Determination of α_s at LEP by L3 experiment

Simonetta Gentile Università "La Sapienza" (Roma), INFN.

QCD 02

2-9th July 2002, Montpellier (France)

- Hadronic samples in e^+e^- collisions at \sqrt{s} up to 208 GeV
- Analysis Methods:
- Jet algorithm
- Event shape variables
- Experimental data and QCD tests:
- Distribution of event shape variables
- Energy evolution of event shape variables
- $\alpha_{\rm s}$ at LEP
- Conclusions

Over a decade of LEP running:

- $3.5 \cdot 10^6$ Z hadronic decays recorded at $\sqrt{s} \sim m_{\rm Z}$ (1989-1995)
- Target luminosity at $\sqrt{s} > m_{
 m Z}$ 500 pb⁻¹ /expt

Delivered luminosity (1995-2000) $\approx 700 \text{ pb}^{-1} / \exp (1995 \text{ s}^{-1})$

Precise measurements of QCD at LEP:

- Clean initial state (e⁺e⁻)
- Small hadronization corrections $(\propto 1/E)$

Study Hadronic events $30 \le \sqrt{s} \le 208$ GeV

• Hard Gluon Radiation: Multi-jet topology, Event Shape Variables Measurement of Strong coupling constant α_s

Electroweak pert.QCD Hadron Detector

• $\sqrt{s'} < m_{\rm Z}$. Reduced $\sqrt{s'}$ from Z decay with isolated γ (FSR).

$$\sqrt{s'} = \sqrt{S\left(1-rac{2E_{\gamma}}{\sqrt{s}}
ight)}$$

 $\sqrt{s'}(\text{GeV}) = \underbrace{40, 55, 65, 75, 82, 84}_{\text{L3}}$ $\mathcal{O}(1000) \text{ events with purity } 70 - 90 \%$

- $\sqrt{s} \sim m_{\rm Z}$. Hadronic Z decays. Purity $\approx 99\%$
- $\sqrt{s} > m_{\rm Z}$. Rejecting initial state radiation. Four fermion final state (WW,ZZ). Purity ~ 78 - 90%:high selection efficiency ~ 83 - 90%

Distribution of event shapes from total hadronic event sample \rightarrow precise determination of α_s

 $\sqrt{s} > m_{\rm Z}$: Large contamination from WW events

Detector level distributions corrected *bin-by-bin* for:

- Remaining Background
- Detector Resolution
- Acceptance
- Initial/Final State Radiation

\sqrt{s}	$\int \mathcal{L} \mathrm{d}t$	Events	
(GeV)	(pb^{-1})		
130	6.1	556	
136	5.9	414	
161	10.8	424	
172	10.2	325	
183	55.3	1500	
189	176.8	4479	
194.4	112.2	2403	
200.2	117.0	2456	
206.2	207.6	4146	

• High energy sample. $192 \le \sqrt{s} \le 208 \text{ GeV}$

Comparison with QCD Event Generators

QCD Model	Shower Development	Fragmentation
JETSET/PYTHIA	Parton Shower	String
HERWIG	Parton Shower	Cluster
ARIADNE	Color Dipole	String
COJETS	Incoherent	Independent

All models tuned at $\sqrt{s} = m_{\rm Z}$ using LEP I data

- Collinear and infrared safe variables analytically calculable.
- Perturbative calculations more complete than in jet rate.

<u>Thrust</u>

$$\mathbf{T} = \left(rac{\Sigma_{i} |ec{\mathbf{p}_{i}} \cdot \hat{\mathbf{n}}_{\mathrm{T}}|}{\Sigma_{i} |ec{\mathbf{p}_{i}}|}
ight)_{\mathrm{max}}$$

Heavy jet mass

$$ho_{H} = \left(\Sigma_{
m i} {
m p}_{
m i}
ight)_{
m max}^{2} / {
m s}$$
 $({
m i} \, \, {
m in} \, S_{\pm})$

Jet broadenings

$$\begin{split} \mathbf{B}_{\pm} &= \begin{pmatrix} \underline{\Sigma}_i | \vec{\mathbf{p}}_i \times \hat{\mathbf{n}}_T | \\ 2\Sigma_i | \vec{\mathbf{p}}_i | \end{pmatrix} \\ \mathbf{B}_T &= \mathbf{B}_+ + \mathbf{B}_-, \ \mathbf{B}_W = \max(\mathbf{B}_+, \mathbf{B}_-) \\ \underline{C\text{-parameter}} \end{split}$$

$$\mathrm{C} = (rac{3}{\mathrm{s}}) \, {\scriptscriptstyle{\Sigma}_{\mathrm{i} < \mathrm{j}}} \, |ec{\mathbf{p}}_{\mathrm{i}}| * |ec{\mathbf{p}}_{\mathrm{j}}| * \sin^2(oldsymbol{ heta}_{\mathrm{ij}})$$

