signals are shown in Fig. 26.

200 ps/div.
< 2 mv/div.

A (ax = 2 cm)
Trg = 210 ps
E
Trs = 230 ps

Fig. 26 Difference and sum output signals for a step input of
35 ps rise-time

Owing to the small generator step-height (200 mV) and the
small total gap resistance (0.94 @), the output signals are also
small and are noisy.

The droop of the signals can be seen in Fig. 27.

2 ns/div.
2 mV/div.

A
)3
(inverted)

Fig. 27 Droop of difference and sum output signals

The measured rise-times (tr), fall-time constants (Tf), and

cut-off frequencies are given in Table 2.




33

Table 2

'Rise- and fall-times and freguency limits
i for the sum and difference signal

T, T, £, = 0.35/t_ | £ = 1/2nT,
(ps) (ns) (GHz) (MHz)

£ | 230 17 1.52 2.65

a 210 60 1.66 9.36

5. RESULTS WITH BEAM
Typical signals of the wide-band monitor installed in the EPA
are shown in Figs. 28 to 30. The signals are observed with a 1 GHz

(3 x 10'° p/p)

1 v/div.
500 ps/div.

Fig. 28 Sum signal of stacked e  beam

AH

Ax = =2.4 mm

100 mv/div.
500 ps/div.

Fig. 29 Horizontal difference signal

Ay = 4 mm

100 mvV/div.
500 ps/div.

o e b S T O

Fig. 30 Vertical difference signal
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oscilloscope (TEK. 7329/7104) at the end of a 100 m long, 7/8-inch
Flexwell cable. The low frequeﬁcies are cut at 68 kHz by a series
miniature condenser (47 nF) at the input of the oscilloscope
(reflection < 2%). B _

Figure 31 shows the superimposed hbrizontal position signals
for eight beam positions obtained by varying a dipole current.

A
AH

E (eight beam positions
g by modulated bump)

o

1]

» 50 mV/div.

d 500 ps/div.

Fig. 31 Eight superimposed horizontal beam-position signals

Figure 32 shows a 'mountain-range' display of a coupled-bunch
instability (caused by the coupling impedances) which starts, for

1 v/div.
2 ns/div.

Fig. 32 Sum signal during instability

(coupled bunch instability)
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eight circulating bunches, at about 2 x 10tt (total) particles, and
produces, at 4 =x 10*? particles, coherent phase oscilliations during
400 us, as displayed. {The noise on the base lines comes from the

mountain-range trigger unit.)

6. CLOSING REMARKS

The study and realization of this monitor has shown that it
is possible to measure with this type of apparatus not only the
longitudinal structure but also the transverse beam position in a
wide frequency range. The lower-fregquency limit fL of the positicon
signal, which in the case under consideration is 9.4 MHz, could be
further decreased by increasing the chamber diameter, the induc-
tance and/or the conductance of the transverse gap line. Doubling
the diameter would give fi = fL/4 = 2.35 MH=z.

Trials to increase the inductance L of the gap line by ferrite
loading of the gap were less effective.

The high~frequency limits are given essentially by the hybrids
and the transmission cables and by the cable connections to the
gap.
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7. CHARACTERISTICS
The characteristics of the total system, i.e. monitor,
hybrids, filters, and 100 m cables, are as follows:
Signal bandwidth of
intensity 2.7 MHz - 1.5 GHz
position 9.4 MHz - 1.6 GHz
Sensitivity on
beam current 1.26 mV/mA
intensity (40 = 2.8 ns) 1.1 V/lO10 particles per bunch
position 40-4U/LU mm
Resolution on
intensity < 5 x 10° particles per bunch
Position 0.5 mm
Error (for r < 20 mm)
on beam linearity < 5%
on beam intensity < 5%
(see also §2.)
Coupling impedénce |z/n| < 0.2 0
Rise-time of
intensity signail 230 ps
difference signal 210 ps
Characteristic cable impedance 50 ©
Reflections (1 MHz - 1.5 GHz) < 3%
Hybrids HY9 ANZAC 2 MHz -~ 2 GHz
Total gap resistance 0.94 0
Acknowledgements
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DERIVATION OF SUM OF Q VERSUS BEAM POSITIONS r and X

