Bose-Einstein Correlations

The legacy of LEP and SLC

Siena 8-11 October 2001

María Chamizo Université de Genève On behalf of the LEP collaborations

Introduction

Identical bosons obey Bose-Einstein statistics

- Constructive interference between identical bosons in multi-hadronic final states
- Enhancement of number of identical bosons over number of non identical bosons close in phase space
- First observed in like-sign charged pion pairs in pp annihilations

BEC may influence the properties of multi-hadronic final states: $LEPI:ee \rightarrow Z \rightarrow qq \rightarrow hadrons$ $LEPII:ee \rightarrow WW \rightarrow qqqq \rightarrow hadrons$

Siena October 2001

Bose Einstein Correlations (BEC)

Studied as a function of O:

$$Q^2 = -(p_1 - p_2)^2$$
 $p_{1,2} = 4 - momentum$

Using the two-particle correlation function

$$\mathbf{R}(\mathbf{Q}) = \frac{\boldsymbol{r}(\mathbf{Q})}{\boldsymbol{r}_0(\mathbf{Q})} \qquad \boldsymbol{r}(\mathbf{p}_1, \mathbf{p}_2) = \frac{1}{\mathbf{N}_{\text{ev}}} \frac{\mathrm{dn}_{\text{pairs}}}{\mathrm{dQ}}$$

R(Q) = 1

In the absence of BEC

 ρ : two particle density

 $\rho_0 = \rho_{no BE}$ (reference sample)

- Unlike sign charged particle pairs Double ratio: $R_{data}/R_{MC no BE}$
- 'mixed events'
- ✤ MC without BFC

LEPI

$Z \rightarrow qq \rightarrow hadrons$

Siena October 2001

 $\pi^{\pm}\pi^{\pm}$

 $\pi^0\pi^0$

 $r_{\pm\pm} - r_{00} = 0.150 \pm 0.075(st) \pm 0.068(sys)$ [fm]

same reference sample for $\pi^0\pi^0$ and $\pi^{\pm}\,\pi^{\pm}$

indication of smaller radius for the neutral pion source

2-Dim analysis of the source

	r ^/ r //	Method
DELPHI	$0.62 \pm 0.02 \pm 0.05$	Mixed events
OPAL	$0.73 \pm 0.02 \pm 0.07$	Unlike-Charge
L3	$0.81 \ \pm 0.02 \substack{+0.03 \\ -0.19}$	Mixed events

- evidence for the elongation of the pion source
- implications for modeling of BEC in hadronic final states

Three particle correlations

OPAL

1.5

 Q_3 (GeV)

1

Conclusions from LEPI analyses

- Bose-Einstein Correlations are observed in hadronic Z decays
- > Indication of smaller radius for $\pi^0\pi^0$ than $\pi^{\pm}\pi^{\pm}$
- Evidence for the elongation of the BEC source
- Three particle correlations also observed
 - Other analyses done at LEPI
 - Dependence of source size on hadron mass
 - $\hfill\square$ BEC in K $^{\pm}$ K $^{\pm}$ and $K^0_s K^0_s$
 - □ Multiplicity dependence of BEC

LEPII

WW->qqqq

BEC in e⁺e⁻ →WW

➢ BEC inside W in hadronic W decays (inter-W)

BEC between two W's in fully hadronic decays (intra-W)

Distance between the two W decay vertices: 0.1 fm
Space-time overlap

≻Hadronization scale: 0.5-1 fm

If intra-W BEC exist:

momentum transfer between the two W's can affect the W mass measurement in qqqq channel

> Systematic error on the W mass $\Delta M_{W}^{BEC} = 20-67 MeV$ Summer 2001
> A,D,L,O

BE Models

- Models of Sjöstrand/Lönnblad (LUBOEI)
 - 2 particle correlations introduced artificially by reshuffling momenta of final hadrons
 - E/P transfer between Ws to ensure global E/P conservation
 - Models are tuned using hadronic Z decays
- Reweighting models
 - conserve E/P and include QM calculations
 - But... very difficult to implementation (negative and large weights) not used for the time being.

Intra W correlations

Inter-W BEC

Analysis à la Chekanov, De Wolf, Kittel (Eur. Phys. J. C6 (1999) 403)

'WW' event

- Experimentally robust (data compared with data)
- Model independent (except for background subtraction)

ABSOLUTE MEASUREMENT OF INTER-W CORRELATIONS

balance momenta

Siena October 2001

Inter W BEC

Strength of the inter W BEC

Inter W BEC

NO correlations between different Ws observed

OPAL analysis with mixing method in progress

Siena October 2001

Conclusions from LEPII analyses

➢ BEC exist inside W's

Similar effect in Z and W decays

No evidence for the existence of inter-W correlations

 \succ Not taken into account yet for $\Delta M_{\rm W}^{\rm BEC}$