W physics at LEP

María Chamizo

University of Geneva

On behalf of the LEP collaborations

The LEP scan (1989-2000)

> LEPI(1989-1995):
 > √s~91 GeV
 > Z physics
 > LEPII(1996-2000):
 > √s~160-209 GeV
 > W physics

WW threshold @ ~160 GeV

At LEPI

Indirect measurement of the W mass with an accuracy ~25 MeV

$$\mathbf{M}_{\mathbf{W}}^{2} \left(1 - \frac{\mathbf{M}_{\mathbf{W}}^{2}}{\mathbf{M}_{\mathbf{Z}}^{2}} \right) = \frac{\pi \alpha}{\sqrt{2} \mathbf{G}_{\mu}} (1 + \Delta \mathbf{r}_{\mathbf{w}}(\mathbf{m}_{t}, \mathbf{m}_{\mathbf{H}}) + \Delta \alpha_{\mathbf{em}})$$

 First evidence of contribution of gaugeboson loops to gauge-boson self energies
 Indirect confirmation of the existence of triple gauge boson couplings (TGC's)

At LEPII

ECFA WORKSHOP ON LEP 200

Aachen, Federal Republic of Germany 29 September – 1 October 1986

LEP200 WORKSHOP SUMMARY

D.H. Perkins,

University of Oxford, Nuclear Physics Laboratory, Oxford.

4. W PAIR PRODUCTION AND THE W MASS For an integrated luminosity of 500pb^{-1} we expe for $\sigma = \sigma_{\text{max}}$, 5–10,000 events for each of the 4 LEP experiments.

This constitutes the "final check" of the EWI theory via:

 $e^+e^- \rightarrow W^+W^-$; checking the gauge vertices. precise M_{W^\pm} ; radiative corrections sensitive to M_H etc. measurement of σ_L and σ_T for the W from production angular distribution, detection of anomalies in electric and magnetic moments.

study of $W \to \ell \nu$, $Q\bar{Q}$; precise measurements of KM matrix element, and of lepton universality.

 ΔM_{w} =60MeV

Luminosity per experiment

Total integrated luminosity from 1996-2000:

$$\int \mathbf{L} d\mathbf{t} \approx 700 \mathbf{p} \mathbf{b}^{-1} / \exp (\mathbf{e} \mathbf{x} \mathbf{p})$$

W production and selection

W production at LEP

Ws are pair produced

Topologies

WW events

qqqq selection

Ivqq selection

María Chamizo-University of Geneva

Ivlv selection

Branching Ratios Cross sections

W branching ratios

reliminary W Leptonic Branching Ratios

$$\mathbf{B}_{\mu} / \mathbf{B}_{e} = 1.000 \pm 0.021$$

 $\mathbf{B}_{\tau} / \mathbf{B}_{e} = 1.052 \pm 0.029$
 $\mathbf{B}_{\tau} / \mathbf{B}_{\mu} = 1.052 \pm 0.028$

> W decay into hadrons

Lepton universality assumed

 $\mathbf{B}(\mathbf{W} \rightarrow \mathbf{q} \,\overline{\mathbf{q}}) = 67.92 \pm 0.27\%$

SM prediction 67.51%

HS02-Herlany

María Chamizo-University of Geneva

Vcs CKM matrix element

reliminary SM relation between hadronic branching ratio and **CKM matrix elements:**

 $> V_{cs}$: the least known CKM matrix element Using experimental values of the other CKM elements: $|\mathbf{V}_{cs}| = 0.996 \pm 0.013$ Best measurement of Vcs

HS02-Herlany

WW cross section

Clear evidence of SU(2)xU(1) gauge structure

Destructive interaction of WWZ and \gammaWW diagrams

WW cross section

WWy cross section

Single W

ZZ production

Zee production

Gauge Couplings

Triple Gauge Couplings (TGC)