Event Shapes: relative contributions from n-jet configuration

2 jets: $1 - T \simeq 0 \ \rho_H, B_T, B_W, C \simeq 0$

3 jets: T $[\frac{2}{3}, 1], \rho_H \approx 1 - T, B_T [0, \frac{1}{2\sqrt{3}}], C [0, \frac{3}{4}]$

4 jets: T $[\frac{1}{\sqrt{3}}, 1]$, Planar Topology $(C)_{max} = 1$. Spherical Topology, $(B_T)_{max} = \frac{\pi}{8}, (B_W)_{max} = \frac{\pi}{16}$

5

Distributions: Trust

Distributions: Bw

 \Rightarrow QCD Models with parton shower describe data well

Complete analytical QCD calculations are available for event shape variables up to second order and leading logharithmic terms have been resummed up all orders for certain variables:

• Complete calculation to $\mathcal{O}(\alpha_s^2)$ for the event shape variable y:

$$rac{1}{\sigma}rac{d\sigma}{dy} = \mathrm{A}(\mathrm{y})rac{lpha_\mathrm{s}(\mu)}{2\pi} + \left(\mathrm{B}(\mathrm{y}) + 2\mathrm{A}(\mathrm{y})eta_0\lnrac{\mu^2}{Q^2}
ight) \left(rac{lpha_\mathrm{s}(\mu)}{2\pi}
ight)^2$$

 μ is the renormalization scale used for α_s calculations. A(y), B(y) computed.

the event shape variables distributions $\propto \alpha_{\rm s}$

 \Rightarrow great sensitivity to coupling constant.

• Resummation: Leading order terms $(\Sigma \overline{\alpha_s}^n L^{n+1})$ and next-to-leading logarithmic terms $(\Sigma \overline{\alpha_s}^n L^n)$, with $L = \ln(\frac{1}{u})$

	$\mathbf{L}\mathbf{L}$	NLL
$\mathcal{O}(lpha_{ m s})$	$\overline{lpha_{ m s}}L^2$	$\overline{\alpha_{\rm s}}{ m L}$
${\cal O}(lpha_{ m s}^2)$	$\overline{lpha_{ m s}^2}L^3$	$\overline{lpha_{ m s}^2}L^2$
${\cal O}(lpha_{ m s}^3)$	$\overline{lpha_{ m s}^3}L^4$	$\overline{lpha_{ m s}^3}L^3$
•	•	
•	•	

• Combination of fixed order calculations with resummed calculations (avoiding double counting of terms).

Modified Log R Replacing in the resummed terms by L' = ln $(y^{-1} - y_{max}^{-1} + 1)$, take log fixed order, expand in power series and match.

This calculations are performed at parton level and do not include heavy quarks mass effect.

• Compare the analytical calculations with the experimental distributions. The effect of hadronization and decays incorporated with MonteCarlo. $p^{pert}(y')$ is convoluted with the probability of finding a value y after fragmentation and decays for a parton level y'.

$f(y) = \int f^{pert} p^{non-pert}(y',y) dy$

 $p^{non-pert}$ is evaluted using Montecarlo: JETSET (as default), HERWIG/ARIADNE (for-cross-check).

Errors considered:

- Statistical
- Experimental systematics. Variation:
- Detector effect
- Background modelling
- Hadronization. Variation:
- Fragmentation models
- Fragmentation parameters
- Uncalculated High order.Variation:
- Matching schemes
- Scale 0.5 \sqrt{s} to 2 \sqrt{s}

 $\alpha_{\rm s}$ value at $\sqrt{s} = 206 \,\, {\rm GeV}$

 $egin{aligned} lpha_{
m s}(1-{
m T}) &= 0.1173 \ \pm 0.0021 \ ({
m exp}) \ \pm 0.0057 \ ({
m theo}) \ lpha_{
m s}(
ho) &= 0.119 \ \pm 0.0019 \ ({
m exp}) \ \pm 0.0034 \ ({
m theo}) \ lpha_{
m s}(B_T) &= 0.1163 \ \pm 0.0021 \ ({
m exp}) \ \pm 0.0065 \ ({
m theo}) \ lpha_{
m s}(B_W) &= 0.1077 \ \pm 0.0019 \ ({
m exp}) \ \pm 0.0062 \ ({
m theo}) \ lpha_{
m s}(C) &= 0.1077 \ \pm 0.0019 \ ({
m exp}) \ \pm 0.0062 \ ({
m theo}) \end{aligned}$

• $\alpha_{
m s}$ is the average of $\alpha_{
m s}(1$ -T) $\alpha_{
m s}(
ho) \ \alpha_{
m s}(B_T) \ lpha_{
m s}(B_W)$ $lpha_{
m s}({
m C})$ Distribution of event shape variables

Measured distributions of event shape variables in comparison with QCD predictions.