From Egs. (5) to (8), i.e.
2
1 -
a = Pa— (A1.1)
1 + " - 2r cos X
2
q, - =L (B1.2)
l + 1 + 2r cos X
2
1 -
q, = : -3 (A1.3)
- 1 + r - 2r sin X
2
1 -—
q, = —— (A1.4)
1 +r + 2r sin X
-Zq=q1 + q, taq, +aq,
2 2
= (1 - %) 2(5 ) + 2§1 )
(1 + rz) - (2r cos X) (1 + rz) - (2r sin X)2
{Al1.5)
g = (1~r2)2(1+r2) X
2 2 2 2 2 2 2
(l+r" )} - 4r° sin® X + (1l+r°) - ar? cos” X
4 2 2
(1+r2) - (l+r2) 4ar? sin® x - (1+r2) 4r? cos® x + 16" cos? X sin?
(Al.6)
4(1 - %)
Ig = , (A1.7)

2

(1 - r4) + 16 ' cos? X sin® X
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or in rectangular coordinates with Eg. (3),

4
2 2
Ta(x,y) = 4l - (x + 4 ) ] . (A1.8)

[T - (% + ¥2)%1 + 16x%y°




INTEGRATION OF THE CHARGE-DISTRIBUTION INTEGRAL

Appendix 2

From Eqg. (20)

e,
Q=J
v 1 + r2
¢1

Using the addition theorem for the cosine term, we get

(1 - r*) de

- 2r cos (¢

- X)

qJZ
2 d
Q, = (1 - ) > ?
@ l + 1" - 2r cos X cos ¢ -~ 2r sin X sin ¢
1
Putting
a=1+1r |,
b = -2r cos X ,
c = -2r sin X ,
?,
_ 2 dyp
Qv = (1 ™) a + bcos o + ¢ sin ¢
r{)l

This equation transformed with Ref.

with

and

[8a]l gives

39

(A2.1)

(A2.2)

(A2.3)

(AZ2.4)

(A2.5)

(A2.6)
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T =9 - X . (A2.7)

Egquation (A2.5) integrated with Ref. [8Bb] and using Eg. (A2.7)
vields

; (AZ.8)

or

[ @)
It

1 + ¢, - * l + r o, - X
v 2-¢arctg T — ¢ 9 {—_7_—_} - arctg [v—= tg {"*E———} .

(R2.9)

where the limits ® and ¢, depend on Ql to Q4 as given in Eg. (21).
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Appendix 3

LOWER CUT-OFF FREQUENCY OF THE BEAM-POSITION SIGNAL

The general propagation constant of a transmission line is [9]

Yy = J(R + pL)(G + pC) ;

R: resistance

L: inductance

G: conductance
C: capacitance
p = jo .

(A3.1)

per unit length of line

Assuming that for the gap line we have small copper losses

R << |pL|
and high insulation losses
G > |pcCl ,
then
v = |pLG = [JwlG (A3.2)
with
. j(n/4 1
I3 = eJ(n/ ) - 1z (1L + 3) .
vy = o+ 3g = {228 1+ j) (33.3a)
where
@ = IQ%Q ;o8 = |92 (A3.3b)

An input signal UA is attenuated through a lossy open-ended trans-

mission line of length /, and becomes [9]

U

A ) (A3.4)

U =

B cosh (a + jB)/
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Or with Eg. (A3.3a),
Up 1
ﬁ; T cosh [(1 + j)af] ° (23
At the lower—frequency limit, the difference voltage
AU = U, - Ug (A3.
is attenuated by 3 dB with respect to UA:
|U, |
|au| = Uy - Ugl = Tz - (A3.
Dividing Eqg. (A3.7) by UA and combining with Eg. (A3.5) gives
1 1 (A3.