> Accessible in single-γ, single-W, and W-pair production

> Gauge invariance \rightarrow only $g_1^{\mathbf{Z}}, \kappa_{\gamma}, \lambda_{\gamma}$ are free

Triple Gauge Couplings (TGC)

Related to the properties of the W boson Magnetic dipole moment

$$\mu_{\mathbf{W}} = \frac{\mathbf{e}}{2\mathbf{M}_{\mathbf{W}}^2} (1 + \kappa_{\gamma} + \lambda_{\gamma})$$

> Electric quadrupole moment

$$\mathbf{q}_{\mathbf{W}} = -\frac{\mathbf{e}}{\mathbf{M}_{\mathbf{W}}^2} (\kappa_{\gamma} - \lambda_{\gamma})$$

W W → 4T sensitive
to:
$$\kappa_{\gamma}$$
 λ_{γ} g_1^Z
Single W, single γ
 κ_{γ}

> In the Standard Model:

$$\kappa_{\gamma} = 1 \qquad \lambda_{\gamma} = 0 \qquad \mathbf{g}_{1}^{\mathbf{Z}} = 1$$

. . .

TGCs from W pairs

TGCs: 1 dimensional fit

- **1** parameter fitted
- The others fixed to their SM value
- \succ Fit to qqqq, qqlv,lvlv, single W, single γ
- Main correlated systematic from $O(\alpha)$ corrections $\mathbf{g}_1^{\mathbf{Z}}$ **0.015 on** λ_{γ} ▶ 0.039 on \mathcal{K}_{γ}

María Chamizo-University of Geneva

0.1

2y

TGCs: 3 Dimensional fits

> 2D contours when the 3rd parameter is at minimum

SM

María Chamizo-University of Geneva

Quartic Gauge Couplings(QGC)

Predicted by SM

Negligible at LEPII energies

Deviations from SM

- > Increase of WWγ cross section
- Modify the energy spectrum and rate of γ production

New physics lagrangian

$$\mathcal{L}_{0} = -\frac{e^{2}}{16} \frac{a_{0}^{W,Z}}{\Lambda^{2}} F^{\mu\nu} F_{\mu\nu} \vec{W}^{\alpha} \vec{W}_{\alpha}$$
$$\mathcal{L}_{c} = -\frac{e^{2}}{16} \frac{a_{c}^{W,Z}}{\Lambda^{2}} F^{\mu\alpha} F_{\mu\beta} \vec{W}^{\beta} \vec{W}_{\alpha}$$
$$\mathcal{L}_{n} = -\frac{e^{2}}{16} \frac{a_{n}}{\Lambda^{2}} \vec{W}_{\mu\alpha} \cdot (\vec{W}_{\nu} \times \vec{W}^{\alpha}) F^{\mu\nu}$$
$$\Lambda \text{ energy scale}$$

Quartic Gauge Couplings(QGC)

W polarization

W mass and width

M_w from direct reconstruction

> Estimator of the W mass/event

$$I_{qq}^{inv}, M_{lv}^{inv}, < M_{W} >,...$$

- Constrained fit to improve resolution
 - **E, P conservation**
 - > Mw1=Mw2
- > 3 solutions for qqqq

María Chamizo-University of Geneva

<u>Mass Extraction – 3 Methods</u>

Monte Carlo Reweighting technique (ALO)

Compare data distributions to Monte Carlo distributions reweighted to different M_w

Estimators used : < M_w>, M_{qq}^{inv}, σ_{mw},...(n-dimensional reweighting)

- Convolution technique (D,O for cross check)
 Build event likelihood:
 PDF:=Breit-Wigner
 ISR
 phase space
- > Breit-Wigner method (OALD for cross check)
 > Fit analytical Breit-Wigner function to data distributions

Systematic error on Mw(MeV)

