ALEPH Status Report

LEPC Mar 7 2000

P J Dornan

Imperial College, London

Shutdown Operations LEP1 Analyses Higgs Searches SUSY Searches 2-fermion Production WW Production

Not a great deal Remove short from TPC Examine 'LEP1' Cryogenics at Pit 4 No problem found

ALEPH is ready for the new data

Successful TPC Repair

Short removed from inside of TPC

LEPC - 7 March 2000

P J Dornan

Luminosity Used

Year – Nominal Energy	Energy	Luminosity
1997 - 183	182.66	56.81 ±0.11
1998 - 189	188.62	$\textbf{174.20} \pm \textbf{0.20}$
1999 - 192	191.58	$\textbf{28.93} \pm \textbf{0.08}$
1999 - 196	195.52	$\textbf{79.86} \pm \textbf{0.16}$
1999 - 200	199.52	$\textbf{82.28} \pm \textbf{0.15}$
1999 - 202	201.63	$\textbf{41.89} \pm \textbf{0.11}$

1999 was another excellent year for LEP and ALEPH

Congratulations to LEP

LEP1 Results

B Fragmentation Function

Latest B_s Mass Difference, DM_s

Aim for improvement at high frequency

Require good proper time reconstruction

Two New Analyses

 Repeat of the D_s-lepton analysis

Efficiency 20-30% better

- but better understanding of backgrounds limits the benefit

- Fully reconstructed B_s w
 - New Analysis 20 Bs candidates above a background of 30

Combination yields benefit

Latest ALEPH Lower Limit 9.8 ps⁻¹ - Sensitivity 11.2 ps⁻¹

B_s Width difference, DG_s

$B_s \rightarrow D_s^{(*)+} D_s^{(*)-}$ is mostly CP even (>95 %)

Other defined CP modes have a BR < 1% J/ $\psi \phi$, J/ $\psi \eta$, J/ $\psi \pi$, $\psi(2S)\phi$, $\pi\pi$, $\eta\pi$,

Select via $\phi\phi$ in same hemisphere

 $\Delta\Gamma_{\rm s}$ using two methods

- τ (B_s)_{short} from lifetime fit
- $\Delta\Gamma$ from B(D_sD_s)

B_s Width difference, DG_s

Lifetime

 $\tau_{s}(short) = 1.27 \pm 0.33_{stat} \pm 0.07_{syst} \text{ ps}$ gives Probability density 00 60 $\Delta\Gamma/\Gamma = (22^{+38}_{-51})\%$ **Branching Ratio** $Br(Bs(short) \rightarrow D_s D_s) = 23 \pm 10_{stat}$ 68% C.L. region gives 95% C.L. region $\Delta\Gamma/\Gamma = (26^{+30}_{-15} \ -9)\%$ 99% C.L. region 0.002 **Combining these** $\Delta\Gamma/\Gamma = (25^{+21}_{-14})\%$ 0__2 0.5 1 1.5 -1.5 -1 -0.5 0 2 $\Delta \Gamma_{\rm s} / \Gamma_{\rm s}$

Higgs Searches

Online Analysis

Run during 1999 Based on 189 GeV analysis Frozen during the run Results presented at November LEPC M_H > 105.6 at 95% CL

LEPC - 7 March 2000

Current Higgs Analyses

Two Mainly Independent streams NN and Cuts

	NN -	Cuts -
	Analysis	Analysis
4 –jet	NN	Cuts
Ηνν	NN	Cuts
HII	Cuts	Cuts
Tau channels	NN	NN

Changes since November

1999 data reprocessed Analyses improved use of kinematic fit in 4 jet channel different treatment of hZ - hA overlap Analyses re-optimised for energy and luminosity taken in 1999

ZZ Cross Section

Lower than prediction between 192 and 202 GeV

From the NN Analyses 189 - 202 GeV data Limits at 95% CL

Observed 107.7 GeV/c² Expected 106.8 GeV/c²

LEPC - 7 March 2000

SM Higgs Candidates NN Analysis

SM Higgs Candidates Cuts Analysis

192 - 202 GeV Data

Observed 105.1 GeV/c²

Expected 105.7 GeV/c²

Combine hZ searches with hA -> bbbb Analyses

tan β excluded from 0.8 to 1.9 (for M_{top} = 175 GeV, m_{SUSY} = 1 TeV

Charged Higgs

Assume decay 100% to $\tau\nu,$ cs **3 Analyses**

->

 $H^+H^- \rightarrow cscs channel$

M(H⁺) Lower limit = 77.7 GeV/c²

Exotic Higgs Decays

SUSY Searches

Sleptons in the MSSM

192 – 202 GeV										
	Selectrons Acoplanar e	Selectrons Single e	Smuons Acoplanar μ	Staus Acoplanar τ						
Number. of Candidates	42	22	39	46						
Expected Background	48.1	34.2	43.4	34.2						
95% Lower Limits for $\Delta m > 10$ GeV	92	-	85	68 (worst mixing)						

