LEP Results

Simon C. Blyth Carnegie Mellon University

On behalf of the ALEPH, DELPHI, L3, OPAL and SLD Collaborations, and the Electroweak Working Group

> http://www.cern.ch/LEPEWWG http://www.cern.ch/LEPHFS

QFTHEP 2001, Moscow, 6-12 September

\sim 12 years running, \sim 1200 papers,...

EP Performance **Radiative Corrections** _EP1 - Z boson parameters leptonic couplings quark couplings LEP1/SLD/CDF - Heavy Flavour oscillations $\Delta m_d, \Delta m_s$ **CKM** constraints LEP2 fermion pair production W⁺W⁻ production W mass ZZ production Triple Boson Couplings, Single W Global Electroweak Fit M_W, M_t tests Constraining M_H Running $\alpha(0 \rightarrow M_7^2)$ **Theory Uncertainty** A^{0,b}_{fb} influence Conclusions

15.5 M hadronic Z, 45k W⁺W⁻

SM Radiative corrections

Boson + fermion loops in propagators:

Modifiy tree-level relation between couplings:

 $\mathsf{G}_{\mathsf{F}} = \frac{\pi \alpha(0)}{\sqrt{2}\mathsf{M}_{\mathsf{W}}^{2}\sin^{2}\theta_{\mathsf{W}}} \frac{1}{1-\Delta \mathsf{r}} \qquad \Delta \mathsf{r} = \Delta \alpha + \Delta \mathsf{r}_{\mathsf{W}}$

 $\Delta \alpha$ absorbed into running of α :

 Δr_{W} leading contributions:

$$\begin{array}{l} \Delta \mathbf{r}^{t} \sim \mathbf{M}_{t}^{2} \\ \Delta \mathbf{r}^{\mathsf{H}} \sim \mathsf{log} \mathbf{M}_{\mathsf{H}} \end{array} \longrightarrow \mathsf{Indirect} \ \mathbf{M}_{t}, \mathbf{M}_{\mathsf{H}} \end{array}$$

LEP1 Z Lineshape

Analysis completed hep-ex/0101027.

Low Higgs mass preferred!

LEP1 τ Polarisation + SLD Asymmetries

-0.4 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 $\cos\theta_{\tau}$

Combination of final LEP1 results:

 $A_{\ell} = 2 \frac{g_{V\ell}/g_{A\ell}}{1 + (g_{V\ell}^2/g_{A\ell}^2)} = 0.1465 \pm 0.0033$

Final SLD result (exploiting polarised beams):

 $A_{lr} \equiv A_{\ell} = 0.1513 \pm 0.0021$

Effective Leptonic Couplings of Z

Low Higgs mass preferred!

b and c quark couplings of the Z

LEP1 b Asymmetry Results

Summer '01 changes in LEP1 $A_{fb}^{0,b} = \frac{3}{4}A_eA_b$: 0.0982 ± 0.0017 \rightarrow 0.0990 ± 0.0017 Analysis improvements from ALEPH, DELPHI

High Higgs mass preferred!

Effective Leptonic Electroweak Mixing Angle

 R_b sensitive to vertex corrections in $Z \rightarrow b\bar{b}$:

Propagator corrections cancel in ratio.

 $B^0 - \overline{B^0}$ Oscillations described by weak interactions of quarks Quark transitions represented by the 3x3 unitary CKM matrix In Wolfenstein parametrization: $V_{CKM}(\bar{\eta}, \bar{\rho}, A, \lambda)$

$$egin{aligned} \mathsf{V}_{\mathsf{CKM}} &= egin{pmatrix} \mathsf{V}_{\mathsf{ud}} & \mathsf{V}_{\mathsf{us}} & \mathsf{V}_{\mathsf{ub}} \ \mathsf{V}_{\mathsf{cd}} & \mathsf{V}_{\mathsf{cs}} & \mathsf{V}_{\mathsf{cb}} \ \mathsf{V}_{\mathsf{td}} & \mathsf{V}_{\mathsf{ts}} & \mathsf{V}_{\mathsf{tb}} \end{pmatrix} &= egin{pmatrix} 1 - rac{\lambda^2}{2} & \lambda & \mathsf{A}\lambda^3(
ho - i\eta) \ -\lambda & 1 - rac{\lambda^2}{2} & \mathsf{A}\lambda^2 \ \mathsf{A}\lambda^2 & 1 \end{pmatrix} &+ \mathcal{O}(\lambda^4) \ \mathsf{A}\lambda^3(1 -
ho - i\eta) & -\mathsf{A}\lambda^2 & 1 \end{pmatrix} \end{aligned}$$

- 1 Unitarity relation: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$
- \rightarrow "unitarity" triangle Conventionally rescaled by $|V_{cd}V_{cb}^*|$:

$P[\mathsf{B}^0_\mathsf{q} \to \mathsf{B}^0_\mathsf{q}(\bar{\mathsf{B}^0_\mathsf{q}})] = \frac{1}{2} \mathrm{e}^{-\mathrm{t}/\tau_\mathsf{q}} (1 \pm \cos \Delta \mathsf{m}_\mathsf{q} \mathsf{t})$