T cosh [(1 + jyof1| ~ 72
The complex function between the absolute signs is plotted via a
computer program [10] for of as the variable (see Fig. A3.1). At
the crossing point with the circle

] LR
l T 05 | Re
RBES<C | -1 /COSHCR+U-A> =D .77

Fig. A3.1 Graphical solution of Eqg. (A3.8)

5)

6}

7)

8}



the solution can be read:

¥From Eg.

(A3.3Db)

of = 0.93

11
C(f = E GJCLG‘f ’

and the cut-off freguency is

or with

£

@
= =<
c 2n

/=

LG n

dn
2

. (0.93)°

(d is the diameter of the vacuum chamber),

and with

r

e - (0.93)° x4 _0.111
© n® LGd* LGd”
2_2
_ 2 _ d'n
T, = LG{° = LG =g— ,
p (0.93)° _ 0.275
¢~ nT T,
C c

43

(23.9)

(A3.10)

(A3.11)

(A3.12)

(A3.13)

(A3.14)

(A3.15)

(A3.16)



44

Example: d = 10 em, G = 1/15 Q-cm, L = 1.75 nH/cm

2

T = 1.75 x %g x 100 x — = 28.78 ns ,
£ = 0.275 = 9.55 MHz .

28.78 x 10 °

A chamber diameter of d = 20 cm would lead to a lower cut-off
frequency, fé = fc/4 = 2.39 MHz.

Remark
Two parallel lines have the same product

LG, =L G_ = LG (A3.17)

as a single line because the conductance doubles and the inductance
is halved (coupling neglected).
From Egs. (A3.5) and (A3.6)

8U . 1
U, - ! SER (I Del] (R3.18)

which can be simplified with Egs. (A3.3a) and (A3.15), and with

o = -3p ,

1+ 3 = Ii ej(ﬂ/4)

r

and

[55 = &3 (/8

r

to read

=1 - i (A3.19)
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For the compensation of the HF cable losses and the LF monitor

losses the circuit of Fig. A4.1 is assumed.

I {
l t
z Al
' cq 2 !
U4 [ !
{ R1 !
| 1
I FILTER !
Fig. A4.1 Cable loss correction filter.

The input and output signals are linked by the following

matrix product:

corresponding to the source and filter matrices.

The matrix

elements of the filter (see two-port theory) are:

with

11

21

—2

1+ 7
1,115
R Z Z R
-—1 —1
=Rt _%_ '

pl

R

(Ad.1)

(Ad.2)

(24.3)

(ad.4)

(A4.5)
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The voltage ratio Ul/U2 is obtained by the first element of the

resulting product matrix (as I2 = 0):

C.'ICJ
[
]
)]
+
(o]
[*!

Inserting Eq. (A4.2) and (A4.3) into Eg. (A4.6), we have

U1 B;z Z 52
ﬁ—" =1 + -Z—-- + i{— + 1 + R_ .
2 =1 =1
The inverse transfer functicon is
U1 2+ Zl(gz + Z) + (32/2) 3
where
_1__PS
-1 Bl 1+ pT4
R
_ 2
—2 1 + p‘I‘5
T4 = Rlcl ’
and T = RC
5 22

(Ad.6)

(r4.7)

(A4.8)

(A4.9)

(24.10)

(A4.11)

(A4.12)
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Appendix 5

A) FORTRAN SUBROUTINE OF 'MINUIT' PROGRAM
FOR PICK-UP SUM SIGNAL OPTIMIZATION

CALL MINTLD
sSTOP
END

SUBROUTINE FCN{NPAR_,G,F,X,1FLAG)
IMPLICIT DOUBLE PRECISION (A-H, 0-2)
DIMENSION X(8)