192 – 202 GeV										
	$t \rightarrow c C$	$t \rightarrow b \ell n$	$b \rightarrow b$ C	$q \rightarrow q$ C						
Number. of Candidates	10	5	2							
Expected Background	8.4	3.1	2.7							
Lower Limit GeV/c ²	87 (6 < Δ M < 40)	88 (ΔM > 10)	91 (ΔM > 8)	97 (ΔM > 6)						

23

Stop at Low DM

LEPC - 7 March 2000

24

Charginos

Charginos at or above kinematic limit

Lightest Neutralino - LSP

For $M_0 < 500 \text{ GeV/c}^2$

•Scan SUSY space

7 points out of 1500 not excluded with $M_0 \sim 150 \text{ GeV/c}^2$ Lowest has $M(\chi) = 35.4 \text{ GeV/c}^2$ Estimate $M(\chi) > 35 \text{ GeV/c}^2$

•Use Higgs Limit

LSP using Higgs limits

Assume slepton-squark unification

$$\begin{split} \mathbf{M}_{\mathrm{top}} &= \mathbf{175} \; \mathbf{GeV/c^2} \\ \mathbf{M}_0 &< \mathbf{1} \; \mathbf{TeV} \\ \mathbf{No} \; \; h \rightarrow tt \quad \mathbf{decays} \\ & \quad (\mathbf{OK} \; \text{with low} \; \Delta \mathbf{m} \; \mathbf{stop} \; \mathbf{results}) \end{split}$$

Limit

M(χ) > 38 GeV/c² (All M₀)

Reached at high tan β

For $tan\beta < 3$

 $M(\chi) > 45 \text{ GeV/c}^2 (All M_0)$

Single & Double Photons

All in very good agreement with SM predictions

No evidence for MSSM neutralinos, GMSB gravitinos, TeV scale quantum gravity gravitons, eeγγ contact interactions, *t*-channel excited electrons

'Normal' searches for pair produced states updated

New Analysis - Single sneutrino each

Look for $\mu\mu e$

$e^+e^- \rightarrow ff(\gamma)$

2-fermion Production

Measurement Accuracy - and predictions now at the few % level

Lepton Asymmetry

No deviations from Standard model

Event Shapes & as

Excellent Agreement with predictions from PYTHIA, HERWIG and ARIADNE

 $\boldsymbol{\alpha}_{\!s}$ v. $\boldsymbol{E}_{\text{CM}}$

W Physics

Single W Production

 $e^+e^- \rightarrow Wev$

Cross section relative to SM

 $R = 0.94 \pm 0.14_{stat} \pm 0.09_{syst} \pm 0.10_{th}$

WW Cross Section

At 189 GeV ALEPH had a lower cross section than GENTLE prediction Also low 192 - 202 GeV New Calculations yield cross section 2-3% lower than GENTLE

WW Cross Sections & BR

Energy GeV	Cross section pb	Branching Ratios %
172	11.71 + 1.23 + 0.28	$B(W \rightarrow ev) = 11.26 \pm 0.36$
183	$15.57 \pm 0.62 \pm 0.29$	$B(W \rightarrow \mu v) = 10.99 \pm 0.34$
189	$15.71 \pm 0.34 \pm 0.18$	$B(W \to \tau v) = 10.63 \pm 0.45$
192	17.23 ± 0.89 ± 0.18	
196	17.00 ± 0.54 ± 0.18	$B(W \rightarrow qq) = 67.09 \pm 0.56$
200	16.98 ± 0.53 ± 0.18	
202	$16.16 \pm 0.74 \pm 0.18$	
		$ V_{cs} = 0.956 \pm 0.021 \pm 0.015$

Triple Gauge couplings

3 CP Conserving TGC's

$$\Delta g_1^{\rm Z}, \ \Delta \kappa_{\gamma}, \ \lambda_{\gamma}$$

16 C, P or CP Non-Conserving TGC's Re and Imag parts of $g_4^{\gamma}, g_5^{\gamma}, \widetilde{\kappa}_{\gamma}, \widetilde{\lambda}_{\gamma}, g_4^Z, g_5^Z, \widetilde{\kappa}_Z, \widetilde{\lambda}_Z$

Standard Couplings

1, 2 and 3 parameter fits at 183 and 189 GeV

1 parameter fits for 183 - 202 GeV

C, P or CP violating couplings 1 parameter fits for 183 - 202 GeV Uses WW ->Ivqq, qqqq, IvIv, single W and single γ