Production & decay tags + decay proper time

LEP Heavy Flavour - Δm_s combined limits

$P[\mathsf{B}^0_{\mathsf{S}} \to \mathsf{B}^0_{\mathsf{S}}(\bar{\mathsf{B}^0_{\mathsf{S}}})] = \frac{1}{2} \mathrm{e}^{-\mathrm{t}/\tau_{\mathsf{S}}} (1 \pm \mathsf{A} \cos \Delta \mathsf{m}_{\mathsf{S}} \mathsf{t})$

Wolfenstein parametrization: $V_{CKM}(\bar{\eta}, \bar{\rho}, A, \lambda)$

Measurements	Constrain Unitarity Triangle		
$b \to u, b \to c$	$ V_{ub}/V_{cb} $	$ar{ ho}^2+ar{\eta}^2$	
$\Delta {\sf m}_{\sf d}$	$ V_{td} ^2 f_{B_d}^2 B_{B_d} f(m_t)$	$(1-ar ho)^2+ar\eta^2$	
$rac{\Delta m_{d}}{\Delta m_{S}}$	$ rac{V_{td}}{V_{ts}} ^2rac{f_{B_d}^2B_{B_d}}{f_{B_s}^2B_{B_s}}$	$(1-ar ho)^2+ar\eta^2$	
ϵ_{K}	$f(A, ar{\eta}, ar{ ho}, B_{K})$	$\propto ar\eta(1-ar ho)$	

Indirect (68%,95%) CL contours compared to direct $\sin 2\beta = 0.79 \pm 0.11$ (BABAR+BELLE).

Summer 2001 Direct: $\sin 2\beta = 0.79 \pm 0.11$ a combination of: BABAR $0.59 \pm 0.14 \pm 0.05$ BELLE $0.99 \pm 0.14 \pm 0.06$

As functions of \sqrt{s} :

 $\langle \sigma_{had}(\sqrt{s}) \rangle$ 1.8 sigma above SM expectation

EP2 HF: R{q} $\equiv \sigma_{qq}/\sigma_{had}$ and asymmetries

One-sided 95% CL lower limits on Λ^{\pm} [TeV]

3 diagrams at Born level (CC03):

LEP2 W⁺W⁻ events

 $\sim 12000~{
m W^+W^-}$ events per experiment

LEP2 W⁺W⁻ Cross-Section

LEP2 W Mass from qqqq + qq $\ell \nu$

LEP2 Combined Preliminary M_W

World Average W-Boson Mass

May cause shifts in fitted M_W

LEP2 ZZ production

Final States: $qqqq, qq\nu\nu, qq\ell\ell, \ell\ell\ell\ell$

Potential background to HZ production

Look for anomalous neutral couplings $ZZZ, ZZ\gamma - none found!$

LEP2 Triple Boson Couplings WWV (V = Z/γ) Up to 14 - In SM only 3: $(\kappa_V, g_1^V, \lambda_V) = (1, 1, 0)$ e e ν e W W γ**/Ζ** W γ W⁺ e⁺ w e⁺ e⁺ Main information from W^+W^- : (θ_1, ϕ_1) total cross-section angular distributions $\theta_{\rm W}$ e⁻ polarization \mathbf{f}_3 (θ_2, ϕ_2) New generator $\mathcal{O}(\alpha)$ corrections ~ precis Preliminary LEP 1.5 $\sigma(e^+e^- \rightarrow evW) \ [pb]$ ±5.0% uncertainty Single-W WPHACT IFL/ $\alpha(t)$ grc4f 1 0.5 $W \rightarrow f\bar{f}$ Less precise 0₁₆₀ 170 180 190 200 210 32 E_{cm} [GeV]

Consistency test: Indirect $\leftrightarrow \rightarrow$ Direct M_W, M_t

Provides glimpse of M_H

Direct and indirect ellipses in M_t , M_W plane.

Low Higgs mass preferred!

W-Boson and Top-Quark Mass

Successful predictions of heavy masses

LEP2 W-Boson Mass

Constraining Higgs-Boson Mass

Running $\alpha(0)$ to $\alpha(M_7^2)$

Cross-sections, asymmetries, ... with: TOPAZ0 4.4 (2001-02-22): G.Passarino et al. ZFITTER 6.36 (2001-06-21): D.Bardin et al.