COMPLEX G,TH,P.V.Y

DATA T/.03/,70/.0675/,T1/100./,72/79.6/,T3/.0796/,T6/.0937/
DATA Z2/50./.FMIN/_002/,AUG/).25892541/

FR=FMIN/AUG
F=0

DO 10 I=1,30
FR=FR*AUG
OM=FR*6 _2B318B5308
P=(0.,1.)*0OM
G=(P*T1)*(1.+P*T*X(3)**2)}/((1.+P*T1)}*( 1, +P*T+P*pP*T*T#X(3)**2})
G=G*P*T2/({(1.+P*T2)*(1.+P*73))
V=X(5)/7{1.+P*X(5)*X (7))
Y=PEX(B8)Y/(1.+P*X(4)*X(6))
G=G/(2.+Y*(V+Z)+Vv/Z)
- G=G*CDEXP{-CDSQRT{P*T(0))

TH=X(1)*CDEXP({(0.,-1.)*0OM*X(2))*CDEXP((0.,1.)*x(8))
10 F=F+{CABS(G-TH) )} **2/(X{(1)*%*2)
RETURN
END
PICK UP OPTIMIZATION

1 K 0.35% .05 0.3 1
2 TAU 0.1 .00 0. 100.
3 Q 1.6 1 0. 1.6
4 R 200. 20. i00. o000.
5 R2 16. 1. 1. 50.
6 Ci1 0.200 0.47E-2 o. 1.
7 cz 0.47E-1 0.10E-2 o. 1.
8 PHI 0.3 0.0785

ERRQR DEF 0.1
SEEK

MINIMIZE
PRINTOUT 1.

EXIT

B) OUTPUT OF 'MINUIT' OPTIMIZATION PROGRAM (SUM SIGNAL)

VALUE
0.35069E+00
0.12024E+00
0.15293E+01
0.17B90E+03
D.17146E+02

ol 0,2051BE+QD

o 0.47336E-01

\\\\‘iiihhnuhni;las165+oo

MIGRAD MINIMIZATION MHAS CONVERGED . e

FCN VALUE CALLS TIME EOM INT.EXT.
0.3262B61E+0) 192 0.00 0.67E+00

NSOV LN -
@~ P Db WA —
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Appendix 6

A) COMPLEX TRANSFER FUNCTION OF 'LAPLACE' PROGRAM
FOR SUM SIGNAL TRANSMISSION WITH OPTIMUM FILTER PARAMETERS
(3 ns RECTANGULAR INPUT)

COMPLEX FUNCTION SPECTR(S)
COMPLEX S,G,V.,Y

DATA T/.03/,70/7.0875/,TV1/100./,7T2/79.6/.7T3/.0796/,7T6/.0937/
DATA 2/50./7.Q/1.6/,R1/200.0/R2/16.0/7,C1/.200/,C27.047/
DATA TS/3./

Cr==- TRIANGULAR INPUT PULSE

Cc SPECTR=({(1.-CEXP{-S*TS/2))**2)/(5%S)

C————- RECTANGULAR INPUT PULSE
SPECTR=(3.-CEXP{(-5S*TS5))}/S
SPECTR=SPECTR*{(S*T1)*(1+S*T*0*Q)
SPECTR=SPECTR/({(1.+S*T1)*(1.+S*¥T+S*S*«T*xT*xQ*Q))
SPECTR=SPECTR*S*T2/({(1.+S5S*T2)*(1.+5*T3))
V=R2/(1.+5*R2*C2)
Y=S*C1/{1_.+5*R1*C1)
SPECTR=SPECTR/(2.+¥Y*(V+Z)+V/Z)
SPECTR=SPECTR*CEXP(-CSQRT({(S*TC))
SPECTR=SPECTR*CEXP(S*5*T6*T6)
SPECTR=SPECTR=*=CEXP(1.5%*5)

RETURN
END

10. 1 RECTANGULAR INPUT PULSE (CPT. 3)

Fig. A6.1 Time response output for a 3 ns input pulse.
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B) COMPLEX TRANSFER FUNCTION FOR OPTIMUM FILTER PARAMETERS
{3 ns TRIANGULAR INPUT)

COMPLEX FUNCTION SPECTR(S)