Uses WW ->Ivqq from 192 - 202 GeV

Uses WW ->Ivqq from 183 - 202 GeV

LEPC - 7 March 2000

3-Parameter Fit for 'Standard' Couplings

Title: /afs/cern.ch/user/j/jezeques/public/coupling2/make_ Creator: HIGZ Version 1.23/09 Preview: This EPS picture was not saved with a preview included in it.	183 - 189 GeV
Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.	All 3 Couplings free to vary
	Combines WW results with single W and single γ
	$\Delta g_1^Z = 0.013^{+0.133}_{-0.134}$
	$\Delta k_{g} = 0.043_{-0.222}^{+0.234}$
	$I_g = 0.023^{+0.151}_{-0.149}$
	1 σ errors

183 - 202 GeV

Current overall ALEPH Values

$$\Delta g_1^Z = 0.003^{+0.048}_{-0.047}$$
$$\Delta k_g = 0.001^{+0.108}_{-0.103}$$
$$l_g = 0.004^{+0.045}_{-0.044}$$

 1σ errors

C,P or CP violating couplings, 183 - 202 GeV

LEPC - 7 March 2000

C, P or CP Non-Conserving Couplings

ALEPH Preliminary

183-202 GeV Data (468.32 pb⁻¹)

	014±.097	.001 ± .040	009 ± .041	112 ± .156	.145 ±.120	034 ± .093	.062 ±.073	$.106 \pm .233$.243 ± .326	.095 ±.159	.126 ± .206	.029 ± .089	013 ± .070	011 ± .059	.014 ± .047	.425 ± .195	061 ± .369	.240±.136	015 ±.225	
-	- - -	•	•	Ŧ	Ŧ	Ŧ	重	₽	₽	Ŧ	₽	₹	₫	₫	9	Ŧ	ŀ	Ŧ		-1 -0.5 0 0.5 1
	$Re(\kappa_{\gamma})$	$\operatorname{Re}(\lambda_{\gamma})$	Re(g ^z ₁)	$Re(\tilde{\kappa}_{\gamma})$	$Re(\tilde{\lambda}_{\gamma})$	$Re(\tilde{\kappa}_Z)$	$Re(\tilde{\lambda}_Z)$	Re(g ¹ / ₄)	Re(g ^r ₅)	Re(g ^Z)	Re(g5/5)	$\text{Im}(\tilde{\kappa}_{\gamma})$	$\text{Im}(\tilde{\lambda}_{\gamma})$	$Im(\vec{k}_Z)$	$Im(\tilde{\lambda}_Z)$	Im(g ^v _4)	lm(g ^r _{5})	$Im(g_4^Z)$	lm(g ^Z)	
с О	+ +	+ +	+ +	+	+	+	+	+	;	+	;	+	+	+	+	+	;	+	;	

Statistical Accuracy now approaching present understanding of the systematics

- but this should improve
- present estimates believed to be 'conservative'

Main sources of systematics (model dependent)

Fragmentation - All channels 30 MeV for qqqq channel, 40 for lvqq Final State Interactions - four jet channel Colour Reconnection 30 for qqqq Bose-Einstein Correlations 30 for qqqq

Interaction between like-sign pions from the two W's

Examined by 2 procedures

- Tune models on the Z data
 Verify on lvqq
 Compare model prediction on qqqq data with/without
 - correlations between W's
- Compare like-sign pairs in qqqq events with those from mixed events from lvqq final states Normalise with similar Monte Carlo ratio

Bose-Einstein Effect

Both methods favour NO strong effect between W's

W Mass Plots - tnqq and qqqq Channels

W Mass Values

 $W_{mass}(qqqq) - W_{mass}(Ivqq) = 32 \pm 91 \text{ MeV/c}^2$

Overall Values

Present ALEPH Preliminary Value = 80.440 ± 0.064 GeV/c²

Combining all Energies Mass from qqqq channels $80.467 \pm 0.064(stat) \pm 0.035(syst) \pm 0.042(thy) \pm 0.017(LEP) \text{ GeV/c}^2$ Mass from lvqq channels $80.435 \pm 0.063(stat) \pm 0.045(syst) \pm 0.017(LEP) \text{ GeV/c}^2$ M(qqqq) - M(lvqq) = $32 \pm 91 \text{ MeV/c}^2$ ALEPH Combined W Mass and W Width

 $M_{W} = 80.440 \pm 0.044 \pm 0.045 \; GeV/c^{2}$

 $\Gamma_{\text{W}} = \textbf{2.168} \pm \textbf{0.158} \pm \textbf{0.116} \text{ GeV}$

Summary

1999 was another excellent year for ALEPH Data taking efficiency and quality remained high throughout the year There is a rich physics output

ALEPH is ready for this year's data taking and look forward to even higher energies - and hopefully a discovery

Our belief is that all emphasis should be on maximizing the high energy performance for the Higgs search