Corrections include:

initial state QED, including pairs	$\mathcal{O}(\alpha^2)$ + leading $\mathcal{O}(\alpha^3)$
final state QED, QED initial-final	$\mathcal{O}(lpha)$
final state QCD	${\cal O}(lpha_{ m S}^3)$
mixed QED/QCD final state	$\mathcal{O}(\alpha \alpha_{S})$
1-loop EW	complete

And leading 2-loop EW up to:

 $\mathcal{O}(\alpha\alpha_{\mathsf{S}},\alpha\alpha_{\mathsf{S}}^2,{\mathsf{G}_{\mathsf{F}}}^2{\mathsf{M}_{\mathsf{t}}}^4,{\mathsf{G}_{\mathsf{F}}}^2{\mathsf{M}_{\mathsf{t}}}^4{\mathsf{M}_{\mathsf{Z}}}^2,{\mathsf{G}_{\mathsf{F}}}{\mathsf{M}_{\mathsf{t}}}^2\alpha_{\mathsf{S}},{\mathsf{G}_{\mathsf{F}}}{\mathsf{M}_{\mathsf{t}}}^2\alpha_{\mathsf{S}}^2,)$

NEW: Complete fermionic two-loop M_W: Freitas, Hollik, Walter, Weiglein, PLB 495 (2000) 338 Full shift taken as new uncertainty Uncritical for M_W but controversial problem for: $\sin^2 \theta_{eff}^{lept} = \kappa_W \cdot \left(1 - \frac{M_W^2}{M_Z^2}\right)$ partial cancellation expected

> Need equivalent calculations for: Partial Z decay widths Effective electroweak mixing angle

Global Electroweak Fit

Summer 2001

	Measurement	Pull	Pull
$\Delta \alpha_{\rm had}^{(5)}(m_z)$	0.02761 ± 0.00036	35	
m ₇ [GeV]	91.1875 ± 0.0021	.03	
Γ _z [GeV]	2.4952 ± 0.0023	48	-
$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	1.60	
R _I	20.767 ± 0.025	1.11	
A ^{0,I} _{fb}	0.01714 ± 0.00095	.69	-
A _I (P _τ)	0.1465 ± 0.0033	54	-
R _b	0.21646 ± 0.00065	1.12	_
R _c	0.1719 ± 0.0031	12	
A ^{0,b} _{fb}	0.0990 ± 0.0017	-2.90	
A ^{0,c} _{fb}	0.0685 ± 0.0034	-1.71	
A _b	0.922 ± 0.020	64	-
A _c	0.670 ± 0.026	.06	
A _l (SLD)	0.1513 ± 0.0021	1.47	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	.86	-
$m_W^{(LEP)}$ [GeV]	80.450 ± 0.039	1.32	
m _t [GeV]	174.3 ± 5.1	30	•
$m_{W}^{(TEV)}$ [GeV]	80.454 ± 0.060	.93	-
sin ² θ _W (νN)	0.2255 ± 0.0021	1.22	
Q _W (Cs)	-72.50 ± 0.70	.56	-
			-3 -2 -1 0 1 2 3 $(\mathcal{O}_{\text{meas}} - \mathcal{O}_{\text{fit}})/\sigma_{\text{meas}}$

 $\chi^2/dof = 22.9/15$ (8.6%)

Excluding $A_{fb}^{0,b}$ measurement from fit

M_H prediction is beneath direct limit

LEP Measurements consistent

Preliminary

- $0.0997 \pm 0.0040 \pm 0.0023$
- $0.1041 \pm 0.0057 \pm 0.0022$
- $0.0983 \pm 0.0065 \pm 0.0033$
- $0.0958 \pm 0.0043 \pm 0.0021$
- $0.1026 \pm 0.0027 \pm 0.0012$
- $0.1004 \pm 0.0047 \pm 0.0014$
- $0.0995 \pm 0.0036 \pm 0.0021$
- $0.0949 \pm 0.0101 \pm 0.0055$
- $0.1007 \pm 0.0055 \pm 0.0040$

$< A_{FB}^{0,b\overline{b}} > = 0.0990 \pm 0.0017$

Including Lepton + Jet-Charge results.

Statistics 0.00156 Systematic 0.00073 Uncorrelated 0.00061 Correlated 0.00039 QCD correction 0.00030

No reason to consider $A_{fb}^{0,b}$ unreliable.

LEP+SLD+TEVATRON+...:

Enormous Electroweak understanding improvements.

Due to a wealth of precision measurements:

	Before LEP	Expected	Achieved
Mz	0.16 GeV	20-50 MeV	2.1 MeV
Mw	0.36 GeV	100 MeV	39 MeV
$N_{ u}$	0.9	0.3	0.008
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}$	0.006	-	0.00017

and theoretical advances.

MSM radiative corrections verified: Successful M_t and M_W prediction

Most measurements agree with expectations: MSM fit probability: 8.6% Largest deviation in A^{0,b}_{fb}: 2.9 sigma

 $\begin{array}{l} \mbox{Light Higgs: } M_{H} < 196 \mbox{ GeV (}95\% \mbox{ CL)} \\ \mbox{Improved measurements of } M_{W}, \ M_{t}, \ \Delta \alpha_{had}^{(5)} \\ \mbox{and improved theoretical predictions needed.} \end{array}$

And we need M_H directly too!

Enormous Improvements, $(g_{V\ell}, g_{A\ell})$

Before LEP:

After LEP:

 $g_{V\ell} = -0.03783 \pm 0.00041$ $g_{A\ell} = -0.50123 \pm 0.00026$