COMPLEX 5,G,V.,Y¥Y

DATA T/.03/,70/.0867%/,7T1/300./,7T2/79.6/,T3/7.0796/,T6/.0937/
DATA Z2/50./,Q/1.6/.R1/200.0/R2/16.0/,C1/.200/,C2/.047/

DATA TS/3./

C———== TRIANGULAR INPUT PULSE
SPECTR=((1.-CEXP{—-S*TS5/2))**2)/(5*5)

C——--- RECTANGULAR INPUT PULSE

C SPECTR=(1.-CEXP(-5*TS8))/S
SPECTR=SPECTR*(S*T1)*(1+5*T*Q*Q)
SPECTR=SPECTR/((1.+S*T1)*(1.+S*T+S*S*T*T*_Q*Q))
SPECTR=SPECTR*S*T2/({1.+S*T2}*{1 ,+5*T3))
v=R2/(1.+S*R2*(2)
Y=S*C1/(1.+5*R1*C1)
SPECTR=SPECTR/(2.+Y*(V+Z)+V/2Z)
SPECTR=SPECTR*CEXP(-CSQRT(5*T0))
SPECTR=SPECTR*CEXP(S*S*T8E*T6)
SPECTR=SPECTR*CEXP(1.5%*5)

RETURN
END

10. 1 TRIANGULAR INPUT PULSE (oeT. 3)

Fig. A6.2 Time regponse output for a 3 ns triangular input pulse.
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Appendix 7

A) FORTRAN SUBRCUTINE OF 'MINUIT'
FOR DIFFERENCE SIGNAL OPTIMIZATION

CALL MINTLD
STOP
END

SUBROUTINE FCN{NPAR,G,F ,X,IFLAG)
IMPLICIT DOUBLE PRECISION (A-H,
DIMENSION X(8)

COMPLEX G, TH,P,V. Y

0-2)

DATA T/.03/,70/.08675/,T1/100./,7T2/79.6/.7T3/.0786/,.7T6/.0937/
DATA Z2/50./ ,FMIN/ 010/ ,AUG/1.25B92541/,7C/28.78/

FR=FMIN/AUG
F=0

DO 10 1=1,20

FR=FR*AUG

OM=FR*6.2831B85308

P=(0.,1.)*0OM

G=(P*T1)* (1. +P*T*X(3)**2)/( (1. +P*T1)*( 1. +P*T+P*P*T+T*X(3)*%2))
G=G*(1.-2./(CDEXP(CDSQRT(P*TC))+CDEXP(-COSQRT(P*TC)}))
G=G*P*T2/({1.+P*T2)*(1.+P*T3)) ~—
V=X(S)Y/ {1 . +P*X(5)*X (7))

Y=P*X(B)/(1.+P*X{4)*X(6))

G=G/(2.+Y*(V+Z)+V/Z)

G=G*CDEXP(-CDSQRT(P*T0))

TH=X(1)*CDEXP{ (0. ,~-1.)*OM*X(2))*CDEXP({0O.,1.)*x(B})
10 F=F+(CABS(G-TH})**2/(X{1}*%3)
RETURN
END
FICK UP OPTIMIZATION
1 [ 0.35 .05 0. 1.
2 TAU 0.1 .00 0. 100.
3 Q 1.6 1 G. 1.6
4 R1 200. 20. Co S000.
5 RZ 16. 1. 1. 50.
6 C1 g.200 0.47E-2 0. 1.
7 c2 0.47E-1 0.10E-2 0. 1.
B PHI 0.3 C.0785
ERROR DEF 0.1
SEEK
MINIMIZE
FPRINTOUT 1.
EXIT
B) 'MINUIT' OUTPUT, DIFFERENCE SIGNAL OPTIMIZATION
FCN VALUE CALLS TIME EDM INT.EXT., PARAMETER VALUE Y
0.5968708E+01 214 .00 D.'5E+Q2 1 1 K 0.41116E+00C
2 2 Tauy 0.14085E+00
3 3 Q 0.15961E~01
4 4 Rt 0.27003E+03
5 5 R 2 U.1B741E+02
5] S} 1 O.10Z0BE+DD
7 7 cz 0.88641E-0)
B B PHl 0.23173E~00
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Appendix 8

A) COMPLEX TRANSFER FUNCTION 'LAPLACE'
FOR DIFFERENCE SIGNAL TRANSMISSION WITH OPTIMUM FILTER PARAMETERS
(3 ns RECTANGULAR INPUT)

COMPLEX FUNCTION SPECTR(S)

COMPLEX 5,G,Vv.,Y

DATA T/.03/,70/7.0675/,T1/100./,T2/79.6/.,7T3/.0796/,7T6/.0837/

DATA 2/5%0./,Q/1.6/,R1/210.0/R2/18B.7/,C1/.102/,C2/.066/,TC/2B.78/
DATA TS/3./

Tm— TRIANGULAR INPUT PULSE
SPECTR={(1.~CEXP(~S*TS/2))**2)/(5*5)

----- RECTANGULAR INPUT PULSE
SPECTR=(1.~CEXP(-S5*TS5))/5
SPECTR=SPECTR*(S*T1)*(1+S5*T*Q*Q)
SPECTR=SPECTR/({1.+S*T1)}*(1.+5*T+S*S*xT2T*Q*xQ))
SPECTR=SPECTR*{(1.-2_/(CEXP(CSQRT(S*TC))+CEXP(-CSQRT(S*TC)})}))
SPECTR=SPECTR*S*T2/({1.+S*T2)*(1.+5*T3))
V=R2/(1.+S*R2*(C2)

Y=5%C1/{1.+S*R1*C1)
SPECTR=SPECTR/(2.+Y*(Vv+Z)+Vv/2Z)
SPECTR=SPECTR*CEXP(-CSQRT{(S*T0))
SPECTR=SPECTR*CEXP(S*S*TE6*T6)
SPECTR=SPECTR*CEXP(1.5*5S)

RETURN
END

10. ] RECTANGULAR INPUT PULSE {OPT. 4)

Fig. AB.l1 Time response output for a 3 ns input pulse.
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B) COMPLEX TRANSFER FUNCTION FOR QPTIMUM FILTER PARAMETERS
(3 ns TRIANGULAR INPUT)

COMPLEX FUNCTION SPECTR{S)

COMPLEX S5,.G,V.,Y

DATA T/.03/,70/.0675/,T1/100./,T2/79.6/,73/7.0796/,76/.0037/

DATA Z/50./,Q/1.6/,R1/210.Q/R2/18.7/,CY/7.102/,C2/.066/,TC/2B.78/
DATA TS5/3./

C-—=~~ TRIANGULAR INPUT PULSE
SPECTR=((1.-CEXP(-S*TS$/2))**2)/(5*5)

C-=m== RECTANGULAR INPUT PULSE

C SPECTR=(1.-CEXP({(-S*TS))/S
SPECTR=SPECTR*{S*T1)*[(1+S*T+Q*Q)
SPECTR=SPECTR/ ((1.+S*T1)* (1, +S*T+S5*S*T*T*Q*Q))
SPECTR=SPECTR*{1.-2./(CEXP(CSQRT(S*TC))+CEXP{-CSQRT(S*TC)))}
SPECTR=SPECTR*S*T2/((1.+S*T2}*{1.,+5*T3})
V=R2/{1.+S*R2*{2)
¥Y=5%C1/(1.+S*R1*C1)
SPECTR=SPECTR/(2.+¥Y*(V+2}+v/2)
SPECTR=SPECTR*CEXP(-CSQRT(S$S*T0))
SPECTR=SPECTR*CEXP(S*S*T6*T6)
SPECTR=SPECTR*CEXP(1.5%5)

RETURN
END

10. 1 TRIANGULAR INPUT PULSE (OPT. 4)

Fig. AB.2 Time response output for a 3 ns triangular input pulse.
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