- Total statistical error:
 > 30 MeV
- Reduced weight of the qqqq channel :
 9%
- Large effect from Final State Interactions

source	qqln	9999	Combined
ISR/FSR	8	8	8
Hadronization	19	18	18
Detector	12	8	11
LEP beam energy	17	17	17
Colour Reconnection	-	90	9
Bose-Einstein	-	35	3
Other	4	5	4
Total Systematic	29	101	30
Statistical	33	36	30
Total	44	107	42

María Chamizo-University of Geneva

> LEP2 aim : $\Delta E_{LEP} / E_{LEP} \approx 1.10^{-4}$

HS02-Herlany

María Chamizo-University of Geneva

Final State Interactions

- > Ws decay distance ~0.1fm
- Hadronization scale ~1fm

Cross-talks between the two hadronic systems ?

- Colour Reconnection
- Bose Einstein Correlations
 between particles from different
 Ws

Possible mass shift: Minv(W) ≠ Minv(jet,jet)

Colour Reconnection

- Colour flow pattern is modified
- Normal scenario CR scenario

- $W \rightarrow qq$ > Interaction between decay
- products (change of colour flow)
- Final hadronic color singlets do not correspond to the initial W bosons

- Bias on the reconstructed W mass by momentum transfer between the two Ws
 - CR described by phenomenological models.
 - Try to test the validity of them using sensitive analysis to CR
 - Develop a mass analysis less sensitive to CR

Colour Reconnection

Particle Flow Method

CR from particle Flow

CR from ΔM_w

- > Cut in particle momentum
- Cut in cone size
- $> \Delta Mw$ provides a measurement of CR

 $\Delta M_W = M_W(std) - M_W(Pcut, cone)$

- DELPHIs largest sensitivity to CR :
 Cone analysis:
 - Cone analysis: R_{cone}=0.5 rad

 $\Delta M_{W}(std, R_{cone} = 0.5rad) = 36 \pm 36 \pm 25 MeV/c^{2}$

 Compare with model prediction for each κ ...

CR from ΔM_w

Other LEP experiments working on it

María Chamizo-University of Geneva

Bose-Einstein Correlations

- Enhanced production of identical bosons close in phase space
- > BEC measured at LEPI

Effect similar in Z⁰ and W decay ?

> BE between Ws?

> Systematic effect on W mass (summer 2002)

Δ Mw(MeV)	BEall-BEinside
ALEPH	33±5
DELPHI	-
L3	30±8
OPAL	26±5

Bose-Einstein Effect Inside W

Enhancement of identical bosons at low Q

> 2-particle density

> 2-particle momentum transfer_____

$$Q = \sqrt{-(p_1 - p_2)^2}$$

Correlation function

$$R_2(Q) = \rho(data) / \rho(MC)_{noBE}$$

Correlations are equal in light-quark Z decays and inside Ws

Inter-W BEC

$$\Delta \rho = \rho^{WW \to 4q} - 2\rho^{W \to 2q} - 2\rho^{WW}_{mix}$$

$$D = \rho^{WW \to 4q} / (2\rho^{W \to 2q} + 2\rho^{WW}_{mix})$$

$$\Delta \rho = 0, D = 1$$
in the absence of inter BEC
hadronic parts of two lvqq evts
rotate/boost to balance
momenta
mix => uncorrelated
WW' event

- Experimentally robust (data compared with data)
- Model independent (except for background subtraction) **ABSOLUTE MEASUREMENT OF INTER-W CORRELATIONS**

Inter-W BEC

Results

Mw(qqqq)-Mw(qqIn)=9±44 MeV without FSI error

SM comparison

DATA favours small Higgs masses

Conclusions

- > LEPII met the expectations and exceeded them
- > High precision test of the SM performed
- Many properties of the W boson measured with high accuracy:
 - \succ Cross sections and branching ratios $~\sim 1\%$
 - > Triple gauge couplings 1-5%
 - > W polarization
 - > W mass (5×10⁻⁴) and W width (~4%)
- > Data favours low values of Higgs mass
- > Final analysis still going on...

Mw and Γw

<u>M_w from σ_{ww} at threshold</u>