 $lpha_{
m s}({
m thrust})=0.1173,\, lpha_{
m s}(
ho)=0.1119,\, lpha_{
m s}(B_T)=0.1163, \ lpha_{
m s}(B_W)=0.1077,\, lpha_{
m s}(B_W)=0.1130$

The α_s running is the solution of renormalization equation. From the experimental data is possible to derive:

• Energy dependence of α_s compared with QCD prediction.

• Fit to QCD evolution equation with $\alpha_{
m s}(m_{
m Z})$ free parameter.

From event shape

Combined α_s values from the five event shape variables.

$<\sqrt{s}>$	$\boldsymbol{lpha_{s}}$ measurement from $\boldsymbol{T}, \boldsymbol{ ho}, \boldsymbol{B_{T}}, \boldsymbol{B_{w}}, \boldsymbol{C}$					
(\mathbf{GeV})	$lpha_{ m s}$	stat	syst	hadr.	hi. order	
41.4	0.1418	± 0.0053	± 0.0030	± 0.0055	± 0.0085	
55.3	0.1260	± 0.0047	± 0.0056	± 0.0066	± 0.0062	
65.4	0.1331	± 0.0032	± 0.0042	± 0.0059	± 0.0064	
75.7	0.1204	± 0.0024	± 0.0059	± 0.0060	± 0.0053	
82.3	0.1184	± 0.0028	± 0.0053	± 0.0060	± 0.0051	
85.1	0.1152	± 0.0037	± 0.0051	± 0.0060	± 0.0055	
91.2	0.1210	± 0.0008	± 0.0017	± 0.0040	± 0.0052	
130.1	0.1138	± 0.0033	± 0.0021	± 0.0031	± 0.0046	
136.1	0.1121	± 0.0039	± 0.0019	± 0.0038	± 0.0045	
161.3	0.1051	± 0.0048	± 0.0026	± 0.0026	± 0.0044	
172.3	0.1099	± 0.0052	± 0.0026	± 0.0024	± 0.0048	
182.8	0.1096	± 0.0022	± 0.0010	± 0.0023	± 0.0044	
188.6	0.1122	± 0.0014	± 0.0012	± 0.0022	± 0.0045	
194.4	0.1123	± 0.0018	± 0.0016	± 0.0020	± 0.0047	
200.2	0.1138	± 0.0018	± 0.0021	± 0.0020	± 0.0046	
206.2	0.1132	± 0.0014	± 0.0016	± 0.0019	± 0.0047	

$lpha_{ m s}(m_{ m Z}) = 0.1227 \pm 0.0012 \; ({ m exp}) \pm 0.0058 \; ({ m theo})$

($\chi^2 = 17.9 \text{ n.d.f} = 15 \text{ c.l.} = 0.27$)

 $oldsymbol{lpha}_{\mathbf{s}}$

- Event shape variables have been studied over a large energy range: 30 to 208 GeV in e^+e^- collisions by L3 experiment. Good agreement is seen between data and coherent models tuned at $\sqrt{s} = m_Z$.
- Runinng of α_s is clearly demonstrated. In agreement with QCD predictions.
- A fit to QCD evolutions gives:

 $lpha_{
m s}(m_{
m Z}) = 0.1227 \pm 0.0012 ~({
m exp}) \ \pm 0.0058 ~({
m theo})$

- Theoretical uncertainty from unknown higher orders dominate.
- Very consistent result with other α_s measurements performed.

Error bars include experimental systematic uncertanties

S. Gentile - QCD02, Montpellier (France)

spage Energy evolution of α_s The running of α_s can be expressed as:

$$lpha_{
m s}(\mu) = rac{lpha_{
m s}(\mu_o)}{1+eta_olpha_{
m s}(\mu_o)lnrac{(\mu_o)}{\mu^2}\mu_o^2)}$$

$$eta_o=rac{33-2n_f}{12\pi}$$

assumption: $lpha_{
m s}(\mu_o)=lpha_{
m s}(m_{
m Z})$

- Energy dependence of α_s compared with QCD prediction.
- Fit to QCD evolution equation with $\alpha_{
 m s}(m_{
 m Z})$ free parameter.