LATEST L3 PHYSICS RESULTS

Pablo García-Abia

CERN and University of Basel

on behalf of the L3 Collaboration

CERN Particle Physics Seminar,

LEP Physics Jamboree, July 10, 2001

OUTLINE

New results on Standard Model processes

Charged Higgs bosons search

Standard Model Higgs boson search

Many interesting topics not presented here are available at:

http://l3www.cern.ch/conferences/Budapest2001

Double tag events in two-photon collisions

Y depends mainly on the angle of the scattered electrons.

The QED radiative corrections are important: they are included in the analysis.

 $\sim 4\sigma$, sign of other QCD diagrams or BFKL

Tau pair cross section at Born Level

- Radiative contributions fill spectrum between Z peak and highest LEP energy,
- Deconvolution to Born level allows for combination of all data,
- This results provide a straight-forward method to check for new physics.

Search for single top production

Two final states: $t
ightarrow {
m W}b, {
m W}
ightarrow \ell ar
u, {
m q}ar q'$

Bose-Einstein correlations in hadronic Z decays

Enhanced production of pairs of identical bosons, π , close in phase space:

$$C_2(p_1,p_2) \equiv rac{P_{BE}(p_1,p_2)}{P_0(p_1,p_2)}$$
 ${\mathbb S}_2(Q) = {\mathcal N} \left(1 + \lambda \, {\mathrm e}^{-Q^2 R^2}
ight)$

- **λ:** fraction of interfering pion pairs
- **R:** size of the boson source

Weaker correlation and smaller source for $\pi^0 \pi^0 \pi^0$ than for $\pi^{\pm} \pi^{\pm}$.

Bose-Einstein correlations in W decays

BEC studied between particles from different W's

$$J \equiv \int \Delta
ho(Q) \, dQ$$

A model with inter-W BEC is disfavoured by 4.7σ

Colour reconnection effects in hadronic W⁺W⁻ events

Particle flow between jets sensitive to colour reconnection during the hadronisation

B —	\boldsymbol{A}	+	B
$u_N -$	\overline{C}	+	\overline{D}

Similar results using the energy flow between jets

The reference is YFSWW3

Charged Higgs production at LEP

Two Higgs Doublet Models (Type I):

Three final states:

The expected number of events is 30 for $m_{
m H}=70~{
m GeV}.$

Exclusion

Lower limits at 95% CL (GeV) ${
m Br}({
m H}^{\pm}
ightarrow au
u)$ observed median expected 0.0 77.2 77.1 0.1 76.0 66.9 0.5 **69.7** 75.7 84.6 **1.0** 82.7

Cut based 4-jet analysis

- loose 4-jet preselection
- $\bullet \log(\mathrm{Y}_{34}) > -4.0$
- $ullet |\cos heta_{prod}| < 0.8$
- $\chi^2_{5C} < 10$

This is NOT the ${\rm H}^\pm$ analysis, but a simple cut based analysis

Further tests are being performed.

• L3 published the results right after data taking:

Physics Letters B 495 (2000) 7

• New L3 results (June 2001): FINAL

Submitted to Physics Letters B

- **1. Changes from November to June**
- 2. Overview of the final results

Changes since November

Luminosity:

Final: 217.3 pb⁻¹

November: 200.8 pb⁻¹

Additional luminosity at $\sqrt{s} > 206~{
m GeV}$

\sqrt{s} from LEP:

Shifted down by 200 MeV. Known more precisely now than in November

Data rerun:

Final calibrations of all subdetectors

Monte Carlo rerun:

- a) final mapping of the detector behaviour
- b) high statistics Monte Carlo samples (more than $\times 4$)
- c) simulation on a finer grid of \sqrt{s}

Analyses:

a) new $Hq\bar{q}$ analysis, likelihood based: higher sensitivity

b) $H\nu\bar{\nu}$ analysis (NN based) optimised

Search performance improved by about 1 GeV in the mass limit expected at 95% CL

Main gain in performance is from the $Hq\bar{q}$ analysis.

B-tag in high-energy data samples

 ${
m e^+e^-\!
ightarrow\!qar q(\gamma)}$ and ${
m W^+W^-}
ightarrow {
m qar q}\ellar
u$

$Hq\bar{q}$ analysis

Distributions of some discriminating

variables combined in the likelihood

Signal: $m_{\rm H} = 115~{ m GeV}$

$H\nu\bar{\nu}$ analysis

Distributions of some discriminating

variables fed into the Neural Network

Signal: $m_{\rm H} = 115~{ m GeV}$

$\mathrm{H}\ell^+\ell^-$ and $au^+ au^-\mathrm{q}ar{\mathrm{q}}$ analyses

Distributions of the dilepton mass

and of the reconstructed Higgs mass

Signal: $m_{\rm H} = 115 \,\, { m GeV}$

The log-likelihood ratio for the

individual search channels

The s/b distributions

integrate above a given s/b value to obtain

Events versus expected signal

<u>didates</u>	I30	$m_{ m H}^{max}$ (GeV)	114.3	105.1	110.0	107.6	107.7	107.9
ass can	HVV [GeV]	$(s/b)_{max}$	0.77	2.96	1.39	2.31	1.12	2.67
t <mark>high m</mark>		$\left(s/b ight)_{110}$	0.39	1.90	1.39	0.94	0.73	2.20
nificant	(d/s+1) nl	$(s/b)_{115}$	0.70	0.36	0.23	0.20	0.13	0.01
most sig		\sqrt{s} (GeV)	206.4	206.4	206.4	206.6	206.6	204.7
ight of the 1	Hqq Hqq HmH [GeV	$M_{ m H}^{meas}\left({ m GeV} ight)$	115.0	108.3	110.1	107.1	109.9	107.1
vent we	(d/2+1) nl	Channel	$\mathrm{H} u ar{ u}$	Hqq	$\mathrm{H} u ar{ u}$	${ m H} u ar{ u}$	Hqq	Hqq
́А		Event	A	B	U	D		-

The log-likelihood ratio for <u>all the search channels combined</u>

Distribution of $-2 \ln Q$ **for two mass hypotheses**

(112.4 GeV expected) $m_{\rm H} > 112.0 ~{\rm GeV}$ **Exclusion limit at 95% CL:**

MSSM neutral Higgs bosons search

Exclusion limits at 95% CL:

 $m_{
m h} > 83.2 \ {
m GeV}$ (88.1 GeV expected) $m_{
m A} > 83.9 \ {
m GeV}$ (88.3 GeV expected) $0.7 < \tan\beta < 2.2$ excluded

Data analysis will continue till the end of